首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Simultaneous MERLIN observations of the OH 1665- and 1667-MHz maser lines in the circumstellar envelope of the semiregular star W Hya have been taken in all Stokes parameters. The 1665-MHz emission comes from two elongated clusters located 80 au from the star. The 1667-MHz emission arises in an incomplete shell of radius 130 au, with the blueshifted features located in the northern part of the envelope and the redshifted components clustered south of the centre. The circularly polarized maser components exhibit spatial separation along the north–south direction. The linearly polarized components were found from the near side of the envelope. Their polarization position angles indicate that the projected axis of the magnetic field at PA ≃ −20° is consistent with spatial segregation of circular polarization. The intensity of the magnetic field, estimated from a tentative measurement of Zeeman splitting, is about 0.6 mG at the location of the 1667-MHz emission, with the field pointing away from the observer. A small change of position angles of linear polarization observed in both maser lines is interpreted as a weak Faraday effect in the maser regions with an electron density of about 2 cm−3. The overall polarization structure of the envelope suggests an ellipsoidal or weak bipolar geometry. In such a configuration, the circumstellar magnetic field may exert a non-negligible influence on mass loss. The velocity field in the circumstellar envelope recovered from observations of SiO, H2O, OH and CO lines at five radial distances reveals a logarithmic velocity gradient of 0.25 and 0.21 in the 1665- and 1667-MHz maser regions respectively. The acceleration within tens of stellar radii cannot be explained by the classical model of radiation pressure on dust.  相似文献   

2.
The southern maser site OH 300.969+1.147 has been studied using the Long Baseline Array of the Australia Telescope National Facility. The 1665- and 1667-MHz hydroxyl ground-state transitions were observed simultaneously. A series of maps with 0.1-arcsec spatial resolution, at velocity spacing  0.09 km s−1  , and in both senses of circular polarization reveals 59 small diameter maser spots. The spots are scattered over 2 arcsec, coincident with a strong ultracompact H  ii region, at a distance of 4.3 kpc. 17 Zeeman pairs of oppositely polarized spots were found, all yielding magnetic field estimates towards us (negative), ranging from −1.1 to −4.7 mG, with a median value of −3.5 mG. Excited state masers of OH at 6035 and 6030 MHz at this site also display Zeeman pairs revealing a magnetic field of −5.0 mG. Weak methanol maser emission is intermingled with the OH masers, but there is no detectable closely related water maser. The consistent magnetic field direction found within this site is a striking feature of several other maser sites associated with strong H  ii regions studied in comparable detail. We interpret the site as a mature region nearing the end of the brief evolutionary stage that can support maser emission.  相似文献   

3.
The maser site OH 323.459−0.079 has been studied using the Long Baseline Array of the Australia Telescope National Facility. Simultaneous observations of the 1665- and 1667-MHz hydroxyl ground-state transitions yielded a series of maps at a velocity spacing of 0.18 km s−1, in both senses of circular polarization, with tenth-arcsec spatial resolution. Many small-diameter maser spots were detected within a 2-arcsec region. Pairs of spots with the same position, but with right- and left-hand circular polarization offset in frequency, reveal Zeeman splitting. Six pairs were found, and in four cases, the pairs at 1667 and 1665 MHz mutually corroborate the derived values of magnetic field and (central) kinematic velocity. Over the whole site, magnetic field estimates range from +1.47 to +4.13 mG with a median value of +2.5 mG. The excited state of OH at 6035 MHz also displays Zeeman pairs revealing a similar magnetic field, and we show that the most prominent of these pairs coincides with the most prominent pair at 1665 and 1667 MHz.
We also compared the morphology and kinematics at 1665 and 1667 MHz with those of maser emission from the excited state of OH at 6035 MHz and from methanol at 6668 MHz. All three varieties of masers appear intermingled, and associated with an ultracompact H  ii region. In many respects we find that OH 323.459−0.079 is similar to W3(OH), one of the few other maser sites yet studied in comparable detail.  相似文献   

