首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examine the role of basin-shortening on the development of structural compartments in passive margin basins. A coupled flow-deformation model is used to follow the evolution of an idealized prismatic basin during lateral shortening. This includes the deformation-induced generation (lateral compaction) and dissipation (hydraulic fracturing) of pore fluid pressures and the resulting natural evolution of an underlying décollement and subsidiary fault structures. This model is used to examine the influence of strata stiffnesses, strain softening, permeability-strain dependence, permeability contrast between layers, and deformation rate on the resulting basin structure and to infer fluid charge within these structures. For a geometry with a permeability contrast at the base of the basin a basal décollement forms as the basin initially shortens, excess pore pressures build from the impeded drainage and hydrofracturing releases fluid mass and resets effective stresses. As shortening continues, thrust faults form, nucleating at the décollement. Elevated pore pressures approaching the lithostat are localized at the hanging wall boundary of the faults. Faults extend to bound blocks that are vertically offset to yield graben-like structural highs and lows and evolve with distinctive surface topography and separate pore pressure signatures. Up-thrust blocks have elevated fluid pressures and reduced effective stresses at their core, and down-thrust blocks the converse. The development of increased permeability on localized fault structures is a necessary condition to yield this up-thrust and down-thrust geometry. In the anti-physical case where evolution of permeability with shear strain is artificially suppressed, pervasive shear develops throughout the basin depth as fluid pressures are stabilized everywhere to the lithostat. Correspondingly, permeability evolution with shear is an important, likely crucial, feedback in promoting localization.  相似文献   

2.
During basin burial, interstitial fluids initially trapped within the sedimentary pile easily move under thermal and pressure gradients. As the main mechanism is linked to fluid overpressure, such fluids play a significant role on frictional mechanics for fault reactivation and sediment deformation.The Lodève Permian Basin (Hérault, France) is an exhumed half-graben with exceptional outcrop conditions providing access to barite-sulfide mineralized systems and hydrocarbon trapped into syn-rift roll-over faults. Architectural studies show a cyclic infilling of fault zone and associated bedding-parallel veins according to three main fluid events during dextral/normal faulting. Contrasting fluid entrapment conditions are deduced from textural analysis, fluid inclusion microthermometry and sulfur isotope geothermometer. We conclude that a polyphase history of trapping occurred during Permian syn-rift formation of the basin.The first stage is characterized by an implosion breccia cemented by silicifications and barite during an abrupt pressure drop within fault zone. This mechanism is linked to the dextral strike-slip motion on faults and leads to a first sealing of the fault zone by basinal fluid mineralization.The second stage consists of a succession of barite ribbons precipitated under overpressure fluctuations, derived from fault-valve action. This corresponds to periodic reactivations of fault planes and bedding-controlled opening localized at sulphide-rich micro-shearing structures showing a normal movement. This process formed the main mineralized ore bodies by the single action of fluid overpressure fluctuations undergoing changes in local stress distribution.The last stage is associated with the formation of dextral strike-slip pull-apart infilled by large barite and contemporaneous hydrocarbons under suprahydrostatic pressure values. This final tectonic activation of fault is linked to late basinal fluids and hydrocarbon migration during which shear stress restoration on the fault plane is faster than fluid pressure build-up.This integrated study shows the interplay action between tectonic stress and fluid overpressure in fault reactivation during basin burial that clearly impact potential economic reservoirs.  相似文献   

