共查询到20条相似文献,搜索用时 46 毫秒
1.
The sediment temperature distribution at mud volcanoes provides insights into their activity and into the occurrence of gas hydrates. If ambient pressure and temperature conditions are close to the limits of the gas hydrate stability field, the sediment temperature distribution not only limits the occurrence of gas hydrates, but is itself influenced by heat production and consumption related to the formation and dissociation of gas hydrates. Located in the Sorokin Trough in the northern Black Sea, the Dvurechenskii mud volcano (DMV) was in the focus of detailed investigations during the M72/2 and M73/3a cruises of the German R/V Meteor and the ROV Quest 4000 m in February and March 2007. A large number of in-situ sediment temperature measurements were conducted from the ROV and with a sensor-equipped gravity corer. Gas hydrates were sampled in pressurized cores using a dynamic autoclave piston corer (DAPC). The thermal structure of the DMV suggests a regime of fluid flow at rates decreasing from the summit towards the edges of the mud volcano, accompanied by intermittent mud expulsion at the summit. Modeled gas hydrate dissociation temperatures reveal that the gas hydrates at the DMV are very close to the stability limits. Changes in heat flow due to variable seepage rates probably do not result in changes in sediment temperature but are compensated by gas hydrate dissociation and formation. 相似文献
2.
Mass transport deposits and geological features related to fluid flow such as gas chimneys, mud diapirs and volcanos, pockmarks and gas hydrates are pervasive on the canyon dominated northern slope of the Pearl River Mouth basin of the South China Sea. These deposits and structures are linked to serious geohazards and are considered risk factors for seabed installations. Based on high resolution three dimensional seismic surveys, seismic characteristics, distributions and origins of these features are analyzed. A distribution map is presented and geometrical parameters and spatial distribution patterns are summarized. Results show that various groups of the mapped features are closely tied to local or regional tectonism and sedimentary processes. Mass transport complexes are classified as slides near the shelf break, initially deformed slumps on the flanks of canyons and highly deformed slumps on the lower slope downslope of the mouth of canyons. We propose them to be preconditioned by pore pressure changes related to sea level fluctuations, steep topography, and fluid and fault activities. Gas chimneys are mainly located in the vicinity of gas reservoirs, while bottom-simulating reflectors are observed within the gas chimney regions, suggesting gas chimneys serve as conduits for thermogenic gas. Mud diapirs/volcanos and pockmarks are observed in small numbers and the formation of pockmarks is related to underlying gas chimneys and faults. This study aims at reducing risks for deep-water engineering on the northern slope of South China Sea. 相似文献
3.
本文研究了南海东北部陆坡天然气水合物区滑塌和泥火山活动的特征及表现形式,探讨了滑塌和泥火山活动对天然气水合物成藏的影响,提出了滑塌主导和滑塌、泥火山共同作用两种控制模式。根据地震数据、浅层剖面和海底地形数据解释,将研究区划分为规则滑塌区和泥火山活动影响区,并识别出泥火山、泥火山脊、凹槽、凹坑等特征地形。滑塌和泥火山活动是陆坡天然气水合物发育区重要的地形控制因素,两种活动共同作用产生复杂的地形特征。综合多条地震测线中似海底反射层(BSR)形态、连续性和滑塌、泥火山活动的关系,认为滑塌控制的区域,BSR连续,天然气水合物储藏较完整,泥火山活动区天然气水合物储藏也仅受到局部破坏。同时指出滑塌和泥火山活动对研究区长期天然气渗漏活动具有重要作用。 相似文献
4.
