首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Marine Geology》2006,225(1-4):265-278
The first seismic reflection data from the shallowest part of the submarine Lomonosov Ridge north of Arctic Canada and North Greenland comprise two parallel single channel lines (62 and 25 km long, offset 580 m) acquired from a 10 day camp on drifting sea ice. The top of southern Lomonosov Ridge is bevelled (550 m water depth) and only thin sediments (< 50 ms) cover acoustic basement. We suggest erosion of a former sediment drape over the ridge crest was either by a grounded marine ice sheet extending north from Ellesmere Island and/or deep draft icebergs. More than 1 km of sediments are present at the western entrance to the deep passage between southern Lomonosov Ridge and the Lincoln Sea continental margin. Here, the uppermost part (+ 0.3 s thick) of the section reflects increased sediment input during the Plio–Pleistocene. The underlying 0.7 s thick succession onlaps the slope of a subsiding Lomonosov Ridge. An unconformity at the base of the sedimentary section caps a series of NW–SE grabens and mark the end of tectonic extension and block faulting of an acoustic basement represented by older margin sediments possibly followed by minor block movements in a compressional regime. The unconformity may relate to termination of Late Cretaceous deformation between Lomonosov Ridge and Alpha Ridge or be equivalent to the Hauterivian break-up unconformity associated with the opening of the Amerasia Basin. A flexure in the stratigraphic succession above the unconformity is most likely related to differential compaction, although intraplate earthquakes do occur in the area.  相似文献   

2.
The Upper Jurassic marlstones (Mikulov Fm.) and marly limestones (Falkenstein Fm.) are the main source rocks for conventional hydrocarbons in the Vienna Basin in Austria. In addition, the Mikulov Formation has been considered a potential shale gas play. In this paper, organic geochemical, petrographical and mineralogical data from both formations in borehole Staatz 1 are used to determine the source potential and its vertical variability. Additional samples from other boreholes are used to evaluate lateral trends. Deltaic sediments (Lower Quarzarenite Member) and prodelta shales (Lower Shale Member) of the Middle Jurassic Gresten Formation have been discussed as secondary sources for hydrocarbons in the Vienna Basin area and are therefore included in the present study.The Falkenstein and Mikulov formations in Staatz 1 contain up to 2.5 wt%TOC. The organic matter is dominated by algal material. Nevertheless, HI values are relative low (<400 mgHC/gTOC), a result of organic matter degradation in a dysoxic environment. Both formations hold a fair to good petroleum potential. Because of its great thickness (∼1500 m), the source potential index of the Upper Jurrasic interval is high (7.5 tHC/m2). Within the oil window, the Falkenstein and Mikulov formations will produce paraffinic-naphtenic-aromatic low wax oil with low sulfur content. Whereas vertical variations are minor, limited data from the deep overmature samples suggest that original TOC contents may have increased basinwards. Based on TOC contents (typically <2.0 wt%) and the very deep position of the maturity cut-off values for shale oil/gas production (∼4000 and 5000 m, respectively), the potential for economic recovery of unconventional petroleum is limited. The Lower Quarzarenite Member of the Middle Jurassic Gresten Formation hosts a moderate oil potential, while the Lower Shale Member is are poor source rock.  相似文献   

3.
The Agulhas Bank, which forms the continental margin on the southern tip of Africa, consists of a thick Meso-Cainozoic sedimentary sequence (up to 6.2 km) resting on and behind pre-Mesozoic continental acoustic basement. The stratigraphy of this sequence is outlined and its history and facies variations mentioned where they are known. Refraction seismic velocity and bottom sample data indicate a basic three-fold subdivision of the Mesozoic sequence, which can be correlated with the onshore succession in the Algoa Basin. It is separated by a major hiatus from the Cainozoic sediments, which consist of a Palaeogene and Neogene sequence subdivided by another well-defined level of erosion. Various formations within the Cainozoic are defined and named. An outline of the bathymetry of the eastern Agulhas Bank is also given.  相似文献   