3.
Understanding the impact of faults on fluid flow in the subsurface is important for the extraction of oil, gas and groundwater as well as the geological storage of waste products. We address two problems present in current industry-standard workflows for fault seal analysis that may lead to fault rocks not being represented adequately in computational fluid flow models. Firstly, fluid flow properties of fault rocks are often measured only for small-scale faults with throws not exceeding a few centimetres. Large seismic-scale faults (throws >20 m) are likely to act as baffles or conduits to flow but they are seldom recovered from subsurface cores and consequently fault rock data for them is sparse. Secondly, experimental two-phase fluid flow data is lacking for fault rocks and, consequently, uncertainties exist when modelling flow across faults in the presence of two or more immiscible phases. We present a data set encompassing both single- and two-phase fluid flow properties of fault and host rocks from the 90-Fathom fault and its damage zone at Cullercoats Bay, NE England. Measurements were made on low-throw single and zones of deformation bands as well as on slip-surface cataclasites present along the ~120 m throw main fault. Samples were analysed using SEM and X-ray tomography prior to petrophysical measurements. We show that single deformation bands, deformation band zones and slip-surface cataclasites exhibit dissimilar single- and two-phase fluid flow properties. This is due to grain-size reduction being more pronounced in slip-surface cataclasites and changes in microstructure being fault-parallel for deformation bands but mostly fault-perpendicular for slip-surface cataclasites. A trend of fault rocks with low absolute permeabilities exhibiting lower relative permeabilities than more permeable rocks at the same capillary pressure is evident.  相似文献   

4.
Subsurface, intra-reservoir faults have subseismic portions (the fault tail) and process zones that must be considered for a complete evaluation of their role in a reservoir setting. In this paper we show that this subseismic fault domain, generally associated with all seismically mappable faults, may extend several hundred meters beyond the seismically mapped tip point, depending on vertical seismic resolution and fault displacement gradients along strike. We use reservoir modelling and fluid flow simulation of a sandstone reservoir analogue to demonstrate how a low-permeable process zone may generate steep pressure gradients in the reservoir and affect the tortuosity of reservoir fluid flow. Results and examples combined show how small adjustments in fault interpretations in the subseismic domain may significantly affect trap definition, prospect volumes, project economics and selection of exploration well locations. For production settings, we demonstrate how low-permeable fault tails and process zones may increase flow tortuosity and delay water breakthrough, thereby enhancing sweep efficiency and recovery from otherwise bypassed pockets of hydrocarbons in the reservoir. The results also indicate that process zones may contribute to pressure compartmentalization. Finally, a simple methodology for the estimation of subseismic fault continuity is presented.  相似文献   

5.
The investigation of complex geological setting is still dominated by traditional geo-data collection and analytical techniques, e.g., stratigraphic logging, dip data measurements, structural ground mapping, seismic interpretation, balance section restoration, forward modelling, etc. Despite the advantages of improving our understanding in structural geometry and fault architecture, the geospatial modelling, applying computer-aided three-dimensional geometric design, visualization and interpretation, has rarely been applied to such complex geological setting. This study used the Lenghu fold-and-thrust belt (in Qaidam basin, NE Tibetan Plateau) to demonstrate that the application of geospatial and geomechanical modelling could improve our understanding and provide an effective technique for investigating the fault architecture and strain distribution. The three-dimensional configuration of the Lenghu fold-and-thrust belt was initially derived from traditional analysis techniques, such as regional stratigraphic logging, cross section construction, meso-scale ground mapping and landsat image interpretation. The high-resolution field data and landsat image were integrated to construct the geospatial model, which was subsequently used to quantitatively investigate the fault throw changes along the Lenghu thrust fault zone and to understand its control on the lateral structural variation. The geospatial model was then restored in three dimensions to reveal the kinematic evolution of the Lenghu fold-and-thrust belt. Geomechanical modelling, using a Mass-Spring algorithm, provided an effective three-dimensional tool for structural strain analysis, which was used to predict the strain distribution throughout the overall structure, e.g., normal faults with throws ranging from meters to tens of meters in the hanging-wall. The strain distribution predicted by geomechanical modelling was then validated by the natural normal faults in the hanging-wall. The high accordance between the strain prediction and statistics of natural normal faults demonstrates good applicability of geospatial and geomechanical modelling in the complex geological setting of the Lenghu fold-and-thrust belt. The geospatial models and geomechanical models, therefore, can provide a robust technique for analyzing and interpreting multi-source data within a three-dimensional environment. We anticipate that the application of three-dimensional geospatial modelling and geomechanical modelling, integrating both multi-source geologic data and three-dimensional analytical techniques, can provide an effective workflow for investigating the fault architecture and strain distribution at different scales (e.g., ranging from regional-to meso-scale).  相似文献   

