首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our analysis of approximately 40,000 km of multichannel 2-D seismic data, reef oil-field seismic data, and data from several boreholes led to the identification of two areas of reef carbonate reservoirs in deepwater areas (water depth ≥ 500 m) of the Qiongdongnan Basin (QDNB), northern South China Sea. High-resolution sequence stratigraphic analysis revealed that the transgressive and highstand system tracts of the mid-Miocene Meishan Formation in the Beijiao and Ledong–Lingshui Depressions developed reef carbonates. The seismic features of the reef carbonates in these two areas include chaotic bedding, intermittent internal reflections, chaotic or blank reflections, mounded reflections, and apparent amplitude anomalies, similar to the seismic characteristics of the LH11-1 reef reservoir in the Dongsha Uplift and Island Reef of the Salawati Basin, Indonesia, which house large oil fields. The impedance values of reefs in the Beijiao and Ledong–Lingshui Depressions are 8000–9000 g/cc × m/s. Impedance sections reveal that the impedance of the LH11-1 reef reservoir in the northern South China Sea is 8000–10000 g/cc × m/s, whereas that of pure limestone in BD23-1-1 is >10000 g/cc × m/s. The mid-Miocene paleogeography of the Beijiao Depression was dominated by offshore and neritic environments, with only part of the southern Beijiao uplift emergent at that time. The input of terrigenous sediments was relatively minor in this area, meaning that terrigenous source areas were insignificant in terms of the Beijiao Depression; reef carbonates were probably widely distributed throughout the depression, as with the Ledong–Lingshui Depression. The combined geological and geophysical data indicate that shelf margin atolls were well developed in the Beijiao Depression, as in the Ledong–Lingshui Depression where small-scale patch or pinnacle reefs developed. These reef carbonates are promising reservoirs, representing important targets for deepwater hydrocarbon exploration.  相似文献   

2.
Seafloor mounds are potential geohazards to offshore rig emplacement and drilling operations and may contain evidence of underlying petroleum systems. Therefore, identifying and mapping them is crucial in de-risking exploration and production activities in offshore domains.A 738 km2 high resolution three-dimensional seismic dataset was used to investigate the occurrence, seismic characteristics and distribution of features interpreted as seafloor and buried sediment mounds, at water-depths of 800–1600 m, on the western Niger Delta slope. Fifteen seafloor mounds and eighteen shallowly buried mounds were identified. The seafloor mounds are characterised by lower seismic amplitude anomalies than the surrounding seabed sediments, and overlie vertical zones of acoustic blanking. The buried mounds in contrast are characterised by high amplitude anomalies; they also directly overlie sub-vertical zones of acoustic blanking. Seismic evidences from the features, their distribution patterns and tectono-stratigraphic associations suggest that their formation was controlled by the juxtaposition of buried channels and structural highs and their formation caused by focused fluid flow and expulsion of entrained sediments at the seabed.Considering the acoustic and geometrical characteristics of the mounds and comparing them with mound-shaped features from around the world, we conclude that the mounds most likely comprise heterolithic seafloor extrusions of muds and sands from the Agbada Formation with gas and possibly oil in some of the pore space giving rise to the acoustic characteristics.  相似文献   

3.
The potential for fluid leakage from sub-surface reservoirs has important implications for CO2 storage, hydrocarbon reservoirs and water resources. Understanding the genesis, morphology, fluid flow mechanisms and extent of fluid escape from reservoirs allows for better risking of geological resources and storage potential. Here we describe in detail the structures of fluid escape pipes from the Loyal Field, observed from a 3D full and partial stack seismic dataset. The seismic imagery suggests that the fluid escape pipes are rooted at least in the main Paleocene reservoir and by-pass the reservoir seal to cross the post Lista Formation overburden up to the intra-Neogene units. The pipes extend for a few hundred meters to a few kilometres and show varying shape and structure from blow-out structures to incipient mud volcanoes. A detailed analysis of the seismic characteristics observed both from main baseline and partial stack data allows a division of the pipes into two families: (1) seeps and pipes following structural discontinuities and (2) pipes unrelated to the pre-existing structural features. The pipes internal seismic response, the reflector termination of the main conduits and the distribution of stacked bright reflectors suggest an upward migration mechanism (during pipe birth and development), requiring a cyclic switching from non-Darcy hydrofracturing (during overpressure) to Darcy flow lateral migration (during low-pressure stage).  相似文献   

