首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Taal volcano (311?m in altitude) is located in The Philippines (14°N, 121°E) and since 1572 has erupted 33 times, causing more than 2,000 casualties during the most violent eruptions. In March 2010, the shallow structures in areas where present-day surface activity takes place were investigated by DC resistivity surveys. Electrical resistivity tomography (ERT) lines were performed above the two identified hydrothermal areas located on the northern flank of the volcano and in the Main Crater, respectively. Due to rough topography, deep valleys, and dense vegetation, most measurements were collected using a remote method based on a laboratory-made equipment. This allowed retrieval of information down to a depth of 250?m. ERTs results detail the outlines of the two geothermal fields defined by previous self-potential, CO2 soil degassing, ground temperature, and magnetic mapping (Harada et al. Japan Acad Sci 81:261–266, 2005; Zlotnicki et al. Bull Volcanol 71:29–49, 2009a, Phys Chem Earth 34:294–408, 2009b). Hydrothermal fluids originate mainly from inside the northern part of the Main Crater at a depth greater than the bottom of the Crater Lake, and flow upward to the ground surface. Furthermore, water from the Main Crater Lake infiltrates inside the surrounding geological formations. The hydrothermal fluids, outlined by gas releases and high temperatures, cross the crater rim and interact with the northern geothermal field located outside the Main Crater.  相似文献   

2.
The June 1991 eruption of Mount Pinatubo, Philippines breached a significant, pre-eruptive magmatic-hydrothermal system consisting of a hot (>300 °C) core at two-phase conditions and surrounding, cooler (<260 °C) liquid outflows to the N and S. The eruption created a large, closed crater that accumulated hydrothermal upwellings, near-surface aquifer and meteoric inflows. A shallow lake formed by early September 1991, and showed a long-term increase in level of ~1 m/month until an artificial drainage was created in September 2001. Comparison of the temporal trends in lake chemistry to pre- and post-eruptive springs distinguishes processes important in lake evolution. The lake was initially near-neutral pH and dominated by meteoric influx and Cl–SO4 and Cl–HCO3 hydrothermal waters, with peaks in SO4 and Ca concentrations resulting from leaching of anhydrite and aerosol-laden tephra. Magmatic discharge, acidity (pH~2) and rock dissolution peaked in late 1992, during and immediately after eruption of a lava dome on the crater floor. Since cessation of dome growth, trends in lake pH (increase from 3 to 5.5), temperature (decline from 40 to 26 °C), and chemical and isotopic composition indicate that magmatic degassing and rock dissolution have declined significantly relative to the input of meteoric water and immature hydrothermal brine. Higher concentrations of Cl, Na, K, Li and B, and lower concentrations of Mg, Ca, Fe, SO4 and F up to 1999 highlight the importance of a dilute hydrothermal contribution, as do stable-isotope and tritium compositions of the various fluids. However, samples taken since that time indicate further dilution and steeper trends of increasing pH and declining temperature. Present gas and brine compositions from crater fumaroles and hot springs indicate boiling of an immature Cl–SO4 geothermal fluid of near-neutral pH at approximately 200 °C, rather than direct discharge from magma. It appears that remnants of the pre-eruptive hydrothermal system invaded the magma conduit shortly after the end of dome emplacement, blocking the direct degassing path. This, along with the large catchment area (~5 km2) and the high precipitation rate of the area, led to a rapid transition from a small and hot acid lake to a large lake with near-ambient temperature and pH. This behavior contrasts with that of peak-activity lakes that have more sustained volcanic gas influx (e.g., Kawah Ijen, Indonesia; Poas and Rincón de la Vieja, Costa Rica).Editorial responsibility: H. Shinohara  相似文献   