6.
Significant volumes of the known hydrocarbon reserves are found in carbonate rocks, many of these dolomitized. The spatial distribution of diagenesis on these rocks is one of the main challenges in oil reservoir modeling. Reactive transport models can be a powerful tool to understand the active diagenetic processes and their effects on the quality of these reservoirs. In this study it was used, for the first time, the CMG-GEM simulator to model diagenetic evolution of a carbonate sequence, subjected to compaction-driven and geothermal flow in a simulated period of 200 thousand years. It was simulated carbonate cementation, dolomitization and dissolution, with and without presence of faults. Among the analyzed variables, the volume of circulating fluid was the most important factor. For both mechanisms, flow simulated velocities obtained had magnitudes smaller than 10−6 m/day. Diagenesis was insignificant for these low speeds at simulated time interval. Only dolomitized facies presented relevant diagenesis in form of calcite dissolution and dolomite precipitation. Simulations with flow rates of 1 m/day revealed a considerable increase in observed diagenesis, especially in carbonate cementation and in porosity enhancement. Diagenesis was more pronounced in more permeable sediments, highlighting the role of fluid flow in diagenetic reactions. Relative dissolution was greatly reduced during simulations performed with absence of dolomite and dolomitization reactions. The presence of faults strongly influences spatial distribution of diagenesis, especially relatively to dissolution. More permeable facies were more dissolved near fault, decreasing with increasing distance. Low permeability facies, as mudstones, are not dissolved, even near fault. Spatial distribution of diagenesis would then be dependent mainly on the quality of original pore structure, of fault presence and mineral composition of rock.  相似文献   

7.
Understanding the evolution of abnormally high fluid pressures within sedimentary formations is critical for analysing hydrogeological processes and assessing drilling risks. We have constructed a two-dimensional basin model and have performed numerical simulations to increase the understanding of the history of fluid flow and shallow overpressures in the Pleistocene and Holocene formations in the Ursa basin, deepwater Gulf of Mexico. We measured physical properties of sediments, such as porosity and permeability, in the laboratory and estimated in situ pore pressures from preconsolidation pressures. We obtained porosity–effective stress relationships from measurements of bulk density, grain density and preconsolidation pressures in the laboratory. Porosity–effective stress relationships were also obtained from downhole density logs and measured pore pressures. The porosity–effective stress and porosity–permeability relationships obtained were applied in two-dimensional basin simulations. Results showed that high pore pressures developed shortly after sediment deposition. Peaks in pore pressure ratios were related to high sedimentation rates of mass transport deposits and the incision of the Ursa channel. Lateral flows from the area where the overburden is thick towards the area where it is thin have occurred at least since 30 ka. Present pore pressure and temperature distributions suggest that lateral flows play a role in re-distributing heat in the basin.  相似文献   

8.
High-quality 3D seismic data are used to analyze the history of fault growth and hydrocarbon leakage in the Snøhvit Field, Southwestern Barents Sea. The aim of this work is to evaluate tectonic fracturing as a mechanism driving hydrocarbon leakage in the study area. An integrated approach was used which include seismic interpretation, fault modeling, displacement analysis and multiple seismic attribute analysis.The six major faults in the study area are dip-slip normal faults which are characterized by complex lateral and vertical segmentation. These faults are affected by three main episodes of fault reactivation in the Late Jurassic, Early Cretaceous and Paleocene. Fault reactivation in the study area was mainly through dip-linkage. The throw-distance plots of these representative faults also revealed along-strike linkage and multi-skewed C-type profiles. The faults evolved through polycyclic activity involving both blind propagation and syn-sedimentary activity with their maximum displacements recorded at the reservoir zone. The expansion and growth indices provided evidence for the interaction of the faults with sedimentation throughout their growth history.Soft reflections or hydrocarbon-related high-amplitude anomalies in the study area have negative amplitude, reverse polarity and are generally unconformable with structural reflectors. The interpreted fluid accumulations are spatially located at the upper tips of the major faults and gas chimneys. Four episodes of fluid migration are inferred and are linked to the three phases of fault reactivation and Neogene glaciations. Hydrocarbon leakage in the Snøhvit Gas Field is driven by tectonic fracturing, uplift, and erosion. The interpreted deep-seated faults are the main conduits for shallow hydrocarbon accumulations observed on seismic profiles.  相似文献   