4.
OH 17.7 − 2.0 is a post-asymptotic giant branch star that is of great interest. The 1612-MHz OH emission from OH 17.7 − 2.0 is characterized by a double-peaked spectrum. Such a line profile has been assumed to represent maser emission from an expanding circumstellar shell. A new VLBI observation of the OH maser in OH 17.7 − 2.0 has been made using the European VLBI Network, and a relative position map of the eight OH maser spots has been obtained. Using the relative position map, it is found that the eight OH maser spots are distributed on an expanding circumstellar shell. The parameters of the expanding circumstellar shell have been obtained.  相似文献   

5.
Very Large Array surface brightness and spectral index maps of the evolving extended emission of the triple symbiotic star CH Cygni are presented. These are derived from observations at 4.8, 8.4 and 14 GHz between 1985 and 1999. The maps are dominated by thermal emission around the central bright peak of the nebula, but we also find unambiguous non-thermal emission associated with the extended regions. Our observations confirm that this is a jet. The central region has been associated with the stellar components through Hubble Space Telescope imaging. If the jets are the result of ejection events at outburst, expansion velocities are consistent with those from other measurement methods. We propose that the non-thermal emission is caused by material ejected in the bipolar jets interacting with the circumstellar wind envelope. The resulting shocks lead to local enhancements in the magnetic field from the compact component of the order of 3 mG.  相似文献   

6.
We report high spatial and spectral resolution measurements of masers towards R Aqr and H1−36, both of which are examples of the sub-class of symbiotic stars that contain a long-period Mira-type variable. Our observations have resulted in the first detection of 321-GHz H2O maser action towards a symbiotic Mira — R Aqr. Comparison with simultaneous 22-GHz H2O maser data suggests that the masers do not have the same properties as those in the circumstellar envelopes of field Miras. R Aqr's 22-/321-GHz peak flux density and luminosity ratios are low, as is the line width ratio. Continuum and spectral-line maps indicate that the 22-GHz maser and free–free emission are aligned. Three mechanisms can reproduce the data with varying degrees of success. All three lead naturally to normal levels of maser emission in SiO and 321-GHz H2O and anomalously weak OH and 22-GHz H2O masers. In the most convincing model, UV radiation and a fast wind from the companion remove the Mira's envelope of dusty, molecular gas, leaving a relatively small cavity of dense, neutral material within a large, ionized nebula. Excitation temperatures suggest that 321-GHz masers are normally excited close to the Mira whilst 22-GHz masers are more remote; in R Aqr, therefore, the 22-GHz masers do not form under optimum conditions. Instead, we see weak and narrow lines that form closer to the Mira, consistent with our high-resolution maps.  相似文献   

7.
The Parkes radio telescope has been used to study circular polarization in the spectra of masers at the 6035- and 6030-MHz transitions of excited OH. The targets were 91 previously catalogued sites of 6035-MHz maser emission. A few were not detected, primarily because of variability. However, the 6035-MHz intensity variations seldom exceed a factor of 2 over several years, with a handful of dramatic exceptions.
Towards many targets, the present observations have provided the first high-sensitivity search for the 6030-MHz transition and yielded 33 detections. All of the 6030-MHz maser features have 6035-MHz counterparts closely matching in velocity. For matching features, the 6030-MHz emission is most commonly weaker than the 6035-MHz emission by an order of magnitude but, in a few cases, is several times stronger. The detection statistics are well accounted for by very recent developments in maser modelling. However, the occasional occurrence of 6030-MHz maser emission stronger than at 6035-MHz poses a new challenge for the theory.
Spectra with good frequency resolution at 6030 and 6035 MHz yield many valuable measurements of magnetic fields. At each transition, the field can be inferred from a small frequency separation between the right-hand and left-hand circularly polarized features, attributed to the Zeeman effect in a magnetic field of a few mG. In the many instances where a 'Zeeman pair' on the 6035-MHz spectrum has features matched by the 6030-MHz spectrum, this provides convincing corroboration of the magnetic field, in both direction and magnitude.
Several prominent absorption features occur at 6035 MHz, and usually have matching absorption at 6030 MHz of similar, or slightly smaller, depth.  相似文献   

