首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Tunnel blasting techniques in difficult ground conditions   总被引:1,自引:0,他引:1  
Summary The quality of tunnelling can be improved by proper blast design which takes into account the rock mass conditions. The effects of different rock mass properties on tunnel blast performance need to be assessed. The strength of the formation and joint orientation critically affected fragmentation and overbreak in a model study of blasting. Similar effects were noted in situ when the performance of a blast pattern in different rock mass conditions in the Tandsi inclines (Bihar, India) were analysed. Accordingly, the on-going blast pattern was modified for the poor ground conditions prevailing in the rest of the inclines. Improved fragmentation and smooth profile were obtained as a result; the rate of drivage improved considerably and the cost of excavation was reduced. Based on the observations in the model studies and the investigations at Tandsi, some guidelines for optimum blast design in difficult ground conditions are suggested.  相似文献   

2.
Checking the quality of a blast may be considered as subjective. Checking this quality will require measuring objective parameters. One of them is the resulting fragmentation of the blasted product. Numerous fragmentation 'measuring' systems have been developed and marketed, based on image-processing. This presentation of FragScan will illustrate advantages and difficulties when using such a system. FragScan is essentially defending a policy of large and representative sampling. The purpose is to show how fragmentation is discriminating both productivity and profit of quarry operations on a blast-by blast basis. The next step will then be to 'drive' the blasting process to reach a 'better' fragmentation. Other applications require the fragmentation as an essential result: this is the case for large boulders used in structure-reinforcement. Several case-studies have shown that FragScan can be used for quality-control, checking size-distribution of the product according to the requirements of the end-user. Only clear thinking about the precise use of such a 'measurement' will further the success of this task.  相似文献   

3.
Ever since development of human civilization, mining and agriculture has been the backbone of growth. Today the most developed countries of the world are the ones focused on core economical development, be it power generation, steel making, oil and gas production, or agriculture. Mining has been gaining importance over the years both from the economic perspective and as an area of sustained research. With the advent of globalization, things have changed very fast and today it is an industry that is driving the economies of several nations. Global competition has propelled countries to reach higher production levels through better techniques of drilling and blasting, excavation and mineral processing. We now have bigger and faster drill machines and excavators. In Explosives technology too significant progress has been made towards having safer explosives and accurate initiating systems that have increased overall control over blasting in terms of vibration, fragmentation, throw, fly rock and overall blast economics. Explosives and Rock Blasting Technology has advanced so much in the last few decades that blasting can now be precisely performed, controlled and predicted. Development of new tools like electronic blasting systems and advanced simulation software has made it possible to customize blasting results as per requirement. These developments have helped mining engineer worldwide in reaping huge productivity benefits besides making it possible to meet the environmental norms even in most demanding conditions. Inability to blast large size shots on account of proximity of mines to human habitation have always constrained mine management in fully leveraging the strength of large size production equipments. Mine managers have been forced to conduct small blasts on increased frequency to provide feed to large capacity shovels while compromising on Shovel productivity on account of undesirable movement of shovels during blasting. This paper deals with a case study at SEB quarry of Tata Steel wherein it was difficult to fire a big blast due to existing nearby structures. A critical scientific study was conducted before successfully firing of one of the biggest shot of 83 tonnes in the history of quarry. The paper discusses the issues being faced, alternate solutions opted and the final outcome.  相似文献   

4.
In most mining operations the ore undergoes several processes such as drilling, blasting, loading, hauling, crushing, grinding and liberation to become the final salable product. Drilling and blasting is an important step in this process chain and it's results such as fragmentation, muckpile shape and looseness, dilution, damage and rock softening effect the efficiency of downstream processes. The value created per ton of broken ore is the difference between the price it commands when sold as the final product and the cost to produce it. Traditionally, the total process in the mining industry is classified into two groups as mining and milling. These are managed as separate cost centres inspite of the interdependency. Each process has a budget and production target and emphasis is usually on maximising production (tons) and minimising cost rather than the overall profitability of the whole business unit. The efficiency of each process is considered to be satisfactory as long as they are within budget and meet the production targets. The mine and mill managers usually try to optimise each process independently rather than the entire process. This paper discusses the potential pitfalls of decreasing the drilling and blasting cost per ton of broken rock without considering its impact on downstream processes. It introduces a holistic approach to blast optimisation by identifying and measuring the leverage that blast results have on different downstream processes and then optimising the blast design to achieve the results that maximise the overall profitability rather than just minimising the drilling and blasting costs. This paper demonstrates the benefits of such a holistic approach to blasting based on computer model simulations and field studies from metal and open cut coal mining.  相似文献   

