首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Reconstructions of the Albian to Campanian foreland basin adjacent to the northern Canadian Cordillera are based on outcrop and well log correlations, seismic interpretation, and reconnaissance-level detrital zircon analysis. The succession is subdivided into two tectonostratigraphic units. First is an Albian tectonostratigraphic unit that was deposited on the flexural margin of a foreland basin. At the base is a shallow marine sandstone interval that was deposited during transgressive reworking of sediment from cratonic sources east of the basin that resulted in a dominant 2000–1800 Ma detrital zircon age fraction. Subsequent deposition in a west-facing muddy ramp setting was followed by east-to-west shoreface progradation into the basin.Near the Albian–Cenomanian boundary, regional uplift and exhumation resulted in an angular unconformity at the base of the Cenomanian–Campanian tectonostratigraphic unit. Renewed subsidence in the Cenomanian resulted in deposition of organic-rich, radioactive, black mudstone of the Slater River Formation in a foredeep setting. Cenomanian–Turonian time saw west-to-east progradation of a shoreface-shelf system from the orogenic margin of the foreland basin over the foredeep deposits. Detrital zircon age peaks of approximately 1300 Ma, 1000 Ma, and 400 Ma from a Turonian sample are consistent with recycling of Mississippian and older strata from the Cordillera west of the study area, and show that the orogen-attached depositional system delivered sediment from the orogen to the foreland basin. A near syndepositional detrital zircon age of ca. 93 Ma overlaps with known granitoid ages from the Cordillera. After the shelf system prograded across the study area, subsequent pulses of subsidence and uplift resulted in dramatic thickness variations across an older structural belt, the Keele Tectonic Zone, from the Turonian to the Campanian.The succession of depositional systems in the study area from flexural margin to foredeep to orogenic margin is attributed to coupled foreland propagation of the front of the Cordilleran orogen and the foreland basin. Propagation of crustal thickening and deformation toward the foreland is a typical feature of orogens and so the distal to proximal evolution of the foreland basin should also be considered as typical.  相似文献   

2.
The Okinawa marginal basin was opened by crustal extension into the Asian continent, north of the Taiwan collision zone. It is located behind the Ryukyu Trench subduction zone and the Ryukyu active volcanic arc. If we except the Andaman Sea, the Okinawa Trough is the only example of marginal backarc basin type, opened into a continent at an early stage of evolution. Active rifting and spreading can be observed. Synthesis of siesmic reflection, seismic refraction, drilling, dredging and geological field data has resulted in interpretative geological cross sections and a structural map of the Ryukyu-Okinawa area. The main conclusions of the reconstruction of this backarc basin/volcanic arc evolution are. (1) Backarc rifting was initiated in the volcanic arc and propagated along it during the Neogene. It is still active at both ends of the basin. Remnants of volcanic arc are found on the continental side of the basin. (2) There was synchronism between opening and subsidence of the Okinawa Trough and tilting and subsidence of the forearc terrace. The late Miocene erosional surface is now 4000 m below sea-level in the forearc terrace, above the trench slope. Retreat and subsidence of the Ryukyu trench line relative to the Asian continental plate, could be one of the causes of tilting of the forearc and extension in the backarc area. (3) A major phase of crustal spreading occurred in Pliocene times 1.9 My ago in the south and central Okinawa Trough. (4) En échelon rifting and spreading structures of the central axes of the Okinawa Trough are oblique to the general trend of the arc and trench. The Ryukyu arc sub-plate cannot be considered as a rigid plate. Rotation of 45° to 50° of the southern Ryukyu arc, since the late Miocene, is inferred. The timing and kinematic evolution of the Taiwan collision and the south Okinawa Trough opening suggest a connection between these two events. The indentation process due to the collision of the north Luzon Arc with the China margin could have provoked: lateral extrusion; clockwise rotation (45° to 50° according to palaeomagnetic data) and buckling of the south Ryukyu non-volcanic arc; tension in the weak crustal zone constituted by the south Ryukyu volcanic arc and opening of the south Okinawa Trough. Similar lateral extrusions, rotations, buckling and tensional gaps have been observed in indentation experiments. Additional phenomena such as: thermal convection, retreating trench model or anchored slab model could maintain extension in the backarc basin. Such a hypothetical collision-lateral backarc opening model could explain the initiation of opening of backarc basins such as the Mariana Trough, Bonin Trough, Parece Vela — Shikoku Basin and Sea of Japan. A new late Cenozoic palaeogeographic evolution model of the Philippine Sea plate and surrounding areas is proposed.  相似文献   