4.
This paper describes results from a geophysical study in the Vestbakken Volcanic Province, located on the central parts of the western Barents Sea continental margin, and adjacent oceanic crust in the Norwegian-Greenland Sea. The results are derived mainly from interpretation and modeling of multichannel seismic, ocean bottom seismometer and land station data along a regional seismic profile. The resulting model shows oceanic crust in the western parts of the profile. This crust is buried by a thick Cenozoic sedimentary package. Low velocities in the bottom of this package indicate overpressure. The igneous oceanic crust shows an average thickness of 7.2 km with the thinnest crust (5–6 km) in the southwest and the thickest crust (8–9 km) close to the continent-ocean boundary (COB). The thick oceanic crust is probably related to high mantle temperatures formed by brittle weakening and shear heating along a shear system prior to continental breakup. The COB is interpreted in the central parts of the profile where the velocity structure and Bouguer anomalies change significantly. East of the COB Moho depths increase while the vertical velocity gradient decreases. Below the assumed center for Early Eocene volcanic activity the model shows increased velocities in the crust. These increased crustal velocities are interpreted to represent Early Eocene mafic feeder dykes. East of the zone of volcanoes velocities in the crust decrease and sedimentary velocities are observed at depths of more than 10 km. The amount of crustal intrusions is much lower in this area than farther west. East of the Kn?legga Fault crystalline basement velocities are brought close to the seabed. This fault marks the eastern limit of thick Cenozoic and Mesozoic packages on central parts of the western Barents Sea continental margin.  相似文献   

5.
Analyses of about 6000 km of processed magnetic data in the central Bay of Bengal using Analytical Signal Processing and Werner Deconvolution techniques revealed that the depth to top of the magnetic basement varies between 5 and 12 km from the sea surface, where the water column thickness is about 3.4 km. These inferred depths are comparable to the reported acoustic basement depths. The basement map derived from magnetic interpretation defines the general configuration of the central Bay of Bengal. The N10–12° W trending subsurface 85° E Ridge buried under 2 to 3 km thick sediments is a prominent tectonic feature. Offshore basins characterised by deeper magnetic basement (9 km) and 100–200 km wide are present on either sides of the ridge. These basins were filled with 6–8 km thick lower Cretaceous to recent sediments. Integrated geophysical study depicts that the magnetic basement is characterised by NW-SE, NE-SW, NNE-SSW, N10-12° W and E-W trending structural features that are associated with the lower Cretaceous ocean floor. The Analytical Signal Processing and Werner Deconvolution techniques proved to be effective in determining the depth to the basement in areas covered by thick sediment overburden and characterized by a complex geologic/tectonic framework.  相似文献   

6.
The Garzón Massif, is an active Laramide style basement uplift flanked by the Upper Magdalena Valley (UMV) and the Putumayo Basin. In this paper we use new gravity, magnetic, well and seismic data for the first geophysical interpretation of the Garzón Massif. The Garzón/Algeciras fault has been previously interpreted as a right-lateral strike-slip fault. The new seismic, well, and gravity data demonstrates that the Garzón fault is also a low-angle (12–17°) Andean age fault thrusting PreCambrian basement 10–17 km northwestward over Miocene sediments of the UMV in a prospective footwall anticline.The new geophysical data as well as previous field mapping were used to produce the first gravity and magnetic maps and retrodeformable structural cross section of the northern Garzón Massif. The new model distinguishes for the first time distinct episodes of “thin-skinned” and “thick-skinned” deformation in the Garzón Massif. The model indicates approximately 43 km of Early to Middle Miocene shortening by “thin-skinned” imbricate thrusting contemporaneous with the uplift of the nearby southern Central Cordillera (∼9–16 Ma) and the main hydrocarbon expulsion event for the UMV and Putumayo Basin. This was followed by at least 22 km of Late Miocene (3–6 Ma) “thick-skinned” Andean shortening and 7 km of uplift on the symmetrical Garzón thrust and a SE-verging basement thrust fault zone. The Andean uplift interrupted and exposed the hydrocarbon migration pathways to the Putumayo Basin.3-D volume fracture analysis was used for the first time in this paper together with the first seismic and well data published for the Topoyaco and Miraflor structures to test closure models for the Topoyaco foothills. Intense fracturing is observed in the Topoyaco basement monocline from the near-surface to depths of over 3.5 km. The high level of fracturing permitted freshwater flushing and oil biodegradation and hydrocarbon escape. In contrast, the Miraflor-1 well, located just southwest of the Topoyaco block, tested light gravity oil and is sealed from groundwater flushing and biodegradation by a backthrust.  相似文献   