9.
The Upper Cretaceous carbonates cropping out in the Murge Plateau are good analogues of the fractured and faulted carbonate oil reservoirs of southern Italy. For this reason, a detailed field analysis focused on structural architecture of fault and fracture networks has been carried out in the Murge Plateau. The well-bedded carbonates exposed there are crosscut by a set of bed-parallel stylolites and two sets of bed-perpendicular cross-orthogonal joints/veins. These structural elements were likely formed under vertical loading during burial diagenesis and flexure of the Apulian foreland of the Southern Apennines fold-and-thrust belt. Bed-parallel stylolites and bed-perpendicular cross-orthogonal joints/veins represent the background deformation that was overprinted by the fault-related localized deformation. The fault sets documented in the study area are arranged in two kinematically-compatible fault networks. The first one is made up of WNW-ESE and NNW-SSE oriented strike-slip faults, right- and left-lateral, respectively, and NW–SE oriented normal faults. The second fault network consists of WNW-ESE oriented left-lateral strike-slip faults, and NE–SW oriented normal faults.First, both architecture and dimensional parameters of the fault and fracture networks have been characterized and computed by means of statistical analysis. Then, the permeability structures associated to the aforementioned networks have been assessed in order to determine the role exerted by fault architecture and dissolution/cementation processes on the fluid storage and migration pathways within the studied platform carbonates. Network 1 faults show a quite variable fluid behavior, in which the fluid flow is strongly affected by inherited structural elements and karst dissolution, whereas network 2 faults show a more uniform, fluid conduit behavior.  相似文献   

10.
The accumulation mechanism of methane hydrates has been a central issue in previous hydrate research regarding the Nankai accretionary prism, southwest of Japan. Expulsion of formation fluids is significant during the prism accretion process, and the migration of these methane-bearing fluids exerts a strong control on the accumulation of hydrates. Two types of fluid pathways, inter-granular porosity and faults, need to be evaluated to understand hydrate accumulation. Fluid migration along faults can be partly modeled by examining faulting activity. Our study modeled the accretion process by using two granular methods that approximated the geologic body as an assemblage of particles: (1) analog experiments using granular materials, and (2) a numerical simulation based on the distinct element method. The analog experiments closely reproduced the prism geometry observed in seismic profiles across the Nankai accretionary prism. Digital image correlation analysis indicated that the frontal thrust is generally active but older structures are also frequently reactivated. The numerical simulations produced prism geometries similar to those of the analog experiments. The velocity distributions of the particles showed evidence of episodic faulting and reactivation, but the internal stress field exhibited little change in the deeper part of the prism during deformation. The frequent and substantial changes in fault activity displayed by the models indicate episodic fluid flow along fault surfaces. Active frontal thrusting suggests that formation fluids generally migrate from deep within the prism to the deformation front, but may move along reactivated older faults. Inter-granular permeability also fluctuates, as it is controlled by temporal and spatial variations in the internal stress field. However, fluid flow is likely to be relatively stable in the deeper segment of the prism.  相似文献   