Approximately 12,000 km 2 of acoustic backscatter imagery (sidescan) data and swath bathymetry data were collected jointly by Republic of Korea (ROK) Navy, the Naval Oceanographic Office (NAVOCEANO), Hawaii Mapping Research Group (HMRG) and the Naval Research Laboratory (NRL) in the East Sea (Sea of Japan) in 1995. Preliminary analysis of these data have revealed a large network of canyons with well-developed fan deposits and slumps which were not previously mapped. Also identified is a 1400 km 2 area occupied by more than 300 circular, low-backscatter features ca. 50–1000 m in diameter which are interpreted to be pockmarks or mounds created by escaping methane gas, methane-rich porewater and mud.Indirect evidence for the probable existence of methane gas hydrate include the five following observations: (1) Core samples in the region contain high levels of organic carbon (>7%), degassing cracks caused by gas expansion, and emit a strong H 2S odor. (2) Extensive canyon formation and slumping may have occurred as the result of the destabilization of sediments due to gas accumulation. (3) Several of the high backscatter objects occur at the crest of a bathymetric high under which gas could be accumulating and periodically releasing in a manner similar to that documented on the Vestnesa Ridge in the Norwegian-Greenland Sea. (4) Pockmark-like features have been identified in 3.5 kHz records on the northern edge of the Ulleung Basin. (5) Drill core samples from the morphologically similar Yamato Basin, which is adjacent to the Ulleung Basin, have positively identified methane and numerous gas voids in unconsolidated sediments. No bottom simulating reflector (BSR) has been identified in seismic reflection profiles collected across the slope in Ulleung Basin. 相似文献
5.
The Barents Sea seabed exhibits an area of major glacial erosion exposing parts of the old hydrocarbon basins. In this region, we modelled the gas hydrate stability field in a 3D perspective, including the effects of higher order hydrocarbon gases. We used 3D seismic data to analyse the linkage between fluid-flow expressions and hydrate occurrences above old sedimentary basin systems and vertical faults. Pockmarks showed a relation to fault systems where some of them are directly connected to hydrocarbon bearing sedimentary formations. The influence of bottom water temperature, pore water salinity and geothermal gradient variation on gas hydrate stability zone (GHSZ) thickness is critically analysed in relation to both geological formations and salt tectonics. Our analysis suggests a highly variable GHSZ in the Barents Sea region controlled by local variations in the parameters of stability conditions. Recovery of gas-hydrate sample from the region and presence of gas-enhanced reflections below estimated BSR depths may indicate a prevalent gas-hydrate stable condition. 相似文献
6.
多道反射地震和CHIRP浅地层剖面显示在南海东沙群岛西南陆坡和白云凹陷东部陆坡之间的深水(600~1 000m)陆坡上矗立着一系列高出周围海底50~100m的丘形地质体,其内部地层发生褶皱,反射波呈现杂乱和空白,海底声波屏蔽严重。浅地层剖面还显示丘状构造带有气体羽状构造,从海底进入水体高达50m。海底沉积取样分析表明,这些海丘区的表层分布着生物成因的致密碳酸盐结核。可以推断东沙西南的丘形地质体就是泥火山带,并且可能是一个重要的水合物潜在区。东沙西南海区泥火山表现出构造挤压和带状分布的特点,不同于南海北部神狐和九龙甲烷礁已发现水合物区的非泥火山,也不同于全球其他典型被动大陆边缘的泥火山特征,其构造成因和水合物潜力有待进一步研究。 相似文献
7.
The seasonal dynamics of inorganic nutrients and phytoplankton biomass (chlorophyll a), and its relation with hydrological features, was studied in the NW Alboran Sea during four cruises conducted in February, April, July and October 2002. In the upper layers, the seasonal pattern of nutrient concentrations and their molar ratios (N:Si:P) was greatly influenced by hydrological conditions. The higher nutrient concentrations were observed during the spring cruise (2.54 μM NO 3−, 0.21 μM PO 43− and 1.55 μM Si(OH) 4, on average), coinciding with the increase of salinity due to upwelling induced by westerlies. The lowest nutrient concentrations were observed during summer (<0.54 μM NO 3−, 0.13 μM PO 43− and 0.75 μM Si(OH) 4, on average), when the lower salinities were detected. Nutrient molar ratios (N:Si:P) followed the same seasonal pattern as nutrient distribution. During all the cruises, the ratio N:P in the top 20 m was lower than 16:1, indicating a NO 3− deficiency relative to PO 43−. The N:P ratio increased with depth, reaching values higher than 16:1 in the deeper layers (200–300 m). The N:Si ratio in the top 20 m was lower than 1:1, excepting during spring when N:Si ratios higher than 1:1 were observed in some stations due to the upwelling event. The N:Si ratio increased with depth, showing a maximum at 50–100 m (>1.5:1), which indicates a shift towards Si-deficiency in these layers. The Si:P ratio was much lower than 16:1 throughout the water column during the four cruises. In general, the spatial and seasonal variation of phytoplankton biomass showed a strong coupling with hydrological and chemical fields. The higher chlorophyll a concentrations at the depth of the chlorophyll maximum were found in April (2.57 mg m −3 on average), while the lowest phytoplankton biomass corresponded to the winter cruise (0.74 mg m −3 on average). The low nitrate concentrations together with the low N:P ratios found in the upper layers (top 20 m) during the winter, summer and autumn cruises suggest that N-limitation could occur in these layers during great part of the year. However, N-limitation during the spring cruise was temporally overcome by nutrient enrichment caused by an intense wind-driven upwelling event. 相似文献
8.