7.
Eleven seismic reflection profiles across Shirshov Ridge and the adjacent deep-water sedimentary basins (Komandorsky and Aleutian Basins) are presented to illustrate the sediment distribution in the western Bering Sea. A prominent seismic reflecting horizon, Reflector P (Middle—Late Miocene in age), is observed throughout both the Aleutian and Komandorsky Basins at an approximate subbottom depth of 1 km. This reflector is also present, in places, on the flanks and along the crest of Shirshov Ridge. The thickness of sediments beneath Reflector P is significantly different within the two abyssal basins. In the Aleutian Basin, the total subbottom depth to acoustic basement (basalt?) is about 4 km, while in the Komandorsky Basin the depth is about 2 km.Shirshov Ridge, a Cenozoic volcanic feature that separates the Aleutian and Komandorsky Basins, is an asymmetric bathymetric ridge characterized by thick sediments along its eastern flank and steep scarps on its western side. The southern portion of the ridge has more structural relief that includes several deep, sediment-filled basins along its summit.Velocity data from sonobuoy measurements indicate that acoustic basement in the Komandorsky Basin has an average compressional wave velocity of 5.90 km/sec. This value is considerably larger than the velocities measured for acoustic basement in the northwestern Aleutian Basin (about 5.00 km/sec) and in the central Aleutian Basin (5.40–5.57 km/sec). In the northwestern Aleutian Basin, the low-velocity acoustic basement may be volcaniclastic sediments or other indurated sediments that are overlying true basaltic basement. A refracting horizon with similar velocities (4.6–5.0 km/sec) as acoustic basement dips steeply beneath the Siberian continental margin, reaching a maximum subbottom depth of about 8 km. The thick welt of sediment at the base of the Siberian margin may be the result of sediment loading or tectonic depression prior to Late Cenozoic time.  相似文献   

8.
Geochemical characteristics of organic matter in the profiles of Dukla, Silesian, Sub-Silesian and Skole units of the Polish Outer Carpathians and of the Palaeozoic–Mesozoic basement in the Dębica-Rzeszów-Leżajsk-Sanok area were established based on Rock-Eval, vitrinite reflectance, isotopic and biomarker analyses of 485 rock samples. The Oligocene Menilite beds have the best hydrocarbon potential of all investigated formations within the Dukla, Silesian, and Skole units. The Ordovician, Silurian, Lower Devonian and locally Middle Jurassic strata of the Palaeozoic–Mesozoic basement are potential source rocks for oil and gas accumulated in Palaeozoic and Mesozoic reservoirs. Thirty one natural gas samples from sandstone reservoirs of the Lower Cretaceous-Lower Miocene strata within the Outer Carpathian sequence and eight from sandstone and carbonate reservoirs of the Palaeozoic–Mesozoic basement were analysed for molecular and isotopic compositions to determine their origin. Natural gases accumulated both in the Outer Carpathian and the Palaeozoic–Mesozoic basement reservoirs are genetically related to thermogenic and microbial processes. Thermogenic gaseous hydrocarbons that accumulated in the Dukla and Silesian units were generated from the Menilite beds. Thermogenic gaseous hydrocarbons that accumulated in the Sub-Silesian Unit most probably migrated from the Silesian Unit. Initial, and probably also secondary microbial methane component has been generated during microbial carbon dioxide reduction within the Oligocene Menilite beds in the Dukla Unit and Oligocene-Lower Miocene Krosno beds in the Silesian Unit. Natural gases that accumulated in traps within the Middle Devonian, Mississippian, Upper Jurassic, and Upper Cretaceous reservoirs of the Palaeozoic–Mesozoic basement were mainly generated during thermogenic processes and only sporadically from initial microbial processes. The thermogenic gases were generated from kerogen of the Ordovician-Silurian and Middle Jurassic strata. The microbial methane component occurs in a few fields of the Dukla and Silesian units and in the two accumulations in the Middle Devonian reservoirs of the Palaeozoic–Mesozoic basement.  相似文献   