11.
A study of normal faults in the Nubian Sandstone Sequence, from the eastern Gulf of Suez rift, has been conducted to investigate the relationship between the microstructure and petrophysical properties of cataclasites developed along seismic-scale faults (slip-surface cataclasites) and smaller displacement faults (deformation bands) found in their damage zones. The results help to quantify the uncertainty associated with predicting the fluid flow behaviour of seismic-scale faults by analysing small faults recovered from core, a common procedure in the petroleum industry. The microstructure of the cataclasites was analysed as well as their single-phase permeability and threshold pressure. Faulting occurred at a maximum burial depth of ∼1.2 km. The permeability of deformation band and slip-surface cataclasites varies over ∼1.5 orders of magnitude for a given fault. Our results suggest that the lowest measured deformation band permeabilities provide a good estimate for the arithmetic-mean permeability of the major slip-surface cataclasites. This is because the cataclastic permeability reduction is mostly established early in the deformation history. Stress at the time of faulting rather than final strain appears to be the critical factor determining fault rock permeability. For viable predictions it is important that the slip-surface cataclasites and deformation bands originate from the same host. On the other hand, a higher uncertainty is associated with threshold pressure predictions, as the arithmetic-mean slip-surface cataclasite threshold pressure exceeds the highest measured deformation band threshold pressure by at least a factor of 4.  相似文献   

12.
Along the Nankai Trough megasplay fault off SE Japan, the effect of fluid migration on subduction-related seismogenesis and tsunamigenesis remains unresolved. To investigate the existence and role of fluid flow, a SmartPlug borehole observatory was installed at Site C0010 of the Integrated Ocean Drilling Program NanTroSEIZE Kumano transect, where a shallow branch of the fault was intersected and in situ fluid pressure monitored from August 2009 to November 2010. The tidal signal in the formation showed no phase shift relative to seafloor loading. The attenuation of 0.73 reflects the loading efficiency accurately, and enabled calculation of a formation compressibility of 1.0×10–9 Pa–1 and a hydraulic diffusivity (HD) of 1.5×10–5 m2 s–1. A similar HD is predicted by a tidal response model based on SmartPlug pressure data. By contrast, permeability measurements on intact samples from Site C0004 SE along-strike the splay fault and from Site C0006 in the frontal thrust zone were found to be similar and one magnitude smaller respectively, despite having a higher porosity. This is explained by the presence of fractures, which are covered by the larger scale of in situ measurements at Site C0010. Consequently, HD can be set to be at least 10–5 m2 s–1 for the splay fault and 10–6 m2 s–1 for the frontal thrust fault zone. Considering recent publications makes fluid flow at the splay fault unlikely, despite the presence of fractures. If the influence of fractures is limited, then processes leading to fault weakening may be enhanced.  相似文献   

13.
This study investigates the evolution of supra-salt faults in the Eastern Hammerfest Basin using high–quality seismic reflection data. Traditional techniques of displacement analysis, including the variation of fault displacement (throw) against distance (x), depth (z), expansion and growth indices were adopted. Fault reactivation was assessed using bivariate plots of a) cumulative throw vs. age and b) throw (t) vs. depth of nine (9) representative faults.The interpreted faults are supra-salt crestal and synclinal faults striking NE, E and SE. These faults have complicated t-x and t-z plots and are characterized by considerable stratigraphic thickening in their downthrown section. Faults in the study area have developed over the salt structure since latest Paleozoic times; some of them were reactivated by Early to Middle Triassic through dip linkage of initially isolated fault sets. Along strike, the fault exhibit complex segmentation through coalescence of several subunits linked by local throw/displacement minima. Expansion and growth indices show that the faults of the study area developed during the deposition of Paleozoic to Early Cretaceous sediments by polycyclic growth involving both blind and syn-sedimentary activity.An important piece of information from this study is that fault propagation is controlled by lithological heterogeneity and that both lateral and vertical segmentation of faults are important for hydrocarbon migration within the Triassic to Late Cretaceous interval.  相似文献   

