首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relation between the systematic time variations of the solar differential rotation at middle latitudes and the asymmetry of global distribution of the solar activity is discussed in connection with the study of the maintenance of the solar differential rotation. The systematic variations at middle latitudes are inferred from a peculiar correlation in the time variations of the solar differential rotation which is shown in this paper to be implied in the data of Howard and Harvey (1970) of spectroscopic measurements of rotational velocities. If we adopt the working hypothesis of the solar equatorial acceleration maintained by the angular momentum transport due to the very large scale convection, the two phenomena are related through the concurrent presence of the neighboring modes with the presumed dominant mode of the very large scale convection.  相似文献   

2.
The N-S asymmetry of the long-lived solar filaments published in the Meudon catalogues for the time interval 1919–1989 is studied by means of power-spectrum analysis. Statistically significant periods of 35.0 and 11.7 yr are obtained. There are no statistically significant periods shorter than 11 yr.  相似文献   

3.
Long-term variations in north-south asymmetry of solar activity   总被引:1,自引:0,他引:1  
We present a new set of data on relative sunspot number (total, northern hemisphere, and southern hemisphere), taken for the 37-yr period 1947 to 1983; this constitutes a particularly coherent and consistent set of data, taken by the same observer (Hisako Koyama) using the same observing instrument. These data are combined with earlier data (White and Trotter, 1977) on the variation of sunspot areas for both solar hemispheres from 1874 to 1971. The combined data, covering 110 years and 10 solar cycles, are examined for periodicity in solar activity north-south asymmetry. We show that, in general, northern hemisphere activity, displayed as either An/(An + As) or Rn/(Rn + Rs), peaks about two years after sunspot minimum. This peak is greater during even cycles, pointing to a 22-yr periodicity in north-south asymmetry in solar activity, suggesting that the asymmetry is related to the 22-yr solar magnetic cycle. We demonstrate that the largest and most protracted period of northern-hemisphere activity excess in the last 110 years has occurred from 1959 to 1970; we show that there is a strong correlation between northern activity excess and a cosmic-ray density gradient perpendicular to the ecliptic plane, pointing southward, which is evident in cosmic-ray diurnal variation data from the Embudo underground cosmic-ray telescope.  相似文献   

4.
Interplanetary scintillation measurements of the solar wind speed in 1976 show the expected trend that higher speeds are found at higher heliographic latitudes or larger angular distances from the interplanetary current sheet deduced from coronal observations. A careful examination of variations in the speed where the current sheet departs from the equator reveals that the wind speed is not symmetrically distributed about the equator, and the minimum speed occurs at the current sheet. The variation of the speed u with the angular distance from the current sheet, λ, during 1976 is
u(λ) = 800 sin?2λ + 350 km/s,|λ| ?35° = 600 km/s, |λ| > 35°
.  相似文献   

5.
Woodard  M.F.  Libbrecht  K.G. 《Solar physics》2003,212(1):51-64
We have investigated long-term variations of solar brightness as a function of both time and solar latitude using eight years of ground-based photometric data in conjunction with space-based irradiance data. In particular, we have examined whether the combination of sunspot brightness deficits and facular brightness excesses is sufficient to explain the solar cycle irradiance variations. After correcting for the contribution from sunspots, we find that the irradiance data can be adequately explained by a model in which the remaining brightness variations are due entirely to facular contributions confined to the magnetically active latitudes. Thus we find no support for the hypothesis that there are convectively driven hot bands in the active latitudes, and our data show brightness variations that are well described by a facular contrast function.  相似文献   

6.
Verma  V.K. 《Solar physics》2000,194(1):87-101
The paper presents the results of a study of the distribution and asymmetry of solar active prominences (SAP) for the period 1957–1998 (solar cycles 19–23). The east-west (E-W) distribution study shows that the frequency of SAP events in the 81–90° slice (in longitude) near the east and west limbs is up to 10 times greater than in the 1–10° slice near the central meridian of the Sun. The north-south (N-S) latitudinal distribution shows that the SAP events are most prolific in the 11–20° slice in the northern and southern hemispheres. Further, the E-W asymmetry of SAP events is not significant. The N-S asymmetry of SAP events is significant and it has no relation with the solar maximum year or solar minimum year during solar cycles. Further, the present study also shows that the N-S asymmetry for cycles 19–23 follows and confirms the trend of N-S asymmetry cycles as reported by Verma (1992).  相似文献   

7.
This paper tries to cast additional evidence on the proposed periodic behaviour of the N-S asymmetry in sudden disappearances (SD) of solar prominences (Vizoso and Ballester, 1987). We have performed a Blackman-Tukey power spectrum of the values of the SD N-S asymmetry and the results shows a significant peak, above 95% confidence level, at 12.4 years, another peak at 2.3 years fails to be statistically significant. Moreover, power spectrum performed with the values of N-S asymmetry of flare number and flare index (Vizoso and Ballester (1987) display significant peaks, above 95% confidence level, around 3.1–3.2 years.  相似文献   