3.
4.
 The hydrologic structure of Taal Volcano has favored development of an extensive hydrothermal system whose prominent feature is the acidic Main Crater Lake (pH<3) lying in the center of an active vent complex, which is surrounded by a slightly alkaline caldera lake (Lake Taal). This peculiar situation makes Taal prone to frequent, and sometimes catastrophic, hydrovolcanic eruptions. Fumaroles, hot springs, and lake waters were sampled in 1991, 1992, and 1995 in order to develop a geochemical model for the hydrothermal system. The low-temperature fumarole compositions indicate strong interaction of magmatic vapors with the hydrothermal system under relatively oxidizing conditions. The thermal waters consist of highly, moderately, and weakly mineralized solutions, but none of them corresponds to either water–rock equilibrium or rock dissolution. The concentrated discharges have high Na contents (>3500 mg/kg) and low SO4/Cl ratios (<0.3). The Br/Cl ratio of most samples suggests incorporation of seawater into the hydrothermal system. Water and dissolved sulfate isotopic compositions reveal that the Main Crater Lake and spring discharges are derived from a deep parent fluid (T≈300  °C), which is a mixture of seawater, volcanic water, and Lake Taal water. The volcanic end member is probably produced in the magmatic-hydrothermal environment during absorption of high-temperature gases into groundwater. Boiling and mixing of the parent water give rise to the range of chemical and isotopic characteristics observed in the thermal discharges. Incursion of seawater from the coastal region to the central part of the volcano is supported by the low water levels of the lakes and by the fact that Lake Taal was directly connected to the China sea until the sixteenth century. The depth to the seawater-meteoric water interface is calculated to be 80 and 160 m for the Main Crater Lake and Lake Taal, respectively. Additional data are required to infer the hydrologic structure of Taal. Geochemical surveillance of the Main Crater Lake using the SO4/Cl, Na/K, or Mg/Cl ratio cannot be applied straightforwardly due to the presence of seawater in the hydrothermal system. Received: 12 February 1997 / Accepted: 26 January 1998  相似文献   

5.
The cupriferous pyrite deposits of Cyprus were precipitated from hydrothermal solutions derived by interaction of contemporaneous seawater with hot mafic rock at the ancient Troodos spreading centre. Here we identify the zones in which this interaction took place. The zones occur in the lower part of the sheeted dyke complex, and within them 30–50% of the rock is made up of epidosite, an epidote-quartz rock, replacing the dykes as sheets and pipes. The epidosites contain abundant fluid inclusions, which give trapping temperatures of 350–400°C or even higher, and contain water normally near seawater in salinity. Zones of epidosite are elongate parallel to the strike of the sheeted dykes, and are up to 1 km wide. The rocks throughout these zones are strongly depleted in Cu and Zn, and the metals removed are sufficient to supply the ore deposits. In fact several large ore deposits lie along strike from zones of epidosite. All of these features support the identification of the epidosites as the hydrothermal reaction zones.The location of the epidosite zones immediately above the gabbros of the plutonic complex supports the hypothesis that the heat to drive the ore-forming systems came from the underlying magma, as is also likely for modern black smoker springs.  相似文献   

6.
High-sulfidation (HS) epithermal systems have elements in common with passively degassing volcanoes associated with high T, acid fumarole fields or acid crater lakes. They are considered to form in two stages, the first of which involves advanced argillic alteration resulting from intense, strongly acidic fluid–rock interaction. The La Fossa hydrothermal system (Vulcano Island) represents a classic example of such an active HS system and can be considered as a modern analogue of this early stage of alteration, resulting in a core of intense silicic (90–95% pure SiO2) alteration surrounded by alunitic alteration zones.  相似文献   

