共查询到20条相似文献,搜索用时 16 毫秒
1.
2.
A dielectric logging tool, electromagnetic propagation tool (EPT), was deployed in 2007 in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert Well), North Slope, Alaska. The measured dielectric properties in the Mount Elbert well, combined with density log measurements, result in a vertical high-resolution (cm-scale) estimate of gas hydrate saturation. Two hydrate-bearing sand reservoirs about 20 m thick were identified using the EPT log and exhibited gas-hydrate saturation estimates ranging from 45% to 85%. In hydrate-bearing zones where variation of hole size and oil-based mud invasion are minimal, EPT-based gas hydrate saturation estimates on average agree well with lower vertical resolution estimates from the nuclear magnetic resonance logs; however, saturation and porosity estimates based on EPT logs are not reliable in intervals with substantial variations in borehole diameter and oil-based invasion.EPT log interpretation reveals many thin-bedded layers at various depths, both above and below the thick continuous hydrate occurrences, which range from 30-cm to about 1-m thick. Such thin layers are not indicated in other well logs, or from the visual observation of core, with the exception of the image log recorded by the oil-base microimager. We also observe that EPT dielectric measurements can be used to accurately detect fine-scale changes in lithology and pore fluid properties of hydrate-bearing sediments where variation of hole size is minimal. EPT measurements may thus provide high-resolution in-situ hydrate saturation estimates for comparison and calibration with laboratory analysis. 相似文献
3.
Permeability of hydrate reservoirs found in nature is likely to be heavily influenced by the percent of the pore volume occupied by hydrates. The quantification of how hydrate saturation affects permeability is of key interest for reservoir engineering studies. In this study, an experimental setup was modified to test permeability characteristics of unconsolidated core samples containing various saturations of methane hydrates. Hydrates were formed in the unconsolidated samples using a refrigerated core holder connected to a brine and methane injection system. Studies of this type conducted to date have rarely been performed on core samples recovered from actual hydrate-bearing sedimentary sections from natural hydrate intervals. Samples from the Mount Elbert site on the Alaska North Slope (ANS) were used for this study.Relative permeability measurements using hydrate constituent components (e.g. water and methane) are not very desirable due to difficulties in preventing additional hydrate formation during displacement experiments. Relative permeability measurements performed with hydrate constituent components (e.g. water and nitrogen) can help to significantly mitigate issues with additional hydrate formation. However, unsteady state relative permeability experiments produce piston like displacement results suggesting that steady state experiments might be preferable.It was observed that as in previous work using consolidated core samples, permeability of both brine and gases was reduced in unconsolidated hydrate-bearing core samples. Experimental results show that low to moderate hydrate saturations (1.5 to 36%) can significantly reduce permeability of porous media. These saturations, in fact, are lower than hydrate saturations observed in the natural hydrate systems at Mount Elbert. 相似文献
4.
M.E. Torres T.S. CollettK.K. Rose J.C. SampleW.F. Agena E.J. Rosenbaum 《Marine and Petroleum Geology》2011,28(2):332-342
The BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well was drilled and cored from 606.5 to 760.1 m on the North Slope of Alaska, to evaluate the occurrence, distribution and formation of gas hydrate in sediments below the base of the ice-bearing permafrost. Both the dissolved chloride and the isotopic composition of the water co-vary in the gas hydrate-bearing zones, consistent with gas hydrate dissociation during core recovery, and they provide independent indicators to constrain the zone of gas hydrate occurrence. Analyses of chloride and water isotope data indicate that an observed increase in salinity towards the top of the cored section reflects the presence of residual fluids from ion exclusion during ice formation at the base of the permafrost layer. These salinity changes are the main factor controlling major and minor ion distributions in the Mount Elbert Well. The resulting background chloride can be simulated with a one-dimensional diffusion model, and the results suggest that the ion exclusion at the top of the cored section reflects deepening of the permafrost layer following the last glaciation (∼100 kyr), consistent with published thermal models. Gas hydrate saturation values estimated from dissolved chloride agree with estimates based on logging data when the gas hydrate occupies more than 20% of the pore space; the correlation is less robust at lower saturation values. The highest gas hydrate concentrations at the Mount Elbert Well are clearly associated with coarse-grained sedimentary sections, as expected from theoretical calculations and field observations in marine and other arctic sediment cores. 相似文献
5.