9.
The Dongsha Basin, circling Dongsha Island that is amid the northern margin of the South China Sea, is characterized by thin (∼0.5 km) Cenozoic sediments veneering on thick (up to 5 km) Mesozoic strata. Recently, several geophysical and geological surveys, including multiple channel reflection seismic, sub-bottom profiling and benthic dredging, have been conducted on the slope southwest to the Dongsha Island, where the water depth varies from 400 m to 2000 m. A novel discovery is numerous submarine mud volcanoes of various sizes over there, typically 50–200 m high and 0.5–5 km wide. Geophysical profiles document their unusual features, e.g., roughly undulating seafloor, high-amplitude seabed reflectivity, foggy hyperbolic diffractions up to 50 m in water column above seabed, and internal reflection chaos and wipe-out down to 2–3 km level or deeper below the seabed. Benthic dredging from the mud volcanoes gives abundant faunas of high diversity, e.g., scleractinian (stony coral), gorgonian, black coral, thiophil tubeworm, glass sponge, bryozoan etc., indicating booming chemosynthetic community, among which the Lophelia pertusa-like coral and the Euretidae-like glass sponges are the first reports in the South China Sea. Concomitantly with them, there are also abundant authigenic carbonate nodules and slabs, raw, brecciated and breccias with bio-clasts congregation. Besides, there coexist massive mudflows and allogenic coarse-grained quartz, feldspar and tourmaline most likely brought out by mud volcanism. Geochemical analysis of the bottom water samples give dissolved methane concentration up to 4 times higher than the background average. These results lend comprehensive evidences for the ongoing and historical mud volcanism. The escaping methane gas is inferred to source mainly from the Mesozoic strata. Occupying a large province of the deep water slope, ca. 1000 km2 or more, the mud volcanoes is prospective for gas hydrate and natural gas for the Dongsha Basin.  相似文献   

10.
Travel-time modelling of first and second arrivals has been used to produce P-wave velocity models of the shallow sub-surface structure of Kachchh, India, using new wide-angle reflection/refraction profiles. Results obtained from the 2-D tomographic modelling have also been corroborated with magnetotelluric and borehole data within the proximity of these profiles. Based on multiple geophysical data, a composite sub-surface model is presented in this article. The prominent features of the model include the presence of more than 3 km thick Mesozoic sediments residing above the Precambrian basement. Its correlation with available lithological knowledge shows that the Mesozoic rocks have been deposited from early Triassic to late Cretaceous until the eruption of the Deccan Flood basalts at the Cretaceous-Tertiary boundary. The new results suggest that the Mesozoic rocks of Kachchh can be sub-divided in two major parts which correspond to late and early Mesozoic deposits respectively. The sub-surface models successfully demarcate the regional variations in the basaltic layer across the region and show maximum thickness of 1.2 km. The modelling results also exhibit that the Precambrian basement in this region varies between 4 and 6 km depth. The new data provide a much clearer picture than was hitherto available of the entire sedimentary succession in the basins that underlie the Kachchh region. They show a significant variability in thickness of the various sedimentary layers, and in particular illustrate a marked topographic irregularity at the base of the sedimentary succession.  相似文献   