8.
A flare of OH maser emission was discovered in W75N in 2000. Its location was determined with the Very Long Baseline Array (VLBA) to be within 110 au from one of the ultracompact H  ii regions, Very Large Array 2 (VLA2). The flare consisted of several maser spots. Four of the spots were found to form Zeeman pairs, all of them with a magnetic field strength of about 40 mG. This is the highest ever magnetic field strength found in OH masers, an order of magnitude higher than in typical OH masers. Three possible sources for the enhanced magnetic field are discussed: (i) the magnetic field of the exciting star dragged out by the stellar wind; (ii) the general interstellar field in the gas compressed by the magnetohydrodynamic shock; and (iii) the magnetic field of planets which orbit the exciting star and produce maser emission in gaseous envelopes.  相似文献   

9.
Due to the knowledge of the rotation period and the presence of a rather strong surface magnetic field, the sharp‐lined young Herbig Ae star HD 101412 with a rotation period of 42 d has become one of the most well‐studied targets among the Herbig Ae stars. High‐resolution HARPS polarimetric spectra of HD 101412 were recently obtained on seven different epochs. Our study of the spectral variability over the part of the rotation cycle covered by HARPS observations reveals that the line profiles of the elements Mg, Si, Ca, Ti, Cr, Mn, Fe, and Sr are clearly variable while He exhibits variability that is opposite to the behaviour of the other elements studied. Since classical Ap stars usually show a relationship between the magnetic field geometry and the distribution of element spots, we used in our magnetic field measurements different line samples belonging to the three elements with the most numerous spectral lines, Ti, Cr, and Fe. Over the time interval covered by the available spectra, the longitudinal magnetic field changes sign from negative to positive polarity. The distribution of field values obtained using Ti, Cr, and Fe lines is, however, completely different compared to the magnetic field values determined in previous low‐resolution FORS 2 measurements, where hydrogen Balmer lines are the main contributors to the magnetic field measurements, indicating the presence of concentration of the studied iron‐peak elements in the region of the magnetic equator. Further, we discuss the potential role of contamination by the surrounding warm circumstellar matter in the appearance of Zeeman features obtained using Ti lines. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
We present new magnetic field measurements of the K2 main‐sequence star ϵ Eri based on principal components analysis (PCA) line‐profile reconstructions. The aim of this paper is to quantify the surface‐averaged magnetic field and search for possible variations. A total of 338 optical échelle spectra from our robotic telescope facility STELLA with a spectral resolution of 55 000 were available for analysis. This time‐series was used to search for the small line‐profile variations due to a surface magnetic field with the help of a PCA. Evidence for a spatial and temporal inhomogeneous magnetic field distribution is presented. The mean, surface averaged, magnetic field strength was found tobe 〈B〉 = 186 ± 47 G in good agreement with previous Zeeman‐broadening measurements. Clear short‐term variations of the surface averaged magnetic field of up to few tens Gauss were detected together with evidence for a three‐year cycle in the surface‐averaged magnetic field of ϵ Eri. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
High spatial resolution radio continuum and 6.67-GHz methanol spectral line data are presented for methanol masers previously detected by Walsh et al. (1997). Methanol maser and/or radio continuum emission is found in 364 cases towards IRAS -selected regions. For those sources with methanol maser emission, relative positions have been obtained to an accuracy of typically 0.05 arcsec, with absolute positions accurate to around 1 arcsec. Maps of selected sources are provided. The intensity of the maser emission does not seem to depend on the presence of a continuum source. The coincidence of water and methanol maser positions in some regions suggests there is overlap in the requirements for methanol and water maser emission to be observable. However, there is a striking difference between the general proximity of methanol and water masers to both cometary and irregularly shaped ultracompact (UC) H  ii regions, indicating that, in other cases, there must be differing environments conducive to stimulating their emission. We show that the methanol maser is most likely present before an observable UC H  ii region is formed around a massive star and is quickly destroyed as the UC H  ii region evolves. There are 36 out of 97 maser sites that are linearly extended. The hypothesis that the maser emission is found in a circumstellar disc is not inconsistent with these 36 maser sites, but is unlikely. It cannot, however, account for all other maser sites. An alternative model which uses shocks to create the masing spots can more readily reproduce the maser spot distributions.  相似文献   