Regional long-term production modeling from a single well test, Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope 总被引:1,自引:0,他引:1
Brian J. Anderson Masanori KuriharaMark D. White George J. MoridisScott J. Wilson Mehran Pooladi-DarvishManohar Gaddipati Yoshihiro MasudaTimothy S. Collett Robert B. HunterHideo Narita Kelly RoseRay Boswell 《Marine and Petroleum Geology》2011,28(2):493-501
6.
The synthesis of available geological information and surface temperature evolution in the Alaska North Slope region suggests that: biogenic and deeper thermogenic gases migrated through fault networks and preferentially invaded coarse-grained layers that have relatively high hydraulic conductivity and low gas entry pressures; hydrate started forming before the beginning of the permafrost; eventually, the permafrost deepened and any remaining free water froze so that ice and hydrate may coexist at some elevations. The single tested specimen (depth 620.47-620.62 m) from the D unit consists of uncemented quartzitic fine sand with a high fraction of fines (56% by mass finer than sieve #200). The as-received specimen shows no evidence of gas present. The surface texture of sediment grains is compatible with a fluvial-deltaic sedimentation environment and shows no signs of glacial entrainment. Tests conducted on sediments with and without THF hydrates show that effective stress, porosity, and hydrate saturation are the major controls on the mechanical and geophysical properties. Previously derived relationships between these variables and mechanical/geophysical parameters properly fit the measurements gathered with Mount Elbert specimens at different hydrate saturations and effective stress levels. We show that these measurements can be combined with index properties and empirical geomechanical relationships to estimate engineering design parameters. Volumetric strains measured during hydrate dissociation vanish at 2-4 MPa; therefore, minimal volumetric strains are anticipated during gas production at the Mount Elbert well. However, volume changes could increase if extensive grain crushing takes place during depressurization-driven production strategies, if the sediment has unexpectedly high in situ porosity associated to the formation history, or if fines migration and clogging cause a situation of sustained sand production. 相似文献
7.
Physical properties of sediment from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope 总被引:1,自引:0,他引:1
William Winters Michael WalkerRobert Hunter Timothy CollettRay Boswell Kelly RoseWilliam Waite Marta TorresShirish Patil Abhijit Dandekar 《Marine and Petroleum Geology》2011,28(2):361-380
This study characterizes cored and logged sedimentary strata from the February 2007 BP Exploration Alaska, Department of Energy, U.S. Geological Survey (BPXA-DOE-USGS) Mount Elbert Gas Hydrate Stratigraphic Test Well on the Alaska North Slope (ANS). The physical-properties program analyzed core samples recovered from the well, and in conjunction with downhole geophysical logs, produced an extensive dataset including grain size, water content, porosity, grain density, bulk density, permeability, X-ray diffraction (XRD) mineralogy, nuclear magnetic resonance (NMR), and petrography.This study documents the physical property interrelationships in the well and demonstrates their correlation with the occurrence of gas hydrate. Gas hydrate (GH) occurs in three unconsolidated, coarse silt to fine sand intervals within the Paleocene and Eocene beds of the Sagavanirktok Formation: Unit D-GH (614.4 m-627.9 m); unit C-GH1 (649.8 m-660.8 m); and unit C-GH2 (663.2 m-666.3 m). These intervals are overlain by fine to coarse silt intervals with greater clay content. A deeper interval (unit B) is similar lithologically to the gas-hydrate-bearing strata; however, it is water-saturated and contains no hydrate.In this system it appears that high sediment permeability (k) is critical to the formation of concentrated hydrate deposits. Intervals D-GH and C-GH1 have average “plug” intrinsic permeability to nitrogen values of 1700 mD and 675 mD, respectively. These values are in strong contrast with those of the overlying, gas-hydrate-free sediments, which have k values of 5.7 mD and 49 mD, respectively, and thus would have provided effective seals to trap free gas. The relation between permeability and porosity critically influences the occurrence of GH. For example, an average increase of 4% in porosity increases permeability by an order of magnitude, but the presence of a second fluid (e.g., methane from dissociating gas hydrate) in the reservoir reduces permeability by more than an order of magnitude. 相似文献
8.