11.
The northeastern part of the South China Sea is a special region in many aspects of its tectonics. Both recent drilling into the Mesozoic and new reflection seismic surveys in the area provide a huge amount of data, fostering new understanding of the continental margin basins and regional tectonic evolution. At least four half-grabens are developed within the Northern Depression of the Tainan Basin, and all are bounded on their southern edges by northwestward-dipping faults. One of the largest half-grabens is located immediately to the north of the Central Uplift and shows episodic uplift from the late Oligocene to late Miocene. Also during that period, the Central Uplift served in part as a material source to the Southern Depression of the Tainan Basin. The Southern Depression of the Tainan Basin is a trough structure with deep basement (up to 9 km below sealevel or 6 km beneath the sea bottom) and thick Cenozoic sedimentation (>6 km thick). Beneath the Southern Depression we identified a strong landward dipping reflector within the crustal layer that represents a significant crustal fault. This reflector coincides with a sharp boundary in crustal thicknesses and Moho depths. We show that the northeasternmost South China Sea basin, which may have undergone unique evolution since the late Mesozoic, is markedly different from the central South China Sea basin and the Huatung Basin, both geologically and geophysically. The Cenozoic evolution of the region was largely influenced by pre-existing weaknesses due to tectonic inheritance and transition. The South China Sea experienced multiple stages of Cenozoic extension.  相似文献   

12.
The Omo basin in south western Ethiopia at the Kenyan boundary is a northern extension of the trans- boundary Turkana rift. It is an Early Pliocene north-south trending depression bounded on either side by normal faulting. The Omo river flows in the middle of the basin and empties itself at its southern end into Lake Turkana.The structural pattern of the Omo basin is determined from 2D and 3D analyses of the gravity field. The basin is an asymmetric half-graben formed by and localized within the NS/NNE trending Early Pliocene normal faults. It is built up on the older NW trending structures that were reactivated and affected the recent NS faults. Automatic depth determination techniques and 3D inversion are used to estimate depth to the basement and determine the sedimentary thickness. The results indicate over 4 km thick sediments were deposited over the graben.The Omo basin lies within the East African Rift system and appears to connect the generally NW trending oil-rich Muglad-Melut basins of south Sudan and the highly prospective and similarly trending Anza graben of Kenya. The Omo basin contains thick sequence of sediments and appears to be a promising future site of intensive hydrocarbon exploration.  相似文献   

13.
The concentrations of polycyclic aromatic hydrocarbons (PAHs) and trace elements were determined for surface (top 2 cm) sediment samples collected during the deep Gulf of Mexico benthos (DGoMB) study .These elements and compounds are known to be toxic to organisms at high concentrations and may affect biological communities. There is no indication of major anthropogenic input of the elements Be, Co, Cr, Fe, Si, Tl, V, K, Mg, Ca, Sr and Zn, based on normalization to Al. The concentrations of these metals in the sediment are a function of the relative amounts of trace-metal-rich Mississippi River-derived silicate material and trace-metal-poor plankton-derived carbonate. This is not true for the elements Ba, Ni, Pb, Cd, As, Cu and Mn, whose concentrations show considerable scatter when normalized to Al and a general enrichment. On a normalized basis, Mn is enriched 5–10 fold, Cu and Ni 2–3 fold and Pb 2 fold over Mississippi River-derived material. These enrichments are likely the result of remobilization of metals from depths in the sediment column where reducing conditions exist. The Ba concentrations at selected sites are higher than those of average clay-rich sediments, but are typical of sediments from near oil well platforms in the northern Gulf of Mexico. In the case of Ba, it seems likely that the enrichments, as high as a factor of 10, are due to disposal of oil well drilling mud. The Ba-enriched samples are from the three shallowest water sites in the Mississippi Trough (sites MT1, 2 and 3) and from site C1 and WC5. All are in an area of intense petroleum exploration and development. PAH concentrations are also elevated at MT1, MT3 and C1. The total PAH concentration ranged from not detected (ND) to 1033 ng/g with a mean of 140 ng/g. Even at the sites most enriched in PAHs and trace elements, the concentrations are not at the levels expected to adversely affect the biota. However, these predicted non-effects are based on research using mostly near-shore estuarine species, not on the indigenous species at the sampling sites.  相似文献   