5.
Blasting has been the most frequently used method for rock breakage since black powder was first used to fragment rocks, more than two hundred years ago. This paper is an attempt to reassess standard design techniques used in blasting by providing an alternative approach to blast design. The new approach has been termed asymmetric blasting. Based on providing real time rock recognition through the capacity of measurement while drilling (MWD) techniques, asymmetric blasting is an approach to deal with rock properties as they occur in nature, i.e., randomly and asymmetrically spatially distributed. It is well accepted that performance of basic mining operations, such as excavation and crushing rely on a broken rock mass which has been pre conditioned by the blast. By pre-conditioned we mean well fragmented, sufficiently loose and with adequate muckpile profile. These muckpile characteristics affect loading and hauling [1]. The influence of blasting does not end there. Under the Mine to Mill paradigm, blasting has a significant leverage on downstream operations such as crushing and milling. There is a body of evidence that blasting affects mineral liberation [2]. Thus, the importance of blasting has increased from simply fragmenting and loosing the rock mass, to a broader role that encompasses many aspects of mining, which affects the cost of the end product. A new approach is proposed in this paper which facilitates this trend 'to treat non-homogeneous media (rock mass) in a non-homogeneous manner (an asymmetrical pattern) in order to achieve an optimal result (in terms of muckpile size distribution).' It is postulated there are no logical reasons (besides the current lack of means to infer rock mass properties in the blind zones of the bench and onsite precedents) for drilling a regular blast pattern over a rock mass that is inherently heterogeneous. Real and theoretical examples of such a method are presented.  相似文献   

6.
陈明  胡英国  卢文波  严鹏  周创兵 《岩土力学》2011,32(5):1531-1537
爆破开挖扰动是深埋隧洞损伤区孕育及演化的重要影响因素。根据隧洞岩体钻爆开挖过程分析了爆炸荷载及开挖荷载瞬态卸荷对岩体的扰动作用,基于LS-DYNA动力有限元程序,提出了利用施加节点反力模拟待开挖隧洞岩体的约束作用,通过控制节点反力的变化过程以模拟开挖荷载瞬态卸荷,采用爆炸荷载变化曲线模拟爆炸作用过程的爆破开挖扰动数值模拟方法,并利用该方法模拟分析了爆破开挖扰动对围岩的损伤效应,结果表明,应力重分布对围岩损伤最大,隧洞围岩损伤区主要由围岩初始应力重分布所导致,爆炸荷载作用将增大围岩损伤区范围,考虑开挖荷载瞬态卸荷作用的围岩损伤区最大,且地应力越高,开挖荷载瞬态卸荷作用对围岩的损伤效应越显著  相似文献   

7.
8.
为了解决传统钻爆法在隧道工程中振动大的问题,引入一种新型破岩技术--高压气体膨胀破岩技术。通过在某隧道掌子面采用该技术进行现场试验,获得该技术试验时的振动速度值和试验后的破岩效果,将获得的结果与传统钻爆法得到的相应结果进行对比分析,结果表明,高压气体膨胀破岩技术在施工时产生的振动比钻爆法小,证明了将该技术应用在隧道工程中是可行的,解决了该隧道采用钻爆法施工振动风险大的问题,为类似工程破岩提供了一种新途径。  相似文献   