G.J. MoridisS. Silpngarmlert M.T. Reagan T. CollettK. Zhang 《Marine and Petroleum Geology》2011,28(2):517-534
As part of an effort to identify suitable targets for a planned long-term field test, we investigate by means of numerical simulation the gas production potential from unit D, a stratigraphically bounded (Class 3) permafrost-associated hydrate occurrence penetrated in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well on North Slope, Alaska. This shallow, low-pressure deposit has high porosities (? = 0.4), high intrinsic permeabilities (k = 10−12 m2) and high hydrate saturations (SH = 0.65). It has a low temperature (T = 2.3-2.6 °C) because of its proximity to the overlying permafrost. The simulation results indicate that vertical wells operating at a constant bottomhole pressure would produce at very low rates for a very long period. Horizontal wells increase gas production by almost two orders of magnitude, but production remains low. Sensitivity analysis indicates that the initial deposit temperature is by the far the most important factor determining production performance (and the most effective criterion for target selection) because it controls the sensible heat available to fuel dissociation. Thus, a 1 °C increase in temperature is sufficient to increase the production rate by a factor of almost 8. Production also increases with a decreasing hydrate saturation (because of a larger effective permeability for a given k), and is favored (to a lesser extent) by anisotropy. 相似文献
9.
T.S. Collett R.E. LewisW.J. Winters M.W. LeeK.K. Rose R.M. Boswell 《Marine and Petroleum Geology》2011,28(2):561-577
The BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well was an integral part of an ongoing project to determine the future energy resource potential of gas hydrates on the Alaska North Slope. As part of this effort, the Mount Elbert well included an advanced downhole geophysical logging program. Because gas hydrate is unstable at ground surface pressure and temperature conditions, a major emphasis was placed on the downhole-logging program to determine the occurrence of gas hydrates and the in-situ physical properties of the sediments. In support of this effort, well-log and core data montages have been compiled which include downhole log and core-data obtained from the gas-hydrate-bearing sedimentary section in the Mount Elbert well. Also shown are numerous reservoir parameters, including gas-hydrate saturation and sediment porosity log traces calculated from available downhole well log and core data. 相似文献
10.
The characteristics of gas hydrates recovered from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope 总被引:1,自引:0,他引:1
Hailong Lu Thomas D. LorensonIgor L. Moudrakovski John A. RipmeesterTimothy S. Collett Robert B. HunterChris I. Ratcliffe 《Marine and Petroleum Geology》2011,28(2):411-418
Systematic analyses have been carried out on two gas hydrate-bearing sediment core samples, HYPV4, which was preserved by CH4 gas pressurization, and HYLN7, which was preserved in liquid-nitrogen, recovered from the BPXA-DOE-USGS Mount Elbert Stratigraphic Test Well. Gas hydrate in the studied core samples was found by observation to have developed in sediment pores, and the distribution of hydrate saturation in the cores imply that gas hydrate had experienced stepwise dissociation before it was stabilized by either liquid nitrogen or pressurizing gas. The gas hydrates were determined to be structure Type I hydrate with hydration numbers of approximately 6.1 by instrumentation methods such as powder X-ray diffraction, Raman spectroscopy and solid state 13C NMR. The hydrate gas composition was predominantly methane, and isotopic analysis showed that the methane was of thermogenic origin (mean δ13C = −48.6‰ and δD = −248‰ for sample HYLN7). Isotopic analysis of methane from sample HYPV4 revealed secondary hydrate formation from the pressurizing methane gas during storage. 相似文献
11.