14.
A 700 km wide-angle reflection/refraction profile carried out in the central North Atlantic west of Ireland crossed the Erris Trough, Rockall Trough and Rockall Bank, and terminated in the western Hatton-Rockall Basin. The results reveal the presence of a number of sedimentary basins separated by basement highs. The Rockall Trough, with a sedimentary pile up to 5 km thick, is underlain by thinned continental crust 8–10 km thick. Some major fault block structures are identified, especially on the eastern margin of the Rockall Trough and in the adjacent Erris Trough. The Hatton-Rockall Basin is underlain by westward-thinning continental crust 22–10 km thick. Sedimentary strata are up to 5 km thick. The strata in the Rockall Trough and Hatton-Rockall Basin probably range in age from Late Palaeozoic to Cenozoic. However, the basins have different sedimentation histories and differ in structural style. The geometry of the crust and sediments suggests that the Rockall Trough originated by pure shear crustal stretching, associated with rift deposits and Cenozoic thermal sag strata. In contrast, the development of the Erris Trough, located on unthinned continental crust, was facilitated by shallow, brittle extension with little deep crustal attenuation. A two-layered crust occurs throughout the region. The lower crustal velocity in the Hatton-Rockall Basin is higher than that in the Rockall Trough. The velocity structure shows no indication of crustal underplating by upper mantle material in the region.  相似文献   

15.
Rifting of the Qiongdongnan Basin was initiated in the Cenozoic above a pre-Cenozoic basement, which was overprinted by extensional tectonics and soon after the basin became part of the rifted passive continental margin of the South China Sea. We have integrated available grids of sedimentary horizons, wells, seismic reflection data, and the observed gravity field into the first crust-scale structural model of the Qiongdongnan Basin. Many characteristics of this model reflect the tectonostratigraphic history of the basin. The structure and isopach maps of the basin allow us to reconstruct the history of the basin comprising: (a) The sediments of central depression are about 10 km thicker than on the northern and southern sides; (b) The sediments in the western part of the basin are about 6 km thicker than that in the eastern part; (c) a dominant structural trend of gradually shifting depocentres from the Paleogene sequence (45–23.3 Ma) to the Neogene to Quaternary sequence (23.3 Ma–present) towards the west or southwest. The present-day configuration of the basin reveals that the Cenozoic sediments are thinner towards the east. By integrating several reflection seismic profiles, interval velocity and performing gravity modeling, we model the sub-sedimentary basement of the Qiongdongnan Basin. There are about 2–4 km thick high-velocity bodies horizontal extended for a about 40–70 km in the lower crust (v > 7.0 km/s) and most probably these are underplated to the lower stretched continental crust during the final rifting and early spreading phase. The crystalline continental crust spans from the weakly stretched domains (about 25 km thick) near the continental shelf to the extremely thinned domains (<2.8 km) in the central depression, representing the continental margin rifting process in the Qiongdongnan Basin. Our crust-scale structural model shows that the thinnest crystalline crust (<3 km) is found in the Changchang Sag located in the east of the basin, and the relatively thinner crystalline crust (<3.5 km) is in the Ledong Lingshui Sag in the west of the basin. The distribution of crustal extension factor β show that β in central depression is higher (>7.0), while that on northern and southern sides is lower (<3.0). This model can illuminate future numerical simulations, including the reconstruction of the evolutionary processes from the rifted basin to the passive margin and the evolution of the thermal field of the basin.  相似文献   