12.
We present the largest sample of high-mass star-forming regions observed using submillimetre imaging polarimetry. The data were taken using the Submillimetre Common User Bolometer Array (SCUBA) in conjunction with the polarimeter on the James Clerk Maxwell Telescope (JCMT) in Hawaii. In total, 16 star-forming regions were observed, although some of these contain multiple cores. The polarimetry implies a variety of magnetic field morphologies, with some very ordered fields. We see a decrease in polarization percentage for seven of the cores. The magnetic field strengths estimated for 14 of the cores, using the corrected Chandrasekhar and Fermi (CF) method, range from <0.1 mG to almost 6 mG. These magnetic fields are weaker on these large scales when compared to previous Zeeman measurements from maser emission, implying the role of the magnetic field in star formation increases in importance on smaller scales. Analysis of the alignment of the mean field direction and the outflow directions reveals no relation for the whole sample, although direct comparison of the polarimetry maps suggests good alignment (to at least one outflow direction per source) in seven out of the 15 sources with outflows.  相似文献   

13.
The evolved star HD 179821 continues to be the subject of much debate as to whether it is a nearby     post-asymptotic giant branch (post-AGB) star or a distant     high initial mass     post-red supergiant. We have mapped the OH maser emission around HD 179821 in the 1612- and 1667-MHz lines with the MERLIN interferometer array at a resolution of 0.4 arcsec and 0.35 km s−1. The OH emission lies in a thick shell with inner and outer radii of 1.3 and         and expansion velocity of 30 km s−1. Although we find some evidence for acceleration and for deviations from spherical symmetry, the bulk of the maser emission is consistent with a constant-velocity spherical shell. The extent of the shell agrees with H2O and OH dissociation models and supports a distance estimate of 6 kpc. However, the shell is incomplete and appears to have been disrupted by more recent collimated outflow activity within the last 1500 yr. We suggest that this activity is also responsible for the active envelope chemistry (in particular the presence of HCO+) and for the apparent offset of the star from the centre of the shell. The luminous yellow hypergiant star IRC +10420 also shows signs of recent outflows, and HD 179821 may be at a similar, perhaps slightly earlier, phase of evolution. We suggest that the SiO thermal emission arises from the same detached envelope as the OH maser emission as in IRC +10420. If so then this would strengthen the connection between these two stars and probably rule out a post-AGB status for HD 179821.  相似文献   

14.
The results of a survey searching for outflows using near-infrared imaging are presented. Targets were chosen from a compiled list of massive young stellar objects associated with methanol masers in linear distributions. Presently, it is a widely held belief that these methanol masers are found in (and delineate) circumstellar accretion discs around massive stars. If this scenario is correct, one way to test the disc hypothesis is to search for outflows perpendicular to the methanol maser distributions. The main objective of the survey was to obtain wide-field near-infrared images of the sites of linearly distributed methanol masers using a narrow-band 2.12-μm filter. This filter is centred on the  H2 v = 1–0 S(1)  line; a shock diagnostic that has been shown to successfully trace CO outflows from young stellar objects. 28 sources in total were imaged of which 18 sources display H2 emission. Of these, only two sources showed emission found to be dominantly perpendicular to the methanol maser distribution. Surprisingly, the H2 emission in these fields is not distributed randomly, but instead the majority of sources are found to have H2 emission dominantly parallel to their distribution of methanol masers. These results seriously question the hypothesis that methanol masers exist in circumstellar discs. The possibility that linearly distributed methanol masers are instead directly associated with outflows is discussed.  相似文献   