4.
The northern Gulf of Mexico is dominated by salt tectonics, resulting fracturing and numerous seafloor seeps and vents. Woolsey Mound, site of the Gulf of Mexico Hydrates Research Consortium's seafloor observatory, has been investigated extensively via surveys, direct sampling and seafloor instrument systems. This study presents an innovative approach to seismic data interpretation, integrating three different resolution datasets and maximizing seismic coverage of the complex natural hydrocarbon plumbing system at Woolsey Mound.3D industry seismic data reveal the presence of a salt body at in the shallow subsurface that has generated an extended network of faults, some extending from the salt body to the seafloor (master faults). Higher resolution seismic data show acoustic wipe-out zones along the master faults with expulsion features – seafloor pockmarks and craters – located immediately above them and associated, in the subsurface, with high-amplitude, negative anomalies at constant depth of 0.2 s TWTT b.s.f., interpreted as free gas. Since pockmarks and craters provide pathways for hydrocarbons to escape from depth into the water column, related sub-surface seismic anomalies may indicate free gas at the base of the gas hydrates stability zone (GHSZ). Fluid flow and gas hydrates formation are segmented laterally along faults. Gas hydrates formation and dissociation vary temporally in the vicinity of active faults, and can temporarily seal them as conduits for thermogenic fluids. Periodic migrations of gases and other fluids may perturb the GHSZ in terms of temperature and pressure, producing the observed lack of classical BSRs.  相似文献   

5.
6.
Based on the analysis of the high-resolution 3D seismic data from the SW Barents Sea we study the hydrocarbon plumbing system above the Snøhvit and Albatross gas field to investigate the geo-morphological manifestation and the dynamics of leakage from the reservoir. Fluid and gas escape to the seafloor is manifested in this area as mega-pockmarks 1–2 km-wide, large pockmarks (<100 m wide) and giant pockmarks 100–300 m-wide. The size of the mega pockmarks to the south of the study area may indicate more vigorous venting, whilst the northern fluid flow regime is probably characterised by a widespread fluid and gas release. Buried mega depressions and large-to-giant pockmarks are also identified on the base Quaternary and linked to deep and shallow faults as well as to seismic pipes. A high density of buried and seafloor giant pockmarks occur above a network of faults overlying an interpreted Bottom Simulating Reflector (BSR), whose depth coincides with the estimated base of the hydrate stability zone for a thermogenically derived gas hydrate with around 90 mol% methane. Deep regional faults provide a direct route for the ascending thermogenic fluids from the reservoir, which then leaked through the shallow faults linked to seismic pipes. It is proposed that the last episodic hydrocarbon leakage from the reservoir was responsible for providing a methane source for the formation of gas hydrates. We inferred that at least two temporally and dynamically different fluid and gas venting events took place in the study area: (1) prior to late Weichselian and recorded on the Upper Regional Unconformity (URU) and (2) following the Last Glacial Maximum between ∼17 and 16 cal ka BP and recorded on the present-day seafloor.  相似文献   

7.
The newly developed P-Cable 3D seismic system allows for high-resolution seismic imaging to characterize upper geosphere geological features focusing on geofluid expressions (gas chimneys), shallow gas and gas hydrate reservoirs. Seismic imaging of a geofluid system of an Arctic sediment drift at the Vestnesa Ridge, offshore western Svalbard, provides significantly improved details of internal chimney structures from the seafloor to ∼500 m bsf (below seafloor). The chimneys connect to pockmarks at the seafloor and indicate focused fluid flow through gas hydrated sediments. The pockmarks are not buried and align at the ridge-crest pointing to recent, topography-controlled fluid discharge. Chimneys are fuelled by sources beneath the base of gas hydrate stability zone (GHSZ) that is evident at ∼160–170 m bsf as indicated by a bottom-simulating reflector (BSR). Conduit centres that are not vertically straight but shift laterally by up to 200 m as well as discontinuous internal chimney reflections indicate heterogeneous hydraulic fracturing of the sediments. Episodically active, pressure-driven focused fluid flow could explain the hydro-fracturing processes that control the plumbing system and lead to extensive pockmark formation at crest of the Vestnesa Ridge. High-amplitude anomalies in the upper 50 m of the chimney structures suggest formations of near-surface gas hydrates and/or authigenic carbonate precipitation. Acoustic anomalies, expressed as high amplitudes and amplitude blanking, are irregularly distributed throughout the deeper parts of the chimneys and provide evidence for the variability of hydrate and/or carbonate formation in space and time.  相似文献   