3.
This study integrates newly acquired stratigraphic data, geologic mapping, and paleocurrent data to constrain the stratigraphic evolution of the oldest channel-lobe complex in the Upper Cretaceous Cerro Toro Formation in the Silla Syncline area of the Magallanes Basin, termed the Pehoe member. The Pehoe member ranges in thickness from 60 m in the north to at least 410 m farther down system and comprises three separate divisions (A, B, and C). A lower conglomerate unit and an upper one, termed Pehoe A and C divisions respectively, represent the fill of major incised submarine channels or channel complexes. These are separated by stratified sandstone of the Pehoe B division, representing a weakly confined lobe complex, either transient or terminal.The integration of new data with observations from previous studies reveal that the three main coarse-grained conglomerate and sandstone members in the Cerro Toro Formation in the Silla Syncline include at least seven distinct submarine channels or channel complexes and two major lobe complexes. The thinning and disappearance of these units along the eastern limb of the syncline reflect confinement of the flows to a narrow trough or mini-basin bounded to the east by a topographic high. This confinement resulted in unidirectional paleocurrents to the south and southeast in all deposits. Changes in depositional geometries are interpreted as reflecting changes in sediment supply and relative confinement. Submarine channels were from 700 m to 3.5 km wide and occupied a fairway that was 4-5 km wide. Flows moving south and southeast in this mini-basin probably crossed the eastern topographic high south of the present exposures and joined those moving southward along the axis of the foreland basin at least 16 km to the east.  相似文献   

4.
The paper deals with original stratigraphic, petrographic and structural data concerning the evolution of the southern Apennines chain (Italy). The main Langhian to Pliocene deposits cropping out in the northern sector of the southern Apennines foreland basin system (Sannio-Irpinia area) have been studied and correlated in order to document the effects of tectonic changes on the evolution of sandstone detrital modes and stratigraphic architecture. The studied sandstone units can be grouped in five key intervals: a) Numidian Flysch, mostly formed by Langhian mature quartzarenitic deposits and conformable Serravallian post-Numidian successions, formed by arkosic and calciclastic arenaceous-pelitic beds (foreland depozones); b) Langhian to Tortonian San Giorgio Fm., mostly composed of quartzofeldspatic sandstones (foredeep depozone); c) Tortonian to Early Messinian, quartz-feldspatic and partly sedimentary-carbonatoclastic petrofacies, thrust-top successions (Vallone Ponticello, Villanova del Battista and San Bartolomeo fms.); d) Late Messinian quartzolithic to quartzofeldspatic sandstones (Torrente Fiumarella, Anzano Molasse and Tufo-Altavilla unit), which can be referred to infilled thrust-top basins; e) unconformity-bounded Pliocene quartzofeldspatic sandstone strata (wedge-top depozones), characterized by synsedimentary tectonic activity.Detrital modes of the Serravallian through Middle Pliocene sandstones of the southern Apennines foreland basin system testify clear provenance relations from the accreted terranes forming the southern Apennine thrust-belt. The studied clastics show almost the same blended (quartz-feldspatic) composition; this condition could be related to the tectonic transport over thrust ramp of source rocks, as suggested by the tectonic evolutionary model. This study, dealing with sedimentary provenance analysis and tectonostratigraphic evolution, provides an example of the close relations between clastic compositions and foreland basin system development in southern Apennines.  相似文献   

5.
A regional study of the Eocene succession in the UK sector of the Rockall Plateau has yielded new insights into the early opening history of the NE Atlantic continental margin. Data acquired from British Geological Survey borehole 94/3, on the Rockall High, provides a high-resolution record of post-rift, Early to Mid-Eocene, subaqueous fan-delta development and sporadic volcanic activity, represented by pillow lavas, tuffs and subaerial lavas. This sequence correlates with the East Rockall Wedge, which is one of several prograding sediment wedges identified across the Rockall Plateau whose development was largely terminated in the mid-Lutetian. Linking the biostratigraphical data with the magnetic anomaly pattern in the adjacent ocean basin indicates that this switch-off in fan-delta sedimentation and volcanism was coincident with the change from a segmented/transform margin to a continuously spreading margin during chron C21. However, late-stage easterly prograding sediment wedges developed on the Hatton High during late Mid- to Late Eocene times; these can only have been sourced from the Hatton High, which was developing as an anticline during this interval. This deformation occurred in response to Mid- to Late Eocene compression along the ocean margin, possibly associated with the reorganisation to oblique spreading in the Iceland Basin, which culminated at the end of the Eocene with the formation of the North Hatton Anticline, and the deformation (tilting) of these wedges. A series of intra-Eocene unconformities, of which the mid-Lutetian unconformity is the best example, has been traced from the Rockall Plateau to the Faroe-Shetland region and onto the Greenland conjugate margin bordering the early ocean basin. Whilst there appears to be some correlation with 3rd order changes in eustatic sea level, it is clear from this study that tectonomagmatic processes related to changes in spreading directions between Greenland and Eurasia, and/or mantle thermal perturbations cannot be discounted.  相似文献   