7.
Eric S.  Andal  Shoji  Arai  Graciano P.  Yumul Jr 《Island Arc》2005,14(3):272-294
Abstract   The Isabela ophiolite shows a complete ophiolite sequence exposed along the eastern coast of northern Luzon, the Philippines. It forms the Cretaceous basement complex for the northeastern Luzon block. This ophiolite is located at the northern end of a trail of ophiolites and ophiolitic bodies along the eastern margin of the Philippine Mobile Belt. This paper presents new findings regarding the nature and characteristics of the Isabela ophiolite. Peridotites from the Isabela ophiolite are relatively fresh and are composed of spinel lherzolites, clinopyroxene-rich harzburgites, depleted harzburgites and dunites. The modal composition, especially the pyroxene content, defines a northward depletion trend from fertile lherzolite to clinopyroxene-rich harzburgites and more refractory harzburgites. Variation in modal composition is accompanied by petrographic textural variations. The chromium number of spinel, an indicator of the degree of partial melting, concurs with petrographic observations. Furthermore, the Isabela ophiolite peridotites are similar in spinel and olivine major-element geochemistry and clinopyroxene rare earth-element composition to abyssal peridotites from modern mid-oceanic ridges. Petrological and mineral compositions suggest that the Isabela ophiolite is a transitional ophiolite subtype, with the fertile lherzolites representing lower sections of the mantle column that are usually absent in most ophiolitic massifs. The occurrence of the fertile peridotite presents a rare opportunity to document the lower sections of the ophiolitic mantle. The variability in composition of the peridotites in one continuous mantle section may also represent a good analogy of the melting column in the present-day mid-oceanic ridges.  相似文献   

8.
The variable salinity of fluid venting from mid-ocean ridges is indicative of mixing between hydrothermal seawater and fluids that have undergone supercritical phase separation. In order to study the stability of a brine-saturated layer that may form in the lowermost part of the hydrothermal system, we have performed numerical simulations of a system that has returned into the subcritical regime. For typical geological parameters, it is shown that the interface between the brine layer and the overlying fluids is not very stable, but vanishes by one of two dynamical mechanisms: convective breakdown or vertical migration. This contradicts the conventional picture of a steady, layered convective system in which the brine is depleted only by dispersion and diffusion across the interface. The depletion mechanism depends on the fluid-dynamical stability of the brine layer. Convection within the brine layer results either in the convective breakdown (for low excess salinity of the brine, as compared to seawater) or the upward migration of the interface (for higher excess salinities). Consequently, the depletion times are much shorter than for models with pure dispersion/diffusion across the interface. If the brine layer is static, high-chlorinity liquid is entrained slowly by the convecting overlying fluids, leading to downward migration of the interface. This gradual depletion of the brine layer results in almost constant vent salinities, in agreement with measured salinities of chronic high-chlorinity vents.  相似文献   

9.
Taal Volcano, located in the southwestern part of Luzon Island, Philippines, has frequently experienced catastrophic eruptions from both the Main Crater on Volcano Island and flank eruptions. These eruptions have been magmatic, phreatomagmatic, and hydrothermal, with the latter implying the existence of a large-scale hydrothermal system beneath the volcano. We conducted an electrical resistivity survey using the magnetotelluric method in order to identify the location and geometry of the hydrothermal reservoir and sealing cap rock. Two-dimensional inversion using the observed data indicates four similar resistivity sections. The structure at shallow depths corresponds to volcanic deposits and an aquifer. Below 1 km, the structure features a relatively resistive zone beneath the main crater surrounded by a conductive shell. We interpreted these to be a large hydrothermal reservoir with an impermeable cap rock sealing it. Recent ground deformation detected by GPS measurements suggests that the hydrothermal reservoir is active. The interpreted cap rock thins just beneath the main crater and could easily be destroyed by an imbalance in the hydrothermal system. We conclude that this hydrothermal reservoir plays a significant role in driving catastrophic eruptions that begin with a hydrothermal explosion at the main crater.  相似文献   

10.
菲律宾被认为是东南亚地震活动性最高的地区之一。这是由于其复杂的地质构造,也归因于它位于地震活动性集中的环太平洋火山带。菲律宾的地震活动性主要与板块消减有关。  相似文献   