Robert B. Hunter Timothy S. CollettRay Boswell Brian J. Anderson Scott A. DigertGordon Pospisil Richard BakerMicaela Weeks 《Marine and Petroleum Geology》2011,28(2):295-310
The Mount Elbert Gas Hydrate Stratigraphic Test Well was drilled within the Alaska North Slope (ANS) Milne Point Unit (MPU) from February 3 to 19, 2007. The well was conducted as part of a Cooperative Research Agreement (CRA) project co-sponsored since 2001 by BP Exploration (Alaska), Inc. (BPXA) and the U.S. Department of Energy (DOE) in collaboration with the U.S. Geological Survey (USGS) to help determine whether ANS gas hydrate can become a technically and commercially viable gas resource. Early in the effort, regional reservoir characterization and reservoir simulation modeling studies indicated that up to 0.34 trillion cubic meters (tcm; 12 trillion cubic feet, tcf) gas may be technically recoverable from 0.92 tcm (33 tcf) gas-in-place within the Eileen gas hydrate accumulation near industry infrastructure within ANS MPU, Prudhoe Bay Unit (PBU), and Kuparuk River Unit (KRU) areas. To further constrain these estimates and to enable the selection of a test site for further data acquisition, the USGS reprocessed and interpreted MPU 3D seismic data provided by BPXA to delineate 14 prospects containing significant highly-saturated gas hydrate-bearing sand reservoirs. The “Mount Elbert” site was selected to drill a stratigraphic test well to acquire a full suite of wireline log, core, and formation pressure test data. Drilling results and data interpretation confirmed pre-drill predictions and thus increased confidence in both the prospect interpretation methods and in the wider ANS gas hydrate resource estimates. The interpreted data from the Mount Elbert well provide insight into and reduce uncertainty of key gas hydrate-bearing reservoir properties, enable further refinement and validation of the numerical simulation of the production potential of both MPU and broader ANS gas hydrate resources, and help determine viability of potential field sites for future extended term production testing. Drilling and data acquisition operations demonstrated that gas hydrate scientific research programs can be safely, effectively, and efficiently conducted within ANS infrastructure. The program success resulted in a technical team recommendation to project management to drill and complete a long-term production test within the area of existing ANS infrastructure. If approved by stakeholders, this long-term test would build on prior arctic research efforts to better constrain the potential gas rates and volumes that could be produced from gas hydrate-bearing sand reservoirs. 相似文献
12.
Brian Anderson Steve HancockScott Wilson Christopher EngerTimothy Collett Ray BoswellRobert Hunter 《Marine and Petroleum Geology》2011,28(2):478-492
In February 2007, the U.S. Department of Energy, BP Exploration (Alaska), and the U.S. Geological Survey, collected open-hole pressure-response data, as well as gas and water sample collection, in a gas hydrate reservoir (the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well) using Schlumberger's Modular Dynamics Formation Tester (MDT) wireline tool. Four such MDT tests, ranging from six to twelve hours duration, and including a series of flow, sampling, and shut-in periods of various durations, were conducted. Locations for the testing were selected based on NMR and other log data to assure sufficient isolation from reservoir boundaries and zones of excess free water. Test stages in which pressure was reduced sufficiently to mobilize free water in the formation (yet not cause gas hydrate dissociation) produced readily interpretable pressure build-up profiles. Build-ups following larger drawdowns consistently showed gas-hydrate dissociation and gas release (as confirmed by optical fluid analyzer data), as well as progressive dampening of reservoir pressure build-up during sequential tests at a given MDT test station.History matches of one multi-stage, 12-h test (the C2 test) were accomplished using five different reservoir simulators: CMG-STARS, HydrateResSim, MH21-HYDRES, STOMP-HYD, and TOUGH + HYDRATE. Simulations utilized detailed information collected across the reservoir either obtained or determined from geophysical well logs, including thickness (11.3 m, 37 ft.), porosity (35%), hydrate saturation (65%), both mobile and immobile water saturations, intrinsic permeability (1000 mD), pore water salinity (5 ppt), and formation temperature (3.3-3.9 °C). This paper will present the approach and preliminary results of the history-matching efforts, including estimates of initial formation permeability and analyses of the various unique features exhibited by the MDT results. 相似文献
13.