16.
In September 1994 and 1995, scientists from the Australian Institute of Marine Science (AIMS) and the Australian Geological Survey Organization (AGSO) conducted surveys aboard the RV Lady Basten to determine the dispersion, fates and effects of produced formation water (PFW) discharged from the ‘ Harriet A ’ oil production platform near the Montebello Islands. This report is one of four related papers and describes the non-volatile hydrocarbon chemistry studies. The dispersion of the PFW into dissolved and particulate fractions of seawater were measured using moored high volume water samplers, surface screen samplers and moored and drifting sediment traps. Bio-accumulation was studied using transplanted oysters, and dispersion measured into sediment with benthic grabs.Results showed enrichment in non-volatile hydrocarbons in surface microlayer samples to a distance of 1·8 km in the direction of tidal flow. Concentrations in surface microlayers near the platform varied by an order of magnitude and corresponded to when a surface slick was visible or not visible. Concentrations of oil in seawater ranged from 2·0 to 8·5 μg l−1at near stations to 1·3 μg l−1at 1·8 km. Water column samples showed the processes of desorption from particles for soluble components occur within the range of 1·8 km. Most particulate hydrocarbons drop out of suspension within c. 1 to 2 km from the platform. Fluxes of particulate hydrocarbons through the water column at c. 1 km, as estimated by moored sediment traps in 1995, were 138 to 148 ng cm−2day−1. A decrease in sediment concentrations within c. 1 km of the platform was measured as 2·45±1·29 μg g−1dry wt (n=15) in 1994 to 0·86±0·54 μg g−1dry wt (n=21) in 1995, after the platform installed a centrifugal separator in the discharge treatment process. Thus the residence time of this relatively low molecular weight oil was estimated in the coarse aerobic sands surrounding the platform to be less than one year. Oysters suspended near the platform bio-accumulated hydrocarbons and other lipophilic organics in their tissues. Uptake rates and bio-concentration factors of hydrocarbons indicated potential toxicity at the near-field stations within c. 1 km radius.A mass balance was constructed to show the partitioning of the input of hydrocarbons from the PFW into the surrounding marine ecosystem. The rates of dissipation processes were estimated as follows: dilution from tidal currents>degradation in the water column>sedimentation>evaporation. The calculations based on maximum concentrations measured in the environmental samples accounted for 85% of the daily input suspended within a 1 km radius.It is estimated that the potential zone of toxic influence in the water column extends to a distance of approximately 1 km. Concentrations of oil in sediments were too low to indicate potential toxicity. By the collaborative application of oceanographic and geochemical techniques to marine environmental problems, we endeavour to provide effective feedback to the oil industry to gauge the effectiveness of their operational strategies in minimizing impact in these pristine regions.  相似文献   

17.
Organic geochemical study of hydrocarbon pollution of the Mediterranean coastline of Morocco (Tangier-Nador) was performed during March–April 2002. It corresponds to a preliminary work representing an initial assessment of oil contamination of Moroccan coast.Three coastal sites corresponding to Tangier, Tetouan and Nador, representing the main built-up area of this marine region, were selected for superficial sediments, water and organism sampling. Results showed high contamination levels in these three selected sites, known as the most exposed areas to urban and industrial discharges. The maximal contamination corresponding to the sum of non-aromatic (NAH) and polycyclic aromatic hydrocarbons (PAH) encountered in sediment samples was about 553 μg/g (dw). Nevertheless, even a small city agglomeration without any industrial activity showed high values reaching 370 μg/g (dw), which confirm the important hydrocarbons input coming from discharges of fishing ships and oil transporting tankers.The obtained results from this survey reflecting in part the important amounts drained via effluents toward the Moroccan Mediterranean coasts, presented to the concerned authorities drove to the realization of the project of treatment of the wastewater.They later expect to lower rates by 50%, which is still insufficient for a fragile ecosystem such as the Mediterranean and sensitive to anthropogenic effects.  相似文献   

18.
A 150 km length, 6-second deep, seismic line across the west central and north parts of the South Caspian Basin was used to construct quantitative dynamical, thermal and hydrocarbon evolution patterns. The depth of the west part of the 2-D section of the South Caspian Basin is almost 30 km. The computer program GEOPETII was used to provide quantitative evolution models. The procedure provided an opportunity to investigate the development dynamics of: excess fluid pressure, porosity retention, rock fracturing, compaction, heat transfer, maturity, generation pressure, kinetic hydrocarbon generation, migration and accumulation, together with solubility effects on hydrocarbon transport. The results suggest that: (i) Temperature is 350–400°C in the deepest part of the section at a depth of 26–29 km; (ii) The highest values of excess pressure nearly twice hydrostatic fluid pressure are in Jurassic and Cretaceous formations in the west part of the section, which has now subsided to a depth of about 20–27 km; (iii) Major oil and gas generation began in the last 10-5 MYBP, the migration in free-phase and in water solution occurring dominantly in the last few million years; (iv) Trapping of hydrocarbons took place mainly, but not exclusively, in the 3–9 km depth interval in the sands of the Productive Series of the Pilocene, embedded in a shale sequence; (v) Oil and gas filling of the shallow reservoirs by oil and gas is on-going today, indicating an extremely high productivity for any reservoir found in the offshore area; (vi) There is overlap with depth of oil and gas reservoirs, and the total amount of hydrocarbons estimated to be trapped is considerable; (vii) The high overpressure expected makes for a drilling hazard, but one which it is worthwhile to overcome if the anticipated oil and gas accumulations are encountered.  相似文献   