11.
Submarine hydrothermal manganese deposits are relatively common along the Izu–Bonin – Mariana (IBM) arc but hydrothermal iron crusts are much less so. The hydrothermal manganese deposits show characteristics typical of submarine hydrothermal manganese deposits found worldwide. Recent hydrothermal manganese deposits associated with active hydrothermal systems occur on seamounts or rifts located ∼ 5–40 km behind the volcanic front on the Shichito-Iwojima Ridge, IBM. Fossil hydrothermal manganese deposits associated with older hydrothermal systems occur on inactive seamounts located on ridges running parallel to the volcanic front in both forearc and back-arc settings. These fossil hydrothermal manganese deposits are generally overlain by younger hydrogenetic manganese crusts. Differences in minor element composition and in the rare earth element pattern of hydrothermal manganese deposits from the forearc and back-arc settings may reflect differences in the nature of substrate rocks or temperature of the hydrothermal fluids at these locations.  相似文献   

12.
The oscillations with a period of about 6 and 12 s in the nonthermal radiation of a solar flare occurred on November 5, 1992, are identified. The time-translated profiles of hard X-ray and microwave radiation flux are characterized by an anticorrelation. The specific features of the radiation fine time structure are interpreted using the model of the coronal magnetic mirror where fast magnetoacoustic modes are excited.  相似文献   

13.
The Baguio Mineral District exposes rock formations that evince the geological and tectonic evolution of this district from a subduction‐related marginal basin to an island arc setting. Available onshore and offshore data are consistent with an Early (onset phase) to Middle (developed phase) Miocene arc polarity reversal from the east (termination of subduction along the proto‐East Luzon Trough) to the west (initiation of subduction along the Manila Trench). Geophysical modeling and geochemical data calculation showed a 30 ± 5 km crustal thickness for the mineral district. Subduction‐related multiple arc magmatism and ophiolite accretion contributed to crustal thickening. Recent information on the Oligo–Miocene Zigzag and Klondyke formations in the mineral district reveal that the marginal basin, where these rocks were deposited, has received eroded materials from adjacent terrains characterized by siliceous lithologies. Furthermore, adakitic rocks, high permeable zones and extensional zones which are exploration markers applied to identify possible mineralization targets, are prevalent in the mineral district. The geological evolution that the district had undergone mimics the evolution of island arcs worldwide in general and northern Luzon in particular.  相似文献   

14.
The loci and abundance of U and Th were examined in tuffaceous rocks encompassing hydrothermal systems at the Long Valley caldera, California and the Valles caldera, New Mexico. Aspects of these systems may be analogous to conditions expected in a potential site for a high-level waste repository in welded tuff. Examination of radioelements in core from scientific drill holes at these sites was accomplished by gamma-ray spectrometry and fission-track radiography. In the lateral-flowing hydrothermal system at the Long Valley caldera, where temperatures range from 140 to 200 °C, U is concentrated to 20 ppm in Fe-rich zones of varved tuff and to 50 ppm with Fe-rich mineral phases in tuff fragments of a calcite-cemented breccia. U-series disequilibrium in some of these samples suggests mobilization/deposition of parent U and/or its daughters. In the vapor zone of the Valles caldera's hydrothermal system (temperature ˜ 100 °C), the concordance of high U, low Th/U and decreasing whole-rock O-isotope ratios suggests that U was concentrated in response to hydrothermal circulation when the system was formerly liquid-dominated. In the underlying present-day liquid-dominated zone (temperature to 210 °C), U, up to several tens of parts per million, occurs with pyrite and Fe-oxide minerals, and in concentrations to several percents with a Ti-Nb-Y-rare earth mineral. In the Valles system's outflow zone, U is also concentrated in Fe-rich zones as well as in carbonaceous-rich zones in the Paleozoic sedimentary rocks that underlie the Quaternary tuff. Th, associated with accessory minerals, predominates in breccia zones and in a mineralized fault zone near the base of the Paleozoic sedimentary sequence. Relatively high concentrations of U occur in springs representative of water recharging the Valles caldera's hydrothermal system. In contrast, considerably lower U concentrations occur in hot waters (> 220 °C) and in the system's outflow plume, suggesting that U is concentrating in the hotter part of the system. The Long Valley and Valles observations indicate that U and Ra are locally mobile under hydrothermal conditions, and that reducing conditions associated with Fe-rich minerals and carbonaceous material are important factors in the adsorption of U, and thus can retard its transport in water at elevated temperature.  相似文献   