Using cryogenic scanning electron microscopy (CSEM), powder X-ray diffraction, and gas chromatography methods, we investigated the physical states, grain characteristics, gas composition, and methane isotopic composition of two gas-hydrate-bearing sections of core recovered from the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well situated on the Alaska North Slope. The well was continuously cored from 606.5 m to 760.1 m depth, and sections investigated here were retrieved from 619.9 m and 661.0 m depth. X-ray analysis and imaging of the sediment phase in both sections shows it consists of a predominantly fine-grained and well-sorted quartz sand with lesser amounts of feldspar, muscovite, and minor clays. Cryogenic SEM shows the gas-hydrate phase forming primarily as a pore-filling material between the sediment grains at approximately 70-75% saturation, and more sporadically as thin veins typically several tens of microns in diameter. Pore throat diameters vary, but commonly range 20-120 microns. Gas chromatography analyses of the hydrate-forming gas show that it is comprised of mainly methane (>99.9%), indicating that the gas hydrate is structure I. Here we report on the distribution and articulation of the gas-hydrate phase within the cores, the grain morphology of the hydrate, the composition of the sediment host, and the composition of the hydrate-forming gas. 相似文献
14.
In 2006, the U.S. Geological Survey (USGS) completed detailed analysis and interpretation of available 2-D and 3-D seismic data and proposed a viable method for identifying sub-permafrost gas hydrate prospects within the gas hydrate stability zone in the Milne Point area of northern Alaska. To validate the predictions of the USGS and to acquire critical reservoir data needed to develop a long-term production testing program, a well was drilled at the Mount Elbert prospect in February, 2007. Numerous well log data and cores were acquired to estimate in-situ gas hydrate saturations and reservoir properties.Gas hydrate saturations were estimated from various well logs such as nuclear magnetic resonance (NMR), P- and S-wave velocity, and electrical resistivity logs along with pore-water salinity. Gas hydrate saturations from the NMR log agree well with those estimated from P- and S-wave velocity data. Because of the low salinity of the connate water and the low formation temperature, the resistivity of connate water is comparable to that of shale. Therefore, the effect of clay should be accounted for to accurately estimate gas hydrate saturations from the resistivity data. Two highly gas hydrate-saturated intervals are identified - an upper ∼43 ft zone with an average gas hydrate saturation of 54% and a lower ∼53 ft zone with an average gas hydrate saturation of 50%; both zones reach a maximum of about 75% saturation. 相似文献
15.
Timothy J. Kneafsey Hailong LuWilliam Winters Ray BoswellRobert Hunter Timothy S. Collett 《Marine and Petroleum Geology》2011,28(2):381-393
Collecting and preserving undamaged core samples containing gas hydrates from depth is difficult because of the pressure and temperature changes encountered upon retrieval. Hydrate-bearing core samples were collected at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well in February 2007. Coring was performed while using a custom oil-based drilling mud, and the cores were retrieved by a wireline. The samples were characterized and subsampled at the surface under ambient winter arctic conditions. Samples thought to be hydrate bearing were preserved either by immersion in liquid nitrogen (LN), or by storage under methane pressure at ambient arctic conditions, and later depressurized and immersed in LN. Eleven core samples from hydrate-bearing zones were scanned using x-ray computed tomography to examine core structure and homogeneity. Features observed include radial fractures, spalling-type fractures, and reduced density near the periphery. These features were induced during sample collection, handling, and preservation. Isotopic analysis of the methane from hydrate in an initially LN-preserved core and a pressure-preserved core indicate that secondary hydrate formation occurred throughout the pressurized core, whereas none occurred in the LN-preserved core, however no hydrate was found near the periphery of the LN-preserved core. To replicate some aspects of the preservation methods, natural and laboratory-made saturated porous media samples were frozen in a variety of ways, with radial fractures observed in some LN-frozen sands, and needle-like ice crystals forming in slowly frozen clay-rich sediments. Suggestions for hydrate-bearing core preservation are presented. 相似文献
16.