9.
In the last decade, fragmentation prediction has been attempted by many researchers in the field of blasting. Kuznetsov developed an equation for the estimation of average fragment size, x 50 , based on explosive energy and powder factors. Cunningham introduced a uniformity index n as a function of drilling accuracy, blast geometry and a rock factor A associated with a “blastability index”, which can be calculated from the jointing, density and hardness of the blasted rock mass. Knowing the mean size and the uniformity index, a Rosin-Rammler distribution equation can then be derived for calculating the fragment size distribution in a blasted muckpile. Analysis of existing data has revealed serious discrepancies between actual and calculated uniformity indices. The current integrated approach combines the Kuznetsov or similar equation and a comminution concept like the Bond Index equation to enable the estimation of both the 50% and 80% passing sizes ( k 50 and k 80 ). By substituting these two passing sizes into the Rosin-Rammler equation, the characteristic size x c and the uniformity index n can be obtained to allow the calculation of various fragment sizes in a given blast. The effectiveness of this new fragmentation prediction approach has been tested using sieved data from small-scale bench blasts, available in the literature. This paper will cover all tested results and a discussion on the discrepancy between measurement and prediction due to possible energy loss during blasting.  相似文献   

10.
This paper presents the results of a comprehensive monitoring program designed to investigate the extent of blast induced damage experienced by rock masses extracted by bench stoping methods. An array of triaxial geophones and extensometers were used to monitor blast vibration attenuation and measure hangingwall deformations during stope extraction. In addition, pre and post surveys of the hangingwall rock mass were conducted using a TV borehole camera and cavity survey instrumentation. These surveys were later used to calibrate damage profiles into the stope hangingwalls.

Peak particle velocity, hangingwall deformation measurements and stope surveys were used to develop a site specific damage model that allowed engineers to asses drilling and blasting configurations to minimise the extent of pre-conditioning and damage. In addition the study included the analysis of the frequency response, displacements and accelerations experienced by the excavation as extraction and mine filling progressed. This work aimed at improving our understanding of the influence of blasting on the dynamic behaviour of stope hangingwalls.

The study demonstrated that estimates of the maximum extent of rock mass pre-conditioning and/or damage made through the application of the Holmberg-Persson approach compared well with measured results. In addition, the study found that dynamic loading imparted on an exposed hangingwall from subsequent stope blasting was also expected to contribute to rock mass weakening and that mine filling was crucial to arrest further deterioration. Hangingwall accelerations were used to demonstrate that larger openings may be more susceptible to dynamic loading.  相似文献   

11.
In blasting with air decks, repeated oscillation of shock waves within the air gap increases the time over which it acts on the surrounding rock mass by a factor at between 2 and 5. The ultimate effect lies in increasing the crack network in the surrounding rock and reducing the burden movement. Trials of air deck blasting in the structurally unfavourable footwall side of an open pit manganese mine has resulted in substantial improvements in fragmentation and blast economics. Better fragmentation resulted in improved shovel loading efficiency by 50–60%. Secondary blasting was almost eliminated. Use of ANFO explosive with this technique reduced explosive cost by 31.6%. Other benefits included reductions in overbreak, throw and ground vibration of the order of 60–70, 65–85 and 44% respectively. This paper reviews the theory of air deck blasting and describes in detail the air deck blast trials conducted in a manganese open pit mine in India. The blast performance data have been analysed to evaluate the benefits of air decking over conventional blasting.  相似文献   

12.
The influence of air deck blasting on blast performance and blast economics and its feasibility has been studied in the production blasting of soft and medium strength sandstone overburden rocks in an open pit coal mine in India. The air deck blasting technique was very effective in soft and medium strength rocks. Its main effects resulted in reducing fines, in producing more uniform fragmentation and in improving blast economics. The fines were reduced by 60–70% in homogeneous sandstones. Oversize boulders were reduced by 80% and shovel loading efficiency was improved by 20–40% in blocky sandstones. The explosive cost was reduced by 10–35% dependent on the type of rock mass. Throw, backbreak and ground vibration were reduced by 10–35%, 50–80% and 30–94% respectively. For a particular rock mass and blast design environment, air deck length (ADL) significantly influenced the fragmentation. ADL as represented by air deck factor (ADF) in the range of 0.10–0.35 times the original charge length (OCL) produced optimum results. ADF beyond 0.35 resulted in poor fragmentation and in inadequate burden movement.  相似文献   