15.
The REE geochemistry of accessory allanites, sphenes. apatites and zircons from a range of granitic, sedimentary and hydrothermally altered rocks from Skye has been investigated using the electron microprobe. Allanites and sphenes in Skye Tertiary granites are extremely LREE enriched (CeN/YN= 40–100) and may contain up to 50% of whole rock LREE (La-Nd). These phases are late crystallisation products of redidual magmatic fluids. Earlier-formed apatites (CeN/YbN = 7.33) and zircons (CeN/YbN = 0.05) contain insufficient REE to have influenced the REE geochemistry of the Western Red Hills granites by crystal fractionation. However, Y-, Th- and HREE-rich zircons (CeN/YbN = 0.03–0.12, ΣREE + Y = 16,500–49,500ppm) occur both as detrital grains in Skye Torridonian sediments and in the Coire Uaigneich Granophyre (CUG), suggesting bulk involvement of these sediments in CUG petrogenesis. Hydrothermal allanites in altered Tertiary igneous rocks from Skye are LREE enriched (CeN/YN = 16–920), whilst allanites formed during alteration of Torridonian arkoses have less fractionated REE patterns (CeN/YN = 4.4–1.0), as the instability of metamict HREE-rich detrital zircons buffered the hydrothermal fluids in these rocks to more HREE-rich compositions. This buffering indicates that within unveined rocks the scale of REE mobility during hydrothermal alteration was small, even though the occurrence of allanite in hydrothermal veins on Skye suggests that LREE may have been transported for some distance by meteoric-hydrothermal fluids. Zoning of the REE within individual hydrothermal and metamorphic allanites (e.g. coreCeN/YN = 97.56, rim CeN/YN = 0.22) suggests evolution of their parent geological fluids to more HREE-rich compositions during allanite growth.  相似文献   

16.
A combination of field mapping, geochemistry, and remote sensing methods has been employed to determine the extent of hydrothermal alteration and assess the potential for failure at the Santiaguito lava dome complex, Guatemala. The 90-year-old complex of four lava domes has only experienced relatively small and infrequent dome collapses in the past, which were associated with lava extrusion. However, existing evidence of an active hydrothermal system coupled with intense seasonal precipitation also presents ideal conditions for instability related to weakened clay-rich edifice rocks. Mapping of the Santiaguito dome complex identified structural features related to dome growth dynamics, potential areas of weakness related to erosion, and locations of fumarole fields. X-ray diffraction and backscattered electron images taken with scanning electron microscopy of dacite and ash samples collected from around fumaroles revealed only minor clay films, and little evidence of alteration. Mineral mapping using ASTER and Hyperion satellite images, however, suggest low-temperature (<150 °C) silicic alteration on erosional surfaces of the domes, but not the type of pervasive acid-sulfate alteration implicated in collapses of other altered edifices. To evaluate the possibility of internal alteration, we re-examined existing aqueous geochemical data from dome-fed hot springs. The data indicate significant water–rock interaction, but the Na–Mg–K geoindicator suggests only a short water residence time, and δ18O/δD ratios show only minor shifts from the meteoric water line with little precipitation of secondary (alteration) minerals. Based on available data, hydrothermal alteration on the dome complex appears to be restricted to surficial deposits of hydrous silica, but the study has highlighted, importantly, that the 1902 eruption crater headwall of Santa María does show more advanced argillic alteration. We also cannot rule out the possibility of advanced alteration within the dome complex interior that is not accessible to the methods used here. It may therefore be prudent to employ geophysical methods to make further assessments in the future.  相似文献   