Thomas D. Lorenson Timothy S. CollettRobert B. Hunter 《Marine and Petroleum Geology》2011,28(2):343-360
Gases were analyzed from well cuttings, core, gas hydrate, and formation tests at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well, drilled within the Milne Point Unit, Alaska North Slope. The well penetrated a portion of the Eileen gas hydrate deposit, which overlies the more deeply buried Prudhoe Bay, Milne Point, West Sak, and Kuparuk River oil fields. Gas sources in the upper 200 m are predominantly from microbial sources (C1 isotopic compositions ranging from −86.4 to −80.6‰). The C1 isotopic composition becomes progressively enriched from 200 m to the top of the gas hydrate-bearing sands at 600 m. The tested gas hydrates occur in two primary intervals, units D and C, between 614.0 m and 664.7 m, containing a total of 29.3 m of gas hydrate-bearing sands. The hydrocarbon gases in cuttings and core samples from 604 to 914 m are composed of methane with very little ethane. The isotopic composition of the methane carbon ranges from −50.1 to −43.9‰ with several outliers, generally decreasing with depth. Gas samples collected by the Modular Formation Dynamics Testing (MDT) tool in the hydrate-bearing units were similarly composed mainly of methane, with up to 284 ppm ethane. The methane isotopic composition ranged from −48.2 to −48.0‰ in the C sand and from −48.4 to −46.6‰ in the D sand. Methane hydrogen isotopic composition ranged from −238 to −230‰, with slightly more depleted values in the deeper C sand. These results are consistent with the concept that the Eileen gas hydrates contain a mixture of deep-sourced, microbially biodegraded thermogenic gas, with lesser amounts of thermogenic oil-associated gas, and coal gas. Thermal gases are likely sourced from existing oil and gas accumulations that have migrated up-dip and/or up-fault and formed gas hydrate in response to climate cooling with permafrost formation. 相似文献
17.
In the first part of this paper, the pressure and temperature measurements obtained using Schlumberger's Modular Formation Dynamics Tester (MDT) conducted on the C2 interval in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert Well) are history matched, with the following three objectives: (i) to obtain a better understanding of hydrate decomposition and its reformation as conditions cross the p/T stability, (ii) to obtain formation properties (e.g., permeability) that are consistent with the measurements, and (iii) to explore the non-uniqueness in the history match; i.e., to explore the ranges of parameters that allow a reasonable match of the measured quantities. In the second part of this paper, long-term production performance is predicted, and the effect of the uncertain parameters on the predictions is demonstrated. The results are used to demonstrate the range of long-term production that may be expected, when a model is calibrated using the MDT data. Usefulness of short-term tests for long-term forecast prediction is then discussed. 相似文献
18.
Geologic controls on gas hydrate occurrence in the Mount Elbert prospect, Alaska North Slope 总被引:1,自引:0,他引:1
Ray Boswell Kelly RoseTimothy S. Collett Myung LeeWilliam Winters Kristen A. LewisWarren Agena 《Marine and Petroleum Geology》2011,28(2):589-607
Data acquired at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well, drilled in the Milne Point area of the Alaska North Slope in February, 2007, indicates two zones of high gas hydrate saturation within the Eocene Sagavanirktok Formation. Gas hydrate is observed in two separate sand reservoirs (the D and C units), in the stratigraphically highest portions of those sands, and is not detected in non-sand lithologies. In the younger D unit, gas hydrate appears to fill much of the available reservoir space at the top of the unit. The degree of vertical fill with the D unit is closely related to the unit reservoir quality. A thick, low-permeability clay-dominated unit serves as an upper seal, whereas a subtle transition to more clay-rich, and interbedded sand, silt, and clay units is associated with the base of gas hydrate occurrence. In the underlying C unit, the reservoir is similarly capped by a clay-dominated section, with gas hydrate filling the relatively lower-quality sands at the top of the unit leaving an underlying thick section of high-reservoir quality sands devoid of gas hydrate. Evaluation of well log, core, and seismic data indicate that the gas hydrate occurs within complex combination stratigraphic/structural traps. Structural trapping is provided by a four-way fold closure augmented by a large western bounding fault. Lithologic variation is also a likely strong control on lateral extent of the reservoirs, particularly in the D unit accumulation, where gas hydrate appears to extend beyond the limits of the structural closure. Porous and permeable zones within the C unit sand are only partially charged due most likely to limited structural trapping in the reservoir lithofacies during the period of primary charging. The occurrence of the gas hydrate within the sands in the upper portions of both the C and D units and along the crest of the fold is consistent with an interpretation that these deposits are converted free gas accumulations formed prior to the imposition of gas hydrate stability conditions. 相似文献
19.