Hydrographic mesoscale structures in the North-western Alboran Sea show a high variability induced by a number of different factors. One of the most important is the differences in atmospheric pressure over the Mediterranean basin when compared to the Gulf of Cádiz. This difference modulates the zonal wind field in the Alboran Sea and the intensity of the Atlantic inflow through the Strait of Gibraltar, also affecting the formation and extension of the Western Alboran Gyre (WAG). When westerly winds are dominant, lower atmospheric pressure in the Mediterranean enhances the inflow of Atlantic waters causing the Atlantic Jet to be located in the vicinity of the Spanish shore, creating a well-defined frontal zone in front of Estepona Cove. In this situation, the coastal upwelling is enhanced, leading to a minimum in sea surface temperature and a maximum of surface nutrient concentrations located in the coastal area. The vertical position of the chlorophyll maximum found in these circumstances appeared to be controlled by the nutrient availability. On the other hand, when easterly winds prevail, higher atmospheric pressure in the Mediterranean leads to a reduced inflow and the oceanographic and biological structures are clearly different. The Atlantic Jet moves southward flowing in a south-eastern direction, changing the structure of the currents, resulting in an enhanced cyclonic circulation extending throughout the North-western Alboran Sea basin. These physical alterations also induce changes in the distribution of biogeochemical variables. Maximum nutrient and chlorophyll concentrations are located further off the coast in the central area of the newly created cyclonic gyre. During these easterlies periods coastal upwelling stops and the distribution of phytoplankton cells seems to be mainly controlled by physical processes such as advection of coastal waters to the open sea. 相似文献
9.
High-saturation (40–100%), microbial gas hydrates have been acquired by expedition GMGS2 from the Taixinan Basin. In this study, geochemical and microbial features of hydrate-containing sediments from the drilling cores (GMGS2-09 and GMGS2-16) were characterized to explore their relationships with gas hydrate formation. Results showed that the average TOC content of GMGS2-09 and GMGS2-16 were 0.45% and 0.63%, respectively. They could meet the threshold for in situ gas hydrate formation, but were not available for the formation of high-saturation gas hydrates. The dominant members of Bacteria at the class taxonomic level were Alphaproteobacteria, Bacilli, Bacteroidia, Epsilonproteobacteria and Gammaproteobacteria, and those in Archaea were Marine_Benthic_Group_B (MBGB), Miscellaneous_Crenarchaeotic_Group (MCG), Group C3, Methanomicrobia and Methanobacteria. Indicators of microbes associated with thermogenic organic matter were measured. These include: (1) most of the dominant microbes had been found dominant in other gas hydrates bearing sediments, mud volcanos as well as oil/coal deposits; (2) hydrogenotrophic methanogens and an oilfield-origin thermophilic, methylotrophic methanogen were found dominant the methanogen community; (3) hydrocarbon-assimilating bacteria and other hyperthermophiles were frequently detected. Therefore, thermogenic signatures were inferred existed in the sediments. This deduction is consistent with the interpretation from the seismic reflection profiles. Owing to the inconsistency between low TOC content and gas hydrates with high saturation, secondary microbial methane generated from the bioconversion of thermogenic organic matters (oil or coal) was speculated to serve as enhanced gas flux for the formation of high-saturation gas hydrates. A preliminary formation model of high-saturation biogenic gas hydrates was proposed, in which diagenesis processes, tectonic movements and microbial activities were all emphasized regarding to their contribution to gas hydrates formation. In short, this research helps explain how microbial act and what kind of organic matter they use in forming biogenic gas hydrates with high saturations. 相似文献
10.