19.
The Mid-Polish Trough (MPT) is situated in the easternmost part of the Central European Basin System (CEBS) and stretches NW–SE across the Polish Basin. It was characterised by pronounced subsidence and thick sediment accumulation between the Permian and the Late Cretaceous. Late Cretaceous–early Paleogene basin inversion led to the formation of the Mid-Polish Swell (MPS). The study area is located within the Pomeranian segment of the MPT/MPS (NW Poland) and experienced up to 7 km Permian-Mesozoic subsidence. PetroMod 1-D modelling was performed on several well-sections in order to study Permian to recent burial-uplift evolution. The modelling was calibrated with new vitrinite reflectance (VRr) data and allowed to constrain the magnitude of uplift and related erosion as well as provided a first overview of the temperature history. The base of the studied Permian–Mesozoic successions attained maximum burial depths of 4800–5400 m before the onset of the inversion, less than in the axial trough area. The thickness of pre- and most probably also syn-inversion Upper Cretaceous deposits is estimated as 300 m. Erosion associated with inversion processes removed between 900 and 1400 m of the Mesozoic sediments, i.e. 1000–1500 m less than in the most inverted central part of the trough. VRr data suggest constant Permian–Mesozoic heat flows corresponding to present-day values (40–45 mW/m2). Apatite fission-track (AFT) ages modelled with the PetroMod module PetroTracks show a good fit with AFT ages directly measured on well samples, and further support the assumption of steady heat flow in the range 40–45 mW/m2. Palaeotemperatures appear to have decreased towards the East European Craton margin, which is compatible with the present day distribution of heat flow. Thermal history modelling shows a relatively simple Permian–Mesozoic heat flow pattern in the Pomeranian segment of the MPT. Such a scenario implies that the present-day heat flow distribution has not changed essentially since Mesozoic times.  相似文献   

20.
The Dongpu depression is located in the southern Bohai Bay Basin, North China, and it has abundant oil and gas reserves. There has been no systematic documentation of this depression's temperature field and thermal history. In this article, the present geothermal gradient and heat flow were calculated for 68 wells on the basis of 892 formation-testing data from 523 wells. Moreover, the Cenozoic thermal history was reconstructed using 466 vitrinite reflectance data from 105 wells. The results show that the Dongpu depression is characterized by a medium-temperature field between stable and active tectonic areas, with an average geothermal gradient of 34.8 °C/km and an average heat flow of 66.8 mW/m2. The temperature field in the Dongpu depression is significantly controlled by the Changyuan, Huanghe, and Lanliao basement faults and thin lithosphere thickness. The geothermal gradient twice experienced high peaks. One peak was during the Shahejie 3 Formation depositional period, ranging from 45 °C/km to 48 °C/km, and the second peak was in the middle and late of the Dongying Formation depositional period, ranging from 39 °C/km to 40 °C/km, revealing that the Dongpu depression experienced two strong tectonic rifts during the geothermal gradient high peak periods. The geothermal gradient began to decrease from the Neogene, and the geothermal gradient is 31–34 °C/km at the present day. In addition, these results reveal that source rock thermal evolution is controlled by the paleo temperature field of the Dongying Formation depositional period in the Dongpu depression. This study may provide a geothermal basis for deep oil and gas resource evaluation in the Dongpu depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号