In 2006, the United States Geological Survey (USGS) completed a detailed analysis and interpretation of available 2-D and 3-D seismic data, along with seismic modeling and correlation with specially processed downhole well log data for identifying potential gas hydrate accumulations on the North Slope of Alaska. A methodology was developed for identifying sub-permafrost gas hydrate prospects within the gas hydrate stability zone in the Milne Point area. The study revealed a total of 14 gas hydrate prospects in this area.In order to validate the gas hydrate prospecting protocol of the USGS and to acquire critical reservoir data needed to develop a longer-term production testing program, a stratigraphic test well was drilled at the Mount Elbert prospect in the Milne Point area in early 2007. The drilling confirmed the presence of two prominent gas-hydrate-bearing units in the Mount Elbert prospect, and high quality well logs and core data were acquired. The post-drill results indicate pre-drill predictions of the reservoir thickness and the gas-hydrate saturations based on seismic and existing well data were 90% accurate for the upper unit (hydrate unit D) and 70% accurate for the lower unit (hydrate unit C), confirming the validity of the USGS approach to gas hydrate prospecting. The Mount Elbert prospect is the first gas hydrate accumulation on the North Slope of Alaska identified primarily on the basis of seismic attribute analysis and specially processed downhole log data. Post-drill well log data enabled a better constraint of the elastic model and the development of an improved approach to the gas hydrate prospecting using seismic attributes. 相似文献
20.
Katja U. Heeschen Hans Jürgen Hohnberg Matthias Haeckel Friedrich Abegg Manuela Drews Gerhard Bohrmann 《Marine Chemistry》2007,107(4):498-515
Two newly developed coring devices, the Multi-Autoclave-Corer and the Dynamic Autoclave Piston Corer were deployed in shallow gas hydrate-bearing sediments in the northern Gulf of Mexico during research cruise SO174 (Oct–Nov 2003). For the first time, they enable the retrieval of near-surface sediment cores under ambient pressure. This enables the determination of in situ methane concentrations and amounts of gas hydrate in sediment depths where bottom water temperature and pressure changes most strongly influence gas/hydrate relationships. At seep sites of GC185 (Bush Hill) and the newly discovered sites at GC415, we determined the volume of low-weight hydrocarbons (C1 through C5) from nine pressurized cores via controlled degassing. The resulting in situ methane concentrations vary by two orders of magnitudes between 0.031 and 0.985 mol kg− 1 pore water below the zone of sulfate depletion. This includes dissolved, free, and hydrate-bound CH4. Combined with results from conventional cores, this establishes a variability of methane concentrations in close proximity to seep sites of five orders of magnitude. In total four out of nine pressure cores had CH4 concentrations above equilibrium with gas hydrates. Two of them contain gas hydrate volumes of 15% (GC185) and 18% (GC415) of pore space. The measurements prove that the highest methane concentrations are not necessarily related to the highest advection rates. Brine advection inhibits gas hydrate stability a few centimeters below the sediment surface at the depth of anaerobic oxidation of methane and thus inhibits the storage of enhanced methane volumes. Here, computerized tomography (CT) of the pressure cores detected small amounts of free gas. This finding has major implications for methane distribution, possible consumption, and escape into the bottom water in fluid flow systems related to halokinesis. 相似文献