The passive northern continental margin of the South China Sea is rich in gas hydrates, as inferred from the occurrence of
bottom-simulating reflectors (BSR) and from well logging data at Ocean Drilling Program (ODP) drill sites. Nonetheless, BSRs
on new 2D multichannel seismic reflection data from the area around the Dongsha Islands (the Dongsha Rise) are not ubiquitous.
They are confined to complex diapiric structures and active fault zones located between the Dongsha Rise and the surrounding
depressions, implying that gas hydrate occurrence is likewise limited to these areas. Most of the BSRs have low amplitude
and are therefore not clearly recognizable. Acoustic impedance provides information on rock properties and has been used to
estimate gas hydrate concentration. Gas hydrate-bearing sediments have acoustic impedance that is higher than that of the
surrounding sediments devoid of hydrates. Based on well logging data, the relationship between acoustic impedance and porosity
can be obtained by a linear regression, and the degree of gas hydrate saturation can be determined using Archie’s equation.
By applying these methods to multichannel seismic data and well logging data from the northern South China Sea, the gas hydrate
concentration is found to be 3–25% of the pore space at ODP Site 1148 depending on sub-surface depth, and is estimated to
be less than values of 5% estimated along seismic profile 0101. Our results suggest that saturation of gas hydrate in the
northern South China Sea is higher than that estimated from well resistivity log data in the gas hydrate stability zone, but
that free gas is scarce beneath this zone. It is probably the scarcity of free gas that is responsible for the low amplitudes
of the BSRs. 相似文献
11.
Ever since a breakthrough of marine shales in China, lacustrine shales have been attracting by the policy makers and scientists. Organic-rich shales of the Middle Jurassic strata are widely distributed in the Yuqia Coalfield of northern Qaidam Basin. In this paper, a total of 42 shale samples with a burial depth ranging from 475.5 m to 658.5 m were collected from the Shimengou Formation in the YQ-1 shale gas borehole of the study area, including 16 samples from the Lower Member and 26 samples from the Upper Member. Geochemistry, reservoir characteristics and hydrocarbon generation potential of the lacustrine shales in YQ-1 well were preliminarily investigated using the experiments of vitrinite reflectance measurement, maceral identification, mineralogical composition, carbon stable isotope, low-temperature nitrogen adsorption, methane isothermal adsorption and rock eval pyrolysis. The results show that the Shimengou shales have rich organic carbon (averaged 3.83%), which belong to a low thermal maturity stage with a mean vitrinite reflectance ( Ro) of 0.49% and an average pyrolytic temperature of the generated maximum remaining hydrocarbon ( Tmax) of 432.8 °C. Relative to marine shales, the lacustrine shales show low brittleness index (averaged 34.9) but high clay contents (averaged 55.1%), high total porosities (averaged 13.71%) and great Langmuir volumes (averaged 4.73 cm −3 g). Unlike the marine and marine-transitional shales, the quartz contents and brittleness index (BI) values of the lacustrine shales first decrease then increase with the rising TOC contents. The kerogens from the Upper Member shales are dominant by the oil-prone types, whereas the kerogens from the Lower Member shales by the gas-prone types. The sedimentary environment of the shales influences the TOC contents, thus has a close connection with the hydrocarbon potential, mineralogical composition, kerogen types and pore structure. Additionally, in terms of the hydrocarbon generation potential, the Upper Member shales are regarded as very good and excellent rocks whereas the Lower Member shales mainly as poor and fair rocks. In overall, the shales in the top of the Upper Member can be explored for shale oil due to the higher free hydrocarbon amount ( S1), whereas the shales in the Lower Member and the Upper Member, with the depths greater than 1000 m, can be suggested to explore shale gas. 相似文献
12.
The shelf-upper slope stratigraphy offshore and around the Guadalfeo River on the northern continental margin of the Alboran
Sea, Western Mediterranean Basin, has been defined through the interpretation of a grid of Sparker seismic profiles. We tried
to identify evolutionary trends in shelf growth, as well as to determine the regional/local factors that may modify the influence
of glacio-eustatic fluctuations. Four major depositional sequences are identified in the sedimentary record by a detailed
seismic interpretation, which defines three significant intervals of shelf-upper slope progradation, dominated by deposition
of shelf-margin wedges, which resulted in uniform patterns of shelf-margin growth in response to significant sea-level falls.