13.
Environmental problems such as vibration and air blast are often faced and discussed in mining, quarrying, civil construction, shaft tunnel, pipeline, and dam operations, where blasting is inevitable. It is necessary to establish national standards in order to minimize environmental problems induced by blasting and judicial matters in our country as it is in the USA, European Union (EU) countries, and other developed countries. This necessity and the obligation of Turkey, which has started the procedure of joining the EU, to accept EU criteria emphasize the importance of this study. In other words, the establishment of a particular national standard related with this subject is inevitable for Turkey. This will be possible only by studying and applying scientific methods and techniques by experts. This paper presents a new damage criterion norm for blast-induced ground vibrations in Turkey. In this study, first, numerous vibration records were taken in blasting operations performed at different sites and rock units. For these rock units, particle velocity predictions and frequency analysis were done. At the same time, structures in the neighborhoods of these blasts were also observed and investigated. Finally, a damage criterion norm based on risk analysis was established and proposed by using these collected data. In light of the norm to be obtained from the data that were collected in the research, it will lead the excavation work in our country to be performed in such way that they are more effective and will cause minimum environmental problems.  相似文献   

14.
One of the most important aims of blasting in open pit mines is to reach desirable size of fragmentation. Prediction of fragmentation has great importance in an attempt to prevent economic drawbacks. In this study, blasting data from Meydook mine were used to study the effect of different parameters on fragmentation; 30 blast cycles performed in Meydook mine were selected to predict fragmentation where six more blast cycles are used to validate the results of developed models. In this research, mutual information (MI) method was employed to predict fragmentation. Ten parameters were considered as primary ones in the model. For the sake of comparison, Kuz-Ram empirical model and statistical modeling were also used. Coefficient of determination (R 2), root mean square error (RMSE), and mean absolute error (MAE) were then used to compare the models. Results show that MI model with values of R 2, RMSE, and MAE equals 0.81, 10.71, and 9.02, respectively, is found to have more accuracy with better performance comparing to Kuz-Ram and statistical models.  相似文献   

15.
Except for very deep-seated deposits, open cast mining method has been recognized as the safest and most productive mode for mining minerals. Ever growing demand in minerals and coal has compelled the mine operators to increase the size of mine, which has resulted in an increasing trend towards large capacity open cast projects. Explosives and blasting techniques play a significant role in efficient opencast mining operations. There have been constant technological developments towards safer, faster, economical and more efficient blasting systems. Further, globally increased competitiveness has necessitated to carryout blasts in such a way that the desired degree of fragmentation is achieved in the primary blast, with minimum undesired side effects such as ground vibration, air blast/noise, flyrock, generation of oversize boulders, formation of toe, and over break or back break. Hence, the ultimate objective of the blasting engineer is to ensure that the blasts are carried out in an eco-friendly manner. This paper presents a case study of limestone mine where a controlled blasting was conducted near a green structure of wagon tippler (at 2 m) being constructed for foundation work of belt conveyor as the mine management wants to double the existing production. This paper deals with controlled blast design and its implementation using electronic detonators with signature hole technique.  相似文献   

16.
Backbreak is an undesirable phenomenon in blasting operations. It can cause instability of mine walls, falling down of machinery, improper fragmentation, reduced efficiency of drilling, etc. The existence of various effective parameters and their unknown relationships are the main reasons for inaccuracy of the empirical models. Presently, the application of new approaches such as artificial intelligence is highly recommended. In this paper, an attempt has been made to predict backbreak in blasting operations of Soungun iron mine, Iran, incorporating rock properties and blast design parameters using the support vector machine (SVM) method. To investigate the suitability of this approach, the predictions by SVM have been compared with multivariate regression analysis (MVRA). The coefficient of determination (CoD) and the mean absolute error (MAE) were taken as performance measures. It was found that the CoD between measured and predicted backbreak was 0.987 and 0.89 by SVM and MVRA, respectively, whereas the MAE was 0.29 and 1.07 by SVM and MVRA, respectively.  相似文献   