8.
The effect of Cenozoic mass-transport deposits (MTDs) on the morphology of the Late Neogene to Quaternary seafloor is investigated using a 3D seismic volume from offshore Brazil. The studied MTD shows large remnant blocks deforming the seafloor several Ma after a principal instability event marking the base of the investigated strata. Remnant blocks formed during this latter instability event were quickly buried, with differential compaction between individual blocks and adjacent debrites triggering: a) seafloor instability on the flanks of uncompacted (remnant) blocks, b) the incision of submarine channels between seafloor highs formed by buried remnant blocks, c) local uplifted areas on the seafloor that may form potential triggers for future slope instabilities. The interpreted data show that palaeo-seafloor scarps reached more than 120 m in height, with flanking strata to remnant blocks reaching angles of 15°. Angles of this magnitude caused local collapse of seafloor strata and, in some intervals, the confinement of younger MTDs sourced from the upper slope. The statistical data presented here indicate that differential compaction over heterogeneous MTDs continued well after early burial, still deforming the seafloor c. 15 Ma after the main instability event. In addition, significant structural traps are formed by forced folds on remnant blocks that not experienced substantial compaction. Therefore, we conclude that MTDs on passive margins can control seafloor topography after early burial, at the same time contributing to the formation of significant structural traps in post-MTD successions.  相似文献   

9.
10.
Due to a lack of borehole data, reservoir and seal rock presence in frontier basins is typically inferred from seismic reflection data. However, analysis of the geometry and kinematic development of polygonal fault systems (PFS), which almost exclusively form within very fine-grained strata, provides another, largely untested method to infer reservoir and seal rock presence. We here use very high-quality 3D seismic reflection data from offshore Uruguay and a range of quantitative GIS-based techniques to document the planform and cross-sectional characteristics of a basin-scale (>6400 km2) PFS, and to investigate the role that stratigraphic variations in the Tertiary deep-water host-rock have on its geometrical variability and kinematic development. We demonstrate that a series of likely sandstone-rich deep-water deposits occur at the base of and within the main PFS tier. The geometric characteristics and throw distribution on individual polygonal faults suggest these sandstone-rich deep-water deposits represent a mechanical barrier to fault propagation, thus influencing fault height and areal density and, in some cases, strike. We argue that in largely unexplored, deep-to ultra-deep water basins, such as those characterizing offshore Uruguay, the distribution and geometric attributes of PFS can be used to delineate sandstone-rich reservoir bodies. Furthermore, these characteristics may help exploration geoscientists better understand seal heterogeneity and quality in data-poor basins.  相似文献   

11.
This study characterizes cored and logged sedimentary strata from the February 2007 BP Exploration Alaska, Department of Energy, U.S. Geological Survey (BPXA-DOE-USGS) Mount Elbert Gas Hydrate Stratigraphic Test Well on the Alaska North Slope (ANS). The physical-properties program analyzed core samples recovered from the well, and in conjunction with downhole geophysical logs, produced an extensive dataset including grain size, water content, porosity, grain density, bulk density, permeability, X-ray diffraction (XRD) mineralogy, nuclear magnetic resonance (NMR), and petrography.This study documents the physical property interrelationships in the well and demonstrates their correlation with the occurrence of gas hydrate. Gas hydrate (GH) occurs in three unconsolidated, coarse silt to fine sand intervals within the Paleocene and Eocene beds of the Sagavanirktok Formation: Unit D-GH (614.4 m-627.9 m); unit C-GH1 (649.8 m-660.8 m); and unit C-GH2 (663.2 m-666.3 m). These intervals are overlain by fine to coarse silt intervals with greater clay content. A deeper interval (unit B) is similar lithologically to the gas-hydrate-bearing strata; however, it is water-saturated and contains no hydrate.In this system it appears that high sediment permeability (k) is critical to the formation of concentrated hydrate deposits. Intervals D-GH and C-GH1 have average “plug” intrinsic permeability to nitrogen values of 1700 mD and 675 mD, respectively. These values are in strong contrast with those of the overlying, gas-hydrate-free sediments, which have k values of 5.7 mD and 49 mD, respectively, and thus would have provided effective seals to trap free gas. The relation between permeability and porosity critically influences the occurrence of GH. For example, an average increase of 4% in porosity increases permeability by an order of magnitude, but the presence of a second fluid (e.g., methane from dissociating gas hydrate) in the reservoir reduces permeability by more than an order of magnitude.  相似文献   