In contrast, the record of transgressive intervals is more variable, mainly as the result of distinct patterns of regressive-to-transgressive
transitions. Major progradational wedges are internally composed of seaward-prograding, landward-thinning wedges, interpreted
to represent shelf-margin deltaic deposits. In contrast, the last aggradational interval is composed of shelf-prograding wedges
that show distinct characteristics, in terms of seismic facies, morphology and distribution when compared with previous shelf-margin
wedges. These shelf wedges are thought to represent the particular case of Regressive Systems or Shelf Margin Systems Tracts,
and their development seems to be controlled by a drastic change in main depocenter location, which moved from the upper slope
to the shelf during the Pleistocene. The stacking pattern of seismic units, the shallowness of the acoustic basement and the
migration of the shelf break are used to infer spatial and temporal changes in tectonic subsidence-uplift rates, which interact
with low-order glacio-eustatic changes. For much of the Pliocene-Quaternary, uplifted sectors alternated laterally with sectors
experiencing more subsidence. Subsequently, a significant change from lateral outgrowth to vertical accretion is recognised.
This stratigraphic change could be related to the combined influence of increased subsidence rates on the shelf and the onset
of higher-frequency glacio-eustatic cyclicity after the Mid Pleistocene Revolution that occurred around 1 Ma. 相似文献
13.
Integrated geological, geochemical, and geophysical exploration since 2004 has identified massive accumulation of gas hydrate associated with active methane seeps on the Umitaka Spur, located in the Joetsu Basin on the eastern margin of Japan Sea. Umitaka Spur is an asymmetric anticline formed along an incipient subduction zone that extends throughout the western side of the Japanese island-arc system. Seismic surveys recognized chimney structures that seem strongly controlled by a complex anticlinal axial fault system, and exhibit high seismic amplitudes with apparent pull-up structures, probably due to massive and dense accumulation of gas hydrate. Bottom simulating reflectors are widely developed, in particular within gas chimneys and in the gently dipping eastern flank of the anticline, where debris can store gas hydrates that may represent a potential natural gas resource. The axial fault system, the shape of the anticline, and the carrier beds induce thermogenic gas migration to the top of the structure, and supply gas to the gas hydrate stability zone. Gas reaching the seafloor produces strong seepages and giant plumes in the sea water column. 相似文献
14.
The decapod assemblage associated with a Posidonia oceanica meadow located near its western limit of biogeographic distribution was studied over an annual cycle. Fauna samples were taken seasonally over a year (five replicates per season) in two sites located 7 km apart, using a non‐destructive sampling method (airlift sampler) for the seagrass. The dominant species of the assemblage, Pisidia longimana, Pilumnus hirtellus and Athanas nitescens, were associated with the protective rhizome stratum, which is mainly used as a nursery. The correlations between decapod assemblage structure and some phenological parameters of the seagrass shoots and wave height were negative or null, which reflects that species associated with the rhizome had a higher importance than those associated with the leaf stratum. The abundance and composition of the decapod assemblage as well as the ecological indexes displayed a seasonality trend with maximum values in summer‐autumn and minimum in winter‐spring, which were related to the seawater temperature and the recruitment periods of the dominant species. The spatial differences found in the structure and dynamics of the assemblages may be due to variations in the recruitment of the dominant species, probably as a result of the influence of local factors ( e.g. temperature, currents) and the high dispersal ability of decapods, together with the patchy configuration and the surrounding habitats. The studied meadows are fragmented and are integrated within a mosaic of habitats ( Cymodocea nodosa patches, algal meadows, rocky and sandy bottoms), which promotes the movement of individuals and species among them, maintaining a high species richness and evenness. 相似文献
15.