8.
Skylab EUV observations of an active region near the solar limb were analyzed. Both cool (T < 106 K) and hot (T > 106 K) loops were observed in this region. For the hot loops the observed intensity variations were small, typically a few percent over a period of 30 min. The cool loops exhibited stronger variations, sometimes appearing and disappearing in 5 to 10 min. Most of the cool material observed in the loops appeared to be caused by the downward flow of coronal rain and by the upward ejection of chromospheric material in surges. The frequent EUV brightenings observed near the loop footpoints appear to have been produced by both in situ transient energy releases (e.g. subflares) and the infall/impact of coronal rain. The physical conditions in the loops (temperatures, densities, radiative and conducting cooling rates, cooling times) were determined. The mean energy required to balance the radiative and conductive cooling of the hot loops is approximately 3 × 10–3 erg cm–3 s–1. One coronal heating mechanism that can account for the observed behavior of the EUV emission from McMath region 12634 is heating by the dissipation of fast mode MHD waves.  相似文献   

9.
It is shown from the statistical analysis of the sunspot data and solar neutrino data that both the data exhibits 5, 10, 15, 20, 25, and 30 months period and these periods may be g-mode oscillation of the core associated with the solar activity.  相似文献   

10.
We have performed a comparative analysis of the results of our study of the 22-year rotation variations obtained from data on large-scale magnetic fields in the Hα line, magnetographic observations, and spectral-corona observations. All these types of data suggest that the rotation rate at low latitudes slows down at an epoch close to the maximum of odd activity cycles. The 22-year waves of rotation-rate deviation from the mean values drift from high latitudes toward the equator in a time comparable to the magnetic-cycle duration. We discuss the possibility of the generation of a solar magnetic cycle by the interaction of 22-year torsional oscillations with the slowly changing or relic magnetic field. We consider the generation mechanisms of the high-latitude magnetic field through a superposition of the magnetic fields produced by the decay and dissipation of bipolar groups and the relic or slowly changing magnetic field and a superposition of the activity wave from the next activity cycle at high latitudes.  相似文献   

11.
Rescaled range analysis of the asymmetry of solar activity   总被引:2,自引:0,他引:2  
Oliver  R.  Ballester  J. L. 《Solar physics》1996,169(1):215-224
Previous studies of the north-south asymmetry of solar activity (e.g., Carbonell, Oliver, and Ballester, 1993; Oliver and Ballester, 1994) suggest that the asymmetry time series can be represented by means of a multicomponent model made up of a long-term trend, a weak sinusoidal component (with a period close to 12.1 years) and a dominant random process. Here, we have used the rescaled range analysis to study the valuation of the stochastic component of the asymmetry. To avoid the influence of the trend and the sinusoidal component on the result, we have removed both from the original time series. The value obtained for the Hurst exponent (0.717 ± 0.002) suggests that the non-periodic component is a correlated random process.  相似文献   

12.
We believe the Babcock-Leighton process of poloidal field generation to be the main source of irregularity in the solar cycle. The random nature of this process may make the poloidal field in one hemisphere stronger than that in the other hemisphere at the end of a cycle. We expect this to induce an asymmetry in the next sunspot cycle. We look for evidence of this in the observational data and then model it theoretically with our dynamo code. Since actual polar field measurements exist only from the 1970s, we use the polar faculae number data recorded by Sheeley (1991, 2008) as a proxy of the polar field and estimate the hemispheric asymmetry of the polar field in different solar minima during the major part of the twentieth century. This asymmetry is found to have a reasonable correlation with the asymmetry of the next cycle. We then run our dynamo code by feeding information about this asymmetry at the successive minima and compare the results with observational data. We find that the theoretically computed asymmetries of different cycles compare favorably with the observational data, with the correlation co-efficient being 0.73. Due to the coupling between the two hemispheres, any hemispheric asymmetry tends to get attenuated with time. The hemispheric asymmetry of a cycle ei-ther from observational data or from theoretical calculations statistically tends to be less than the asymmetry in the polar field (as inferred from the faculae data) in the preceding minimum. This reduction factor turns out to be 0.43 and 0.51 respectively in observational data and theoretical simulations.  相似文献   

13.
14.
15.
We report here a study of various solar activity phenomena occurring in both north and south hemispheres of the Sun during solar cycles 8&amp;#x2013;23. In the study we have used sunspot data for the period 1832&amp;#x2013;1976, flare index data for the period 1936-1993, H&amp;#x03B1; flare data 1993&amp;#x2013;1998 and solar active prominences data for the period 1957&amp;#x2013;1998. Earlier Verma reported long-term cyclic period in N-S asymmetry and also that the N-S asymmetry of solar activity phenomena during solar cycles 21, 22, 23 and 24 will be south dominated and the N-S asymmetry will shift to north hemisphere in solar cycle 25. The present study shows that the N-S asymmetry during solar cycles 22 and 23 are southern dominated as suggested by Verma.  相似文献   