12.
13.
Cenozoic eastward migration of the Caribbean plate relative to the South American plate is recorded by an 1100-km-long Venezuela-Trinidad foreland basin which is oldest in western Venezuela (65-55 Ma), of intermediate age in eastern Venezuela (34-20 Ma) and youngest beneath the shelf and slope area of eastern offshore Trinidad (submarine Columbus basin, 15.0 Ma-Recent). In this study of the regional structure, fault families, and chronology of faulting and tectonic events affecting the hydrocarbon-rich Columbus foreland basin of eastern offshore Trinidad, we have integrated approximately 775 km of deep-penetration 2D seismic lines acquired by the 2004 Broadband Ocean-Land Investigations of Venezuela and the Antilles arc Region (BOLIVAR) survey, 325 km of vintage GULFREX seismic data collected by Gulf Oil Company in 1974, and published industry well data that can be tied to some of the seismic reflection lines. Top Cretaceous depth structure maps in the Columbus basin made from integration of all available seismic and well data define for the first time the elongate subsurface geometry of the 11-15 km thick and highly asymmetrical middle Miocene-Recent depocenter of the Columbus basin. The main depocenter located 150-200 km east of Trinidad and now the object of deepwater hydrocarbon exploration is completely filled by shelf and deepwater sediments derived mainly from the Orinoco delta. The submarine Darien ridge exhibits moderate (20-140 m) seafloor relief, forms the steep (12°-24°), northern structural boundary of the Columbus basin, and is known from industry wells to be composed of 0.5-4.5 km thick, folded and thrust-imbricated, hydrocarbon-bearing section of Cretaceous and early Tertiary limestones and clastic rocks. The eastern and southern boundaries of the basin are formed by the gently (1.7°-4.5°), northward-dipping Cretaceous-Paleogene passive margin of South America that is in turn underlain by Precambrian rocks of the Guyana shield.Interpretation of seismic sections tied to wells reveals the following fault chronology: (1) middle Miocene thrusting along the Darien ridge related to highly oblique convergence between the Caribbean plate and the passive margin of northern South America; continuing thrusting and transpression in an oblique foreland basin setting through the early Pleistocene; (2) early Pliocene-recent low-angle normal faults along the top of the Cretaceous passive margin; these faults were triggered by oversteepening related to formation of the downdip, structurally and bathymetrically deeper, and more seaward Columbus basin; large transfer faults with dominantly strike-slip displacements connect gravity-driven normal faults that cluster near the modern shelf-slope break and trend in the downslope direction; to the south no normal faults are present because the top Cretaceous horizon has not been oversteepened as it is adjacent to the foreland basin; (3) early Pliocene-Recent strike-slip faults parallel the trend of the Darien ridge and accommodate present-day plate motions.  相似文献   

14.
Ketzin, in the Northeast German Basin (NEGB), is the site for pilot injection of CO2 (CO2SINK project) into a saline aquifer (the Upper Triassic Stuttgart Formation) situated at a depth of about 630–700 m. This paper reports the baseline characterization of the reservoir formation based on new core material and well-logs obtained from one injection well and two observations wells, drilled at a distance from 50 m to 100 m from each other. The reservoir is lithologically heterogeneous and made up by fluvial sandstones and siltstones interbedded with mudstones showing remarkable differences in porosity. The thickest sandstone units are associated with channel sandstone, whose thickness varies over short lateral distances. In-depth petrographic, mineralogical, mineral-chemical, and whole-rock geochemical analysis were performed focusing on the sandstone intervals, which display the best reservoir properties for CO2 injection. The dominantly fine-grained and well to moderately-well sorted, immature sandstones classify as feldspathic litharenites and lithic arkoses. Quartz (22–43 wt.%), plagioclase (19–32 wt.%), and K-feldspar (5–13 wt.%) predominate mineralogically. Muscovite plus illite and mixed-layer minerals are omnipresent (4–13 wt.%). Quartz, feldspar, as well as meta-sedimentary and volcanic rock fragments comprise the most abundant detrital components, which often are rimmed by thin, early diagenetic coatings of ferric oxides, and locally of clay minerals. Feldspar grains may be unaltered and optically clear, partially to completely dissolved, partially altered to sheet silicates (mainly illite), or albitized. Analcime and anhydrite constitute the most widespread, often spatially associated pore-filling cement minerals. Authigenic dolomite, barite, and coelestine is minor. The percentage of cements ranges in total from about 5 vol.% to 32 vol.%. Except of samples intensely cemented by anhydrite and analcime, total porosities of the sandstones range from 13% to 26%. The fraction of intergranular porosity varies between 12% and 21%. About 1–5% porosity has been generated by dissolution of detrital plagioclase, K-feldspar, and volcanic rock fragments. The comparatively large modal abundance of feldspars, micas, chlorite, clay minerals, Fe–Ti-oxides, and analcime account for the richness in Ti, Al, Fe, Mg, Na, and K, and the paucity in Si, of the Stuttgart sandstones relative to mature sandstones. Altogether, these sandstones are comparatively rich in minerals that may potentially react with the injected CO2.  相似文献   