17.
This paper characterizes certain unique geological structures on the earth, viz., giant gas-rich hydrothermal systems with major vapor-dominated geothermal fields that are generated beneath them during the present phase of evolution. A review of the relevant literature and materials of our own research are used to show that such systems are formed in zones of deep-seated faults at junctions of oceanic and continental plates, in structures of volcanic island arcs, and in areas of crustal tectono-magmatic activity. The systems extend throughout the crustal thickness and possess enormous geothermal and ore potentials. It was found that in these systems the ascending high-temperature gas-water fluid, as well as all types of mixed waters, and new mineral compounds in the hypergenesis zone of geothermal anomalies, all take part in the transport, accumulation, and rearrangement of complex compounds of many metals (Fe, Al, Ti, Au, Ag, Hg, As, Sb, and others). It was inferred that gas-rich hydrothermal systems and the vapor-dominated geothermal fields that are formed beneath them reflect the conditions for the generation of mesothermal and epithermal gold and complex ores and of Au-Ag-Cu-Mo porphyric deposits.  相似文献   

18.

游走脾(WS),又称异位脾。1677年由荷兰医生Johannes von home在尸检中首次发现,是一种因脾脏的活动度增大,所引起的急或慢性疾病。当游走脾发生脾蒂扭转时,称为脾扭转(ST)。脾扭转发生几率较小,只占WS的20%,但危险性极大,严重者可致脾梗死甚或危及生命。本病为罕见病,全球仅报告500例。ST伴胰尾扭转在我国还没有病例报道,为提高对该病的认识,现将我院收治的1例患者予以报道。

  相似文献   

19.
Based on a comprehensive study of hydrothermal magmatic systems at island arcs and a review of available mechanisms that cause elasto-plastic deformation in rocks, we considered the conditions for interaction between a convective magmatic cell and a convective hydrothermal cell in different rheologic zones of the crust. Three models have been developed to describe the generation of hydrothermal circulation systems: (1) the magma chamber is localized in a plastic zone, (2) partial and (3) complete penetration of the chamber into a brittle crust. It is shown that the last of these models is highly consistent with the structure of presentday high-temperature hydrothermal magmatic systems at depths greater than 1.0?C1.5 km and with the structure of Miocene to Pliocene ore-bearing volcano-plutonic complexes that are eroded to different depths in different geologic blocks within these complexes.  相似文献   

20.
The Ischia hydrothermal system was analysed through hydrogeological and microbial community investigations. Mesophilic communities were detected in two cold springs, suggesting a negligible influence of thermal circuits in freshwater sub‐systems which are mainly or only fed by local precipitations. Thermophilic and extremely thermophilic bacteria were detected in two wells, according to higher water temperatures (61 and 85 °C), even if the two communities show significant differences. In one well, thermophilic and extremely thermophilic bacteria are associated with strains belonging to ε‐Proteobacteria isolated in different sulphur‐rich carbonate environments. This association suggests a greater influence on ascending hot fluids that interact with the carbonate basement of volcanic rocks. In the other well, thermophilic and extremely thermophilic bacteria are associated with strains isolated in cold hypersaline environments or in aquatic habitats where terrestrial and marine components are coupled. This association supports the fact that seawater intrusion can affect this part of Ischia, according to results of hydrogeological and geochemical surveys. Differences in groundwater temperature and bacterial communities are probably mainly due to differences in permeability between volcanic rocks and differences in hydrogeologic behaviour between faults in the upper carbonate basement, above the deep magma chamber, that influence relationships between ascending hot fluids and local recharge. This study contributes to discussion of the reliability of the actual behaviour models of the Ischia system, based on the results of geochemical and isotopic investigations, and, in a wider context, it shows that microbial community investigations may be a valuable supplementary tool for analysing hydrothermal system behaviour. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号