14.
During compressive events, deformation in sedimentary basins is mainly accommodated by thrust faulting and related fold growth. Thrust faults are generally rooted in the basement and may act as conduits or barriers for crustal fluid flow. Most of recent studies suggest that fluid flow through such discontinuities is not apparent and depends on the structural levels of the thrust within the fold-and-thrust belt.In order to constrain the paleofluid flow through the Jaca thrust-sheet-top basin (Paleogene southwest-Pyrenean fold-and-thrust belt) this study compares on different thrust faults located at different structural levels. The microstructures in the different fault zones studied are similar and consist of pervasive cleavage, calcite shear veins (SV1), extension veins (EV1) and late dilatation veins (EV3). In order to constrain the nature and the source of fluids involved in fluid-rock interactions within fault zones, a geochemical approach, based on oxygen and carbon stable isotope and trace element compositions of calcite from different vein generations and host rocks was adopted. The results suggest a high complexity in the paleohydrological behaviors of thrust faults providing evidence for a fluid-flow compartmentalization within the basin. Previous studies in the southern part of the Axial Zone (North of the Jaca basin) indicates a circulation of deep metamorphic water, probably derived from the Paleozoic basement, along fault zones related to the major basement Gavarnie thrust. In contrast, in northern part of the Jaca basin, the Monte Perdido thrust fault is affected by a closed hydrological fluid system involving formation water during its activity. The Jaca and Cotiella thrust faults, in turn, both located more to the south in the basin, are characterized by a composite fluid flow system. Indeed, stable isotope and trace element compositions of the first generations of calcite veins suggest a relatively closed paleohydrological system, whereas the late calcite vein generations, which are probably associated with the late tectonic activity of the basin, support a contribution of both meteoric and marine waters. Based on these results, a schematic fluid-flow model is presented. This model allows visualization of three main fluid flow compartments along a N–S transect.  相似文献   

15.
Mass transport deposits and geological features related to fluid flow such as gas chimneys, mud diapirs and volcanos, pockmarks and gas hydrates are pervasive on the canyon dominated northern slope of the Pearl River Mouth basin of the South China Sea. These deposits and structures are linked to serious geohazards and are considered risk factors for seabed installations. Based on high resolution three dimensional seismic surveys, seismic characteristics, distributions and origins of these features are analyzed. A distribution map is presented and geometrical parameters and spatial distribution patterns are summarized. Results show that various groups of the mapped features are closely tied to local or regional tectonism and sedimentary processes. Mass transport complexes are classified as slides near the shelf break, initially deformed slumps on the flanks of canyons and highly deformed slumps on the lower slope downslope of the mouth of canyons. We propose them to be preconditioned by pore pressure changes related to sea level fluctuations, steep topography, and fluid and fault activities. Gas chimneys are mainly located in the vicinity of gas reservoirs, while bottom-simulating reflectors are observed within the gas chimney regions, suggesting gas chimneys serve as conduits for thermogenic gas. Mud diapirs/volcanos and pockmarks are observed in small numbers and the formation of pockmarks is related to underlying gas chimneys and faults. This study aims at reducing risks for deep-water engineering on the northern slope of South China Sea.  相似文献   

16.
A series of regular wave experiments have been done in a large-scale wave flume to investigate the wave-induced pore pressure around the submarine shallowly embedded pipelines.The model pipelines are buried in three kinds of soils,including gravel,sand and silt with different burial depth.The input waves change with height and period.The results show that the amplitudes of wave-induced pore pressure increase as the wave period increase,and decay from the surface to the bottom of seabed.Higher pore pressures are recorded at the pipeline top and the lower pore pressures at the bottom,especially in the sand seabed.The normalized pressure around pipeline decreases as the relative water depth,burial depth or scattering parameters increase.For the silt seabed,the wavelet transform has been successfully used to analyze the signals of wave-induced pore pressure,and the oscillatory and residual pore pressure can be extracted by wavelet analysis.Higher oscillatory pressures are recorded at the bottom and the lower pressures at the top of the pipeline.However,higher residual pressures are recorded at the top and the lower pressures at the bottom of the pipeline.  相似文献   