15.
Subsurface and seafloor fluid flow anomalies are gaining large interest after the finding of five new hydrocarbon discoveries and observation of large gas flares in the SW Barents Sea. In the present study, we have analysed structural and stratigraphic controls on fluid flow towards the seafloor using gravity cores selected based on subsurface gas anomalies observed on seismic data from the Veslemøy High, SW Barents Sea. The subsurface fluid flow at the Veslemøy High is observed to be controlled by 1) the morphology and orientation of regional faults, structural highs and sedimentary basins, 2) the presence of Paleocene silica ooze deposits that changes microstructure with temperature thereby controlling fluid flow and 3) the location of regional and local open faults formed by glacial loading and unloading. Analysis of extractable organic matter in subsurface Holocene sediments corroborates the active migration pathways inferred from seismic data. Micropalaeontological studies on benthic foraminifera reveal methane seep associated assemblages that confirm the interpretation of subsurface gas anomalies in seismic data. We ultimately link these new results to the geological evolution history of the region to give a comprehensive model for the fluid flow system within the study area.  相似文献   

16.
Gas hydrate was discovered in the Krishna–Godavari (KG) Basin during the India National Gas Hydrate Program (NGHP) Expedition 1 at Site NGHP-01-10 within a fractured clay-dominated sedimentary system. Logging-while-drilling (LWD), coring, and wire-line logging confirmed gas hydrate dominantly in fractures at four borehole sites spanning a 500 m transect. Three-dimensional (3D) seismic data were subsequently used to image the fractured system and explain the occurrence of gas hydrate associated with the fractures. A system of two fault-sets was identified, part of a typical passive margin tectonic setting. The LWD-derived fracture network at Hole NGHP-01-10A is to some extent seen in the seismic data and was mapped using seismic coherency attributes. The fractured system around Site NGHP-01-10 extends over a triangular-shaped area of ∼2.5 km2 defined using seismic attributes of the seafloor reflection, as well as “seismic sweetness” at the base of the gas hydrate occurrence zone. The triangular shaped area is also showing a polygonal (nearly hexagonal) fault pattern, distinct from other more rectangular fault patterns observed in the study area. The occurrence of gas hydrate at Site NGHP-01-10 is the result of a specific combination of tectonic fault orientations and the abundance of free gas migration from a deeper gas source. The triangular-shaped area of enriched gas hydrate occurrence is bound by two faults acting as migration conduits. Additionally, the fault-associated sediment deformation provides a possible migration pathway for the free gas from the deeper gas source into the gas hydrate stability zone. It is proposed that there are additional locations in the KG Basin with possible gas hydrate accumulation of similar tectonic conditions, and one such location was identified from the 3D seismic data ˜6 km NW of Site NGHP-01-10.  相似文献   