Analysis of high-resolution seismic reflection profiles and sediment samples has revealed the evolution and sediment budget of the southeastern Yellow Sea mud belt (SEYSM) along the southwestern Korean Peninsula. The SEYSM, up to 50 m thick, over 250 km long and 20–55 km wide, can be divided into three stratigraphic units (A1, A2, and B, from oldest to youngest). Unit A1, overlying the acoustic basement, comprises the northern part of the SEYSM. Unit A2 comprises the southern part of the SEYSM; much of unit A2 is exposed at the seafloor. Unit B completely covers unit A1 and pinches out southward. 14C data suggest that evolution of each unit is closely related to the postglacial sea-level changes. Unit A1 consists of estuarine/deltaic or shallow-water muds deposited during the early to middle stage of postglacial sea-level rise (ca. 14,000–7000 yr B.P.). Unit A2 corresponds to relict muds deposited during the last, deceleration stage of sea-level rise (ca. 7000–3.500 yr B.P.). Unit B consists of shelf muds deposited during the recent sea-level highstand (ca. <3500 yr B.P.). Very low background activities of 210Pb of the surface sediment of unit A2 suggest that the present-day sediment accumulation is negligible in the southern SEYSM. On the other hand, 210Pb excess activity profiles in unit B yield an average sediment accumulation rate of 3.9 mm/yr, indicating active sediment accumulation in the northern SEYSM. The annual sink (3.0×107 tons/yr) of fine-grained sediment in unit B is about an order of magnitude greater than can be explained by the sediment input from the Korean rivers alone. We propose that reworking of unit A2 has provided large volumes of muds to unit B, resulting in excessive sediment accumulation in the northern SEYSM. Much of unit A2, in turn, is likely to have originated from erosion of unit A1 in the north. This rather unique erosional/depositional regime of the SEYSM is probably owing to the tidal and regional currents characteristic in the southeastern Yellow Sea. 相似文献
16.
This paper presents a computational model for mapping the regional 3D distribution in which seafloor gas hydrates would be stable, that is carried out in a Geographical Information System (GIS) environment. The construction of the model is comprised of three primary steps, namely: (1) the construction of surfaces for the various variables based on available 3D data (seafloor temperature, geothermal gradient and depth-pressure); (2) the calculation of the gas function equilibrium functions for the various hydrocarbon compositions reported from hydrate and sediment samples; and (3) the calculation of the thickness of the hydrate stability zone. The solution is based on a transcendental function, which is solved iteratively in a GIS environment.The model has been applied in the northernmost continental slope of the Gulf of Cadiz, an area where an abundant supply for hydrate formation, such as extensive hydrocarbon seeps, diapirs and fault structures, is combined with deep undercurrents and a complex seafloor morphology. In the Gulf of Cadiz, the model depicts the distribution of the base of the gas hydrate stability zone for both biogenic and thermogenic gas compositions, and explains the geometry and distribution of geological structures derived from gas venting in the Tasyo Field (Gulf of Cadiz) and the generation of BSR levels on the upper continental slope. 相似文献
17.
Sterol and fatty alcohol biomarkers were analyzed in suspended and sinking particles from the water column (20–300 m) of the Almeria–Oran frontal zone to characterize the biogenic sources and biogeochemical processes. Diatom- and haptophyte-related sterols were predominant at all sites and vertical distributions of sterol, and fatty alcohol biomarkers in sinking particles were markedly different from suspended particles. In contrast to the relatively fresh sinking particles with elevated concentrations of phyto- and zooplanktonic sterols, suspended particles were extensively degraded with increasing depth and exhibited a more terrestrial and zooplanktonic signature with depth.Sterol and alcohol biomarkers distributions and δ13C values from the jet core and the associated gyre of Atlantic waters showed a decoupling between the sinking particles of 100- and 300-m depth, demonstrating the influence of lateral advection in the frontal zone. In contrast, vertical transport of the particulate organic matter in Mediterranean waters was interpreted from the similar isotopic and molecular composition at both depths. The high abundance of phytosterols and phytol below the euphotic zone at 100 m signified that downwelling of biomass occurred on the downstream side of the gyre. The high concentrations of phytosterols and POC, in combination with the high phytosterols/phytol ratio, indicated the accumulation of detrital plant material in the oligotrophic Mediterranean waters near the frontal zone.A higher contribution of phytol in the sinking particles collected during the night at the surface of the jet and at the upstream side of the gyre provided evidence of diel vertical zooplankton migration and important grazing by herbivorous zooplankton.Carbon isotope ratios of sterols confirmed that the 24-ethylcholest-5-en-3β-ol, commonly associated with terrestrial sources, was a substantial constituent of the phytoplankton in this area. However, the more δ13C depleted values obtained for this compound in suspended particles suggested that there was some terrestrial contribution that only becomes evident after degradation of the more labile marine organic matter. 相似文献
18.