17.
Multiphase rifts tend to produce fault populations that evolve by the formation of new faults and reactivation of earlier faults. The resulting fault patterns tend to be complex and difficult to decipher. In this work we use seismic reflection data to examine the evolution of a normal fault network in the Oseberg Fault Block in the northern North Sea Rift System – a rift system that experienced Permian – Early Triassic and Middle Jurassic – Early Cretaceous rifting and exhibits N-S, NW-SE and NE-SW oriented faults.Both N-S- and NW-SE-striking faults were established during the Permian – Early Triassic rifting, as indicated by Triassic growth packages in their hanging walls. In contrast, the NE-SW-striking faults are younger, as they show no evidence of Permian – Early Triassic growth, and offset several N-S- and NW-SE-striking faults. Structural analysis show that a new population of NW-SE-striking faults formed in the Lower – Middle Jurassic (inter-rift period) together with reactivation of N-S-striking Permian – Early Triassic faults, indicating a NE-SW inter-rift extension direction.During the Middle Jurassic – Early Cretaceous rifting, faults of all orientations (N-S, NW-SE and NE-SW) were active. However, faults initiated during the Middle Jurassic – Early Cretaceous rifting show mainly N-S orientation, indicating E-W extension during this phase. These observations suggest a reorientation of the stress field from E-W during the Permian – Early Triassic rift phase to NE-SW during inter-rift fault growth and back to E-W during the Middle Jurassic – Early Cretaceous rift phase in the Oseberg area. Hence, the current study demonstrates that rift activity between established rift phases can locally develop faults with new orientations that add to the geometric and kinematic complexity of the final fault population.  相似文献   

18.
Gas hydrates are common within near-seafloor sediments immediately surrounding fluid and gas venting sites on the continental slope of the northern Gulf of Mexico. However, the distribution of gas hydrates within sediments away from the vents is poorly documented, yet critical for gas hydrate assessments. Porewater chloride and sulfate concentrations, hydrocarbon gas compositions, and geothermal gradients obtained during a porewater geochemical survey of the northern Gulf of Mexico suggest that the lack of bottom simulating reflectors in gas-rich areas of the gulf may be the consequence of elevated porewater salinity, geothermal gradients, and microbial gas compositions in sediments away from fault conduits.  相似文献   

19.
The objective of this study is to understand the process of fluid flow in pipe and porous media with different pore structures.High-resolution Magnetic Resonance Imaging(MRI)technique was used to visualize the pore structure and measure fluid flow.The porous media was formed by packed bed of glass beads.Flow measurement was carried out by a modified spin echo sequence.The results show that the velocity distribution in pipe is annular and the linear relation between MRI velocity and actual velocity is found in pipe flow measurement.The flow distribution in porous media is rather heterogeneous,and it is consistent with heterogeneous pore structure.The flow through pores with the high volume flow rate is determined largely by geometrical effects such as pore size and cross-sectional area.  相似文献   

20.
One of the important geotechnical considerations for many engineering installations, such as pipelines and anchors, in an oceanic environment involving sand deposits is that of potential ocean floor instability due to the development of high pore pressures caused by the direct action of waves. This article presents a procedure for evaluating the magnitude and distribution of wave‐induced pore pressures in ocean floor deposits. The method takes into account the distribution of wave‐induced pore pressures in ocean floor deposits. The method takes into account the distribution of cyclic shear stresses in the soil profile as well as the important factor of pore‐pressure dissipation. The variation of properties within the soil profile can also be easily incorporated into the analytical procedure. The analysis provides the complete time history of pore‐pressure response and shows clearly that failure to include the pore‐pressure dissipation effects would lead to radically conservative design. The results also provide a basis for designing remedial measures, if required, to avert the development of high pore pressures and their deleterious effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号