17.
Oedometric mechanical compaction tests were performed on brine-saturated synthetic samples consisting of silt-clay mixtures to study changes in microfabric and rock properties as a function of effective stress. The silt consisted of crushed quartz (∼100%) with grain size range between 4 and 40 μm, whereas the clay consisted of 81% kaolinite, 14% mica/illite and 5% microcline of grain size between 0.4 and 30 μm. Five sample pairs ranging in composition from pure silt to pure clay were compacted to 5 and 50 MPa effective stress respectively. SEM studies were carried out to investigate microfabric changes in the mechanically compacted silt-clay mixtures. The degree of alignment of the different minerals present (quartz, mica/illite and kaolinite) were computed by using an image analysis software. Experimental compaction have measured the changes in the rock properties such as porosity and velocity as a function of effective stress for different mixtures of clay and silt. Clay-rich samples showed a higher degree of mineral orientation and lower porosity compared to silt-dominated samples as a function of effective stress. Pure clay sample had 11% porosity at 50 MPa effective stress whereas the pure silt sample retained about 29% porosity at the same effective stress. The experiments showed that low porosity down to 11% is possible by mechanical compaction only. A systematic increase in strain was observed in the silt-clay mixtures with increasing clay content but the porosity values found for the 50:50 silt-clay mixture were lower than that of 25:75 silt-clay mixture. No preferential mineral orientation is expected before compaction owing to the high initial porosity suggesting that the final fabric is a direct result of the effective stress. Both P- and S-wave velocities increased in all silt-clay mixtures with increasing effective stress. The maximum P- and S-wave velocities were observed in the 25:75 silt-clay mixture whereas the minimum Vp and Vs were recorded in the pure silt mixture. At 50 MPa effective stress P- wave velocities as high as 3 km/s resulted from experimental mechanical compaction alone. The results show that fine-grained sediment porosity and velocity are dependent on microfabric, which in turn is a function of grain size distribution, particle shape, sediment composition and stress. At 5 MPa effective stress, quartz orientation increased as a function of the amount of clay indicating that clay facilitate rotation of angular quartz grains. Adding clay from 25% to 75% in the silt-clay mixtures at 50 MPa effective stress decreased the quartz alignment. The clay mineral orientation increased by increasing both the amount of clay and the effective stress, the mica/illite fabric alignment being systematically higher than that of kaolinite. Even small amount of silt (25%) added to pure clay reduced the degree of clay alignment significantly. This study demonstrates that experimental compaction of well characterized synthetic mudstones can be a useful tool to understand microfabric and rock properties of shallow natural mudstones where mechanical compaction is the dominant process.  相似文献   

18.
The scale of landscape pattern formation of an ecological community may provide clues as to the processes influencing its spatial and temporal dynamics. We conducted an examination of the spatial organization of an annual seagrass (Halophila decipiens) in an open ocean setting at two spatial scales and growing seasons to identify the relative influence of external (hurricanes) versus internal (clonal growth) factors. Visual surveys of seagrass cover were conducted over 2 years within three replicate 1 km2 study areas each separated by ∼25 km in an inshore–offshore transect along the southwest coast of Florida at depths between ∼10 and 30 m. A towed video sled allowed observations of seagrass cover of 1 m2 areas approximately every 6 m over thousands of meters of evenly spaced transects within the study areas (coarse scale). The towed video revealed that 17.5% of the seafloor was disturbed irrespective of location or sample time. Randomly selected 10 × 10 m quadrats within the larger, 1 km2 study areas were completely surveyed for seagrass cover by divers at 0.625 m2 resolution (fine scale). The coarse-scale observations were tested using both conventional geostatistics and an application of a time-series technique (Runs test) for scale of seagrass cover contiguity. Fine-scale observations were examined using conventional geostatistics and a least squares approach (cumulative logistic).  相似文献   

19.
Near-shore discharge of fresh groundwater from the fractured granitic rock at Flamengo Bay, Ubatuba, Brazil, is strongly controlled by the local geology. Freshwater flows primarily through a zone of weathered granite to a distance of 24 m offshore. In the nearshore environment this weathered granite is covered by about 0.5 m of well-sorted, coarse sands containing pore water with sea water salinity, with an abrupt transition to much lower salinity once the weathered granite is penetrated. Further offshore, low-permeability marine sediments contain saline porewater, marking the limit of offshore migration of freshwater. Freshwater flux rates based on tidal signal and hydraulic gradient analysis indicate a fresh submarine groundwater discharge of 0.17–1.6 m3/day per m of shoreline. Dissolved inorganic nitrogen and silicate are elevated in the porewater relative to seawater, and appeared to be a net source of nutrients to the overlying water column. The major ion concentrations suggest that the freshwater within the aquifer has a short residence time. Major element concentrations do not reflect in situ alteration of the granitic rocks, possibly because the alteration occurred prior to development of the current discharge zones, or because of large volumes of water discharge in this high rainfall region.  相似文献   

20.
非黏结柔性管道作为深水油气开发领域的关键设备,是连接海底井口和海洋平台的主要纽带。海洋油气开发水深已经超过了3 000 m,高静水压力是深水软管设计和安全评价的主要挑战,明确深水柔性管道压溃失效机理,并准确地预测柔性管道的压溃压力可以为柔性管道结构设计和安全评价提供依据,柔性管道的压溃压力与骨架层的几何形状以及骨架层之间复杂的相互作用有关,准确高效地预测压溃压力变得极具挑战性。针对柔性管道失效机理研究和压溃压力预测方法进行了总结,指出当前柔性管道压溃失效分析中薄弱的环节,为我国非黏结柔性管道的结构设计和安全评价提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号