6.
The SW Iberian margin developed as a passive margin during Mesozoic times and was later inverted during the mainly Cenozoic Alpine orogeny. The initial syn-rift deposits include a Lower Jurassic evaporite unit of variable thickness. In the onshore, this unit is observed to thicken basinward (i.e., southward), in fault-controlled depocenters, and salt-related structures are only present in areas of thick initial evaporites. In the offshore, multiple salt-structures cored by the Lower Jurassic evaporites are interpreted on seismic reflection data and from exploratory drilling. Offshore salt structures include the allochthonous Esperança Salt Nappe, which extends over an area roughly 40 × 60 km. The abundance of salt-related structures and their geometry is observed to be controlled by the distribution of evaporite facies, which is in turn controlled by the structure of rift-related faulting. This paper presents a comprehensive study of salt tectonics over the entire onshore and offshore SW Iberian passive margin (southern Portugal and Gulf of Cadiz), covering all aspects from initial evaporite composition and thickness to the evolution of salt-related structures through Mesozoic extension and Cenozoic basin inversion.  相似文献   

7.
南海西南次海盆被动陆缘洋陆转换带位于陆缘强烈伸展区,蕴含着岩石圈临界伸展破裂和洋盆扩张过程的丰富信息。本文利用多道地震剖面和重力异常数据,对西南次海盆被动陆缘构造单元进行划分,研究陆缘南、北部洋陆转换带结构构造特征,探讨陆缘伸展演化过程。多道地震剖面资料显示,北部洋陆转换带发育有裂陷期断陷和向海倾斜的掀斜断块;南部发育有低角度正断层控制的裂陷期断陷、海底火山以及局部隆起;从陆到洋方向,重力异常值变化明显。根据上述结果南海西南次海盆被动陆缘划分为近端带、洋陆转换带和洋盆三个构造单元,分别对应了其伸展演化过程的三个阶段:前裂谷阶段、陆缘裂陷阶段和海底扩张阶段。  相似文献   

8.
Using recently gathered onland structural and 2D/3D offshore seismic data in south and central Palawan (Philippines), this paper presents a new perspective in unraveling the Cenozoic tectonic history of the southeastern margin of the South China Sea. South and central Palawan are dominated by Mesozoic ophiolites (Palawan Ophiolite), distinct from the primarily continental composition of the north. These ophiolites are emplaced over syn-rift Eocene turbidites (Panas Formation) along thrust structures best preserved in the ophiolite–turbidite contact as well as within the ophiolites. Thrusting is sealed by Early Miocene (∼20 Ma) sediments of the Pagasa Formation (Isugod Formation onland), constraining the younger limit of ophiolite emplacement at end Late Oligocene (∼23 Ma). The onset of ophiolite emplacement at end Eocene is constrained by thrust-related metamorphism of the Eocene turbidites, and post-emplacement underthrusting of Late Oligocene – Early Miocene Nido Limestone. This carbonate underthrusting at end Early Miocene (∼16 Ma) is marked by the deformation of a seismic unit corresponding to the earliest members of the Early – Middle Miocene Pagasa Formation. Within this formation, a tectonic wedge was built within Middle Miocene (from ∼16 Ma to ∼12 Ma), forming a thrust-fold belt called the Pagasa Wedge. Wedge deformation is truncated by the regionally-observed Middle Miocene Unconformity (MMU ∼12 Ma). A localized, post-kinematic extension affects thrust-fold structures, the MMU, and Late Miocene to Early Pliocene carbonates (e.g. Tabon Limestone). This structural set-up suggests a continuous convergent regime affecting the southeastern margin of the South China Sea between end Eocene to end Middle Miocene. The ensuing structures including juxtaposed carbonates, turbidites and shallow marine clastics within thrust-fold belts have become ideal environments for hydrocarbon generation and accumulation. Best developed in the Northwest Borneo Trough area, the intensity of thrust-fold deformation decreases towards the northeast into offshore southwest Palawan.  相似文献   

9.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号