16.
An explanation is suggested for the north-south asymmetry of the polar magnetic field reversal in the current cycle of solar activity. The contribution of the Babcock-Leighton mechanism to the poloidal field generation is estimated using sunspot data for the current activity cycle. Estimations are performed separately for the northern and southern hemispheres. The contribution of the northern hemisphere exceeded considerably that of the southern hemisphere during the initial stage of the cycle. This is the probable reason for the earlier reversal of the northern polar field. The estimated contributions of the Babcock-Leighton mechanism are considerably smaller than similar estimations for the previous activity cycles. A relatively weak (<1 G) large-scale polar field can be expected for the next activity minimum.  相似文献   

17.
Preliminary results are presented of observations of the solar Na D lines obtained with high space and time resolution (2.4″ × 2.4″), (6 s). The following conclusions may be drawn.
  1. The line profiles vary strongly with space and time implying that time averaging over a long period and large area will not produce the ‘true’ profile.
  2. The centre-limb increase in apparent Doppler width in the D lines is intrinsic. It is not due to space or time averaging.
  3. The amplitude of the 300-s oscillation may range up to 1.5 km/s in the region of formation of the D lines. Large line asymmetries are associated with this motion. Observations which do not resolve this motion can not be considered adequate.
  4. The variation of the D line profile caused by the 300-s oscillation may be described as follows: (a) The core is raised and lowered without change of shape, (b) The wings broaden as the central intensity rises and narrow as it falls. These variations are qualitatively explained by the scanning of the line formation region through the solar atmosphere.
  5. Doppler width values derived from pairs of D line profiles are strongly correlated with the motion of the element observed. Hotter elements move upward, cooler downward.
  6. Indications of running waves have been found in the time variation of the core line bisectors.
The profile variations observed provide a framework in which various properties of the centre limb variation of these lines may be considered. In particular they show that any expectation of accuracy in profile coincidence above a certain value must be doomed by the intrinsic variability of the solar atmosphere.  相似文献   

18.
We study the latitudinal distribution of sunspots observed from 1874 to 2009 using the center-of-latitude (COL). We calculate COL by taking the area-weighted mean latitude of sunspots for each calendar month. We then form the latitudinal distribution of COL for the sunspots appearing in the northern and southern hemispheres separately, and in both hemispheres with unsigned and signed latitudes, respectively. We repeat the analysis with subsets which are divided based on the criterion of which hemisphere is dominant for a given solar cycle. Our primary findings are as follows: (1) COL is not monotonically decreasing with time in each cycle. Small humps can be seen (or short plateaus) around every solar maxima. (2) The distribution of COL resulting from each hemisphere is bimodal, which can well be represented by the double Gaussian function. (3) As far as the primary component of the double Gaussian function is concerned, for a given data subset, the distributions due to the sunspots appearing in two different hemispheres are alike. Regardless of which hemisphere is magnetically dominant, the primary component of the double Gaussian function seems relatively unchanged. (4) When the northern (southern) hemisphere is dominant the width of the secondary component of the double Gaussian function in the northern (southern) hemisphere case is about twice as wide as that in the southern (northern) hemisphere. (5) For the distribution of the COL averaged with signed latitude, whose distribution is basically described by a single Gaussian function, it is shifted to the positive (negative) side when the northern (southern) hemisphere is dominant. Finally, we conclude by briefly discussing the implications of these findings on the variations in the solar activity.  相似文献   

19.
Short-term variations of the last solar activity cycle were studied by the flare and coronal indices using Gleissberg method. Systematic short-term variations are found from their course during the 21st solar activity cycle. Comparison of their autocorrelograms constructed by the new set of data obtained from the magnitude of the fluctuations showed us the existence of the phase shift between the temporal variations of the two indices.  相似文献   

20.
H-alpha flares accompanied by the X-radiation f ?? 10?6 wm?2 in power are examined; 2331 flares were registered during the first half of the 23rd solar cycle (1997?C2000). The specific power of the X-radiation of the flares monotonically doubles from the minimum to the maximum of the sunspot. An increase in the number of flares in each solar rotation is nonmonotonic and disproportional to the relative number of sunspots. Several longitudinal intervals with increased flare activity can be distinguished in the entire time interval of five to ten rotations. The longitudinal distributions of flares and boundaries of the sector structures of a large-scale magnetic field differ considerably. This confirms the existence of two types of zero lines; the first type is determined by active regions, and the second one is determined by large-scale structures with weak magnetic fields. The flares concentrate near Hale??s zero lines of the first type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号