15.
We report the results of our study of magnetic fields in a sample of 15 Be stars using spectropolarimetric data obtained at the European Southern Observatory with the multi-mode instrument FORS 1 installed at the 8m Kueyen telescope. We detect weak photospheric magnetic fields in four stars, HD56014, HD148184, HD155806, and HD181615. We note that for HD181615 the evolutionary status is not obvious due to the fact that it is a binary system currently observed in the initial rapid phase of mass exchange between the two components. Further, we notify the possible presence of distinct circular polarisation features in the circumstellar components of Ca II H&K in three stars, HD58011, HD117357, and HD181615, hinting at a probable presence of magnetic fields in the circumstellar mass loss disks of these stars. We emphasize the need for future spectropolarimetric observations of Be stars with detected magnetic fields to study the temporal evolution of their magnetic fields and the correlation of magnetic field properties with dynamical phenomena taking place in the gaseous circumstellar disks of these stars. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Rapidly rotating late‐type stars typically display signs of magnetic activity that exceed those seen on the Sun by over two orders of magnitude. The techniques of Doppler imaging and Zeeman Doppler imaging have been instrumental in unveiling magnetic activity patterns at the photospheres of these active stars. Essentially, these techniques work by inverting time‐series of high resolution spectra to produce temperature, brightness and/or magnetic field maps at the surfaces of stars. I will describe how these techniques work and review what they have taught us about the nature of magnetic activity in rapid rotators over the last 20 years. Finally, I will conclude by outlining the capabilities of these techniques in light of new instrumentation that is now becoming available. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We present single-baseline Multi-Element Radio-Linked Interferometer Network (MERLIN) measurements of excited OH 6.0-GHz masers and methanol 6.7-GHz masers for the source W3(OH). These allow us to compare the positions of individual maser spots of these two species to ∼15 mas accuracy for the first time, and to compare these with previously published positions of ground-state OH masers near 1.7 GHz and excited-state OH masers near 4.7 GHz. There is a strong association between OH 6035-MHz and 1665-MHz masers. OH and methanol have very similar distributions, but associations of individual masers are relatively rare: most methanol 6.7-GHz masers are within 100 mas of OH 6.0-GHz masers, but only four methanol masers are within 15 mas of an OH 6.0-GHz maser. There are no correspondences of either species with excited OH 4.7-GHz masers. Zeeman splitting of the 6.0-GHz OH lines indicates an ordered magnetic field ranging from 3.2 to 14.4 mG. The magnetic fields estimated from co-propagating masers such as 6035 and 1665 MHz are generally in good agreement with each other.  相似文献   

18.
姜碧沩 《天文学进展》1999,17(4):317-323
概述了IRAS升空以来在AGB星研究方面的进展和发现的问题,比较详细地报告了60cm空间红外望远镜ISO携带的探测器及其性能,以及它的成像和光谱观测对研究AGB星的演化的影响,尤其是对AGB星星周包层的化学环境的研究的重要作用。  相似文献   

19.
We report the diminution of the 1667-MHz OH maser in the post-asymptotic giant branch star IRAS 17436+5003, by a factor of ≳17 over a period of ≲12 yr, from observations with MERLIN. This circumstellar maser was detected by Likkel in 1987, at the 13σ level of her observations with the Green Bank Telescope. We discuss a number of possible reasons for this phenomenon and conclude that it is most likely due to turbulence arising from interacting stellar winds.  相似文献   

20.
The continuum energy distributions of the luminous blue variables R127 and R110 in the outburst phase are fitted with a circumstellar envelope model.Both stars show two peaks in their continuum, one near 1250A and the other in the optical band. We suggest that their UV and optical fluxes may have different origins: the UV flux comes from the central star while the optical flux comes from an expanding circumstellar envelope. We construct a model for LBVs consisting of two LTE atmosphere models with different temperatures, and find it to be in agreement with the observed spectral energy distributions of R127 and R110.According to our numerical experiments, R127‘s continuum is composed of fluxes from a circumstellar envelope of Teff = 8000K, R = 485R⊙, and log g = 1,and from a central star of Tef = 17000K, R = 135R⊙, and log g = 2.5 with a permeating factor f = 0.5; while R110‘s continuum can be fitted by a circumstellar envelope of Teff =7000K, R = 350R⊙, and logg = 0.5, and a central star of Teff =25 000 K, R = 27R⊙, and log g 3.0 with a permeating factor f = 0.65.Both models show that the non-spherically symmetric, optically thick regions are formed surrounding the central star in the outburst phase. The light of the central star is shielded by the circumstellar envelope so that the visual brightness increases with the decrease/increase of the temperature/radius of the optically thick regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号