The methane concentration of water samples at five stations collected by the CTD rosette water sampler in the areas of southwest Dongsha Islands and the Xisha Trough was analyzed by the gas-stripping method on aboard ship. It shows abnormal high methane concentrations in near bottom water samples at three stations. In the southwest Dongsha Islands area, the methane conc.entration of 4. 25 and 10. 64 nmol/dm3 occurs in near bottom water samples at Stas E105A and El06, respectively. In the Xisha Trough area, the high methane concentrations of 5. 17, 8.48 and 8.70 nmol/dm3 in water depths of 1 750, 1 900 and 2 050 m, respectively, have been observed at Sta. F413. It is believed that the abnormal high methane concentrations are generated from the leakage of methane from sediments. Combining with previous geophysical and geochemical data from these two areas, this was probably related to the submarine gas hydrates decomposition and cold seep system. In May 2007, gas hydrate samples were successfully obtained by the drilling in the Shenhu Sea area located in the southwest Dongsha Islands area. It is called for further drilling surveys to confirm the existence of gas hydrate and cold seep system in the Xisha Trough as early as possible. 相似文献
19.
用吹扫-捕集法对东沙群岛西南和西沙海槽附近海域5个站位水柱中的甲烷浓度进行了测定,在其中的3个站位发现了甲烷高浓度异常。在东沙群岛西南海域的E105A和E106两站位近底层海水中甲烷浓度均出现异常增加,其值分别为4.25和10.64 nmol/dm3。在西沙海槽附近的E413站位甲烷异常出现在1 750,1 900和2 050 m深的近底层水中,浓度分别达5.17,8.48和8.70 nmol/dm3。在近底层海水中出现的甲烷高浓度异常是由于沉积物下部甲烷渗漏活动造成的,结合前人在这两个海域沉积物的地球物理和化学调查资料,认为可能是与冷泉渗漏或天然气水合物分解有关。2007年5月在探测到甲烷高浓度明显异常的东沙群岛西南神弧海域,获得了天然气水合物的实物样品,但是西沙海槽附近海域近底层水的甲烷高浓度异常是来源于天然气水合物还是来源于冷泉需要进一步加以确认。 相似文献
20.
The Taixinan Basin is one of the most potential gas hydrate bearing areas in the South China Sea and abundant gas hydrates have been discovered during expedition in 2013. In this study, geochemical and microbial methods are combinedly used to characterize the sediments from a shallow piston Core DH_CL_11(gas hydrate free) and a gas hydrate-bearing drilling Core GMGS2-16 in this basin. Geochemical analyses indicate that anaerobic oxidation of methane(AOM) which is speculated to be linked to the ongoing gas hydrate dissociation is taking place in Core DH_CL_11 at deep. For Core GMGS2-16, AOM related to past episodes of methane seepage are suggested to dominate during its diagenetic process; while the relatively enriched δ18O bulk-sediment values indicate that methane involved in AOM might be released from the "episodic dissociation" of gas hydrate.Microbial analyses indicate that the predominant phyla in the bacterial communities are Firmicutes and Proteobacteria(Gammaproteobacteria and Epsilonproteobacteria), while the dominant taxa in the archaeal communities are Marine_Benthic_Group_B(MBGB), Halobacteria, Thermoplasmata, Methanobacteria,Methanomicrobia, Group C3 and MCG. Under parallel experimental operations, comparable dominant members(Firmicutes and MBGB) are found in the piston Core DH_CL_11 and the near surface layer of the long drilling Core GMGS2-16. Moreover, these members have been found predominant in other known gas hydrate bearing cores, and the dominant of MBGB has even been found significantly related to gas hydrate occurrence. Therefore,a high possibility for the existing of gas hydrate underlying Core DH_CL_11 is inferred, which is consistent with the geochemical analyses. In all, combined geochemical and microbiological analyses are more informative in characterizing sediments from gas hydrate-associated areas in the South China Sea. 相似文献
|