17.
One of the fundamental requirements for being able to optimise blasting is the ability to predict fragmentation. An accurate blast fragmentation model allows a mine to adjust the fragmentation size for different downstream processes (mill processing versus leach, for instance), and to make real time adjustments in blasting parameters to account for changes in rock mass characteristics (hardness, fracture density, fracture orientation, etc). A number of blast fragmentation models have been developed in the past 40 years such as the Kuz-Ram model [1]. Fragmentation models have a limited usefulness at the present time because: 1. The input parameters are not the most useful for the engineer to determine and data for these parameters are not available throughout the rock mass. 2. Even if the input parameters are known, the models still do not consistently predict the correct fragmentation. This is because the models capture some but not all of the important rock and blast phenomena. 3. The models do not allow for 'tuning' at a specific mine site. This paper describes studies that are being conducted to improve blast fragmentation models. The Split image processing software is used for these studies [2, 3].  相似文献   

18.
Theoretical Concept to Understand Plan and Design Smooth Blasting Pattern   总被引:1,自引:0,他引:1  
Considering different mechanical cutting tools for excavation of rock, drilling and blasting is said to be inexpensive and at the same time most acceptable and compatible to any geo-excavation condition. Depending upon strength properties of in-situ rock mass, characteristics of joint pattern and required quality of blasting, control blasting techniques viz., pre-split and smooth blasting are commonly implemented to achieve an undamaged periphery rock-wall. To minimize magnitude of damage or overbreak, the paper emphasized that in-situ stresses and re-distribution of stresses during the process of excavation should be considered prior to selection of explosive parameters and implementation of any suitable blast pattern. Rock structure being not massive in nature, the paper firstly explains the influence of discontinuities and design parameters on smooth-wall blasting. Considering the empirical equations for estimation of stress wave’s magnitude and its attenuation characteristics through transmitting medium, the paper has put forward a mathematical model for smooth blasting pattern. The model firstly illustrates that rock burden for each hole should be sub-divided into thin micro strips/slabs to understand the characteristics of wave transmission through the medium and lastly with the help of beam theory of structural dynamics have put forward a mathematical model to analyze and design an effective smooth blasting pattern to achieve an undamaged periphery rock-wall.  相似文献   

19.
隧道开挖施工的爆破振动监测与控制技术   总被引:24,自引:0,他引:24  
以万松岭隧道工程开挖为研究对象,对隧道工程开挖施工爆破地震波的振动监测方法及控制技术进行了研究。通过对爆破振动监测结果的回归分析,建立了隧道工程开挖爆破振动传播的数学模型;确立了其传播衰减规律。结合工程实际,提出了修正后的爆破地震波衰减经验数学公式;经对比分析,所得爆破地震波衰减规律公式预测的质点振动速度具有较高的精度。同时,结合该隧道工程开挖爆破施工,从选择合理爆破时差、最大装药量、微差起爆、掘进进尺、预裂爆破等5个方面提出了爆破振动控制技术措施使该隧道开挖施工爆破中的地面振动速度值控制在了安全范围以内,从而确保了施工段地面建筑群的安全和该隧道工程开挖爆破作业的安全。其研究对指导隧道工程开挖爆破施工和保证地面建筑物安全起到了重要作用。  相似文献   

20.
Summary This paper focuses on the methodology and techniques developed to characterize the rock fragments produced by blasting in an underground environment. This work formed part of an integrated approach to the optimization of blasting design at a Canadian mine. Details are given of the photographic and image analysis techniques adopted, together with data from a program of full scale, study blasts in the mine. Features of the observed fragmentation are reviewed which related to controlled variation in the blast designs, together with other factors which were observed both to influence fragmentation characteristics and to interact with loading equipment productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号