共查询到19条相似文献,搜索用时 112 毫秒
1.
针对现有基于信号强度的质心算法定位精度不能满足特定场景下对高精度室内定位需求的问题,该文提出了一种改进的接收信号强度(RSSI)室内加权质心定位算法。该算法通过RSSI测距得出4个已知锚节点到待测点的距离,以相应的锚节点为圆心画圆弧,得到由4段圆弧相交的四边形,其任取3个顶点可以组成一个三角形,然后以距离平方倒数之和作为权值计算4个三角形质心坐标,再以4个三角形质心坐标作为初始值以信号强度之和作为权值求解待测点坐标。实验结果表明:该算法最大误差值为1.02m,最小误差值为0.21m,平均误差值为0.68m;该算法室内定位精度比基于RSSI的质心算法最大提高24cm,最小提高12cm,平均提高了18cm;比加权质心算法最大提高10cm,最小提高3cm,平均提高了8cm。 相似文献
2.
3.
一种改进的RSSI加权质心定位算法 总被引:1,自引:0,他引:1
针对现有加权质心定位算法易受环境因素影响、权重确定不合理导致的室内定位精度低的问题,该文提出了一种基于RSSI的改进加权质心定位算法,该方法在原算法基础上对权重的确定进行了改进,以RSSI值解算的距离值的倒数和作为权重,有效降低了较远距离在权值中所占的比重,提高了室内定位精度;针对权值修正系数n的取值对定位精度的影响,通过实例得出n=6时定位精度最高的结论,同时证明了本文算法优于现有的质心定位算法及加权质心定位算法。本文算法降低了室内复杂环境因素的影响,提高了利用无线传感网络的定位精度,可为智慧城市、智能交通、矿井及灾害救援等领域精确的位置估计提供帮助。 相似文献
5.
6.
7.
在利用已知指纹点位置坐标估算定位点位置时,目前大多采用WKNN。考虑到AP信号在不同方向有不同的衰减率,本文在WKNN基础上提出了基于PGD的位置定位新算法。通过实验分析,结果表明:与WKNN相比,本文提出的PGD算法具有更高的定位精度和更强的可靠性。 相似文献
8.
基于RSSI(Received Signal Strength Indication)的距离测量技术是一种新型低成本的距离测量技术,并且在距离定位的领域中得到广泛的运用。针对常规的Zigbee指纹定位的加权最邻近定位算法较为复杂且精度低下的问题,该文对基于RSSI的Zigbee指纹数据库定位算法中加权最邻近算法进行了研究,提出了利用一种新的加权距离定位算法,并且使用Zigbee无线网络系统进行实验。结果表明,使用加权定位算法后,与常规的3种定位算法相比,Zigbee定位系统的定位偏差得到一定程度的提高且优于1.57m。 相似文献
9.
10.
11.
针对目前大多数基于位置指纹的WiFi定位算法都是以统计数学理论为依托,而且很少涉足定位精度在空间分布上的研究这一问题,该文在总结K近邻、加权K近邻以及最大似然模型的WiFi室内定位基础上,提出了一种结合模糊数学理论的WiFi定位算法。从平均误差、最小误差、最大误差、变异程度、定位时间这几个角度,将该算法与其他传统算法进行比较分析。基于真实场地的实验测试结果表明,该算法定位精度高,定位速度快。最后对定位误差进行空间插值分析,结果表明4种模型的定位精度均与WiFi信号源的分布位置有很强的相关性。 相似文献
12.
基于WiFi信号室内定位技术的研究 总被引:1,自引:0,他引:1
主要对基于WiFi信号的室内定位技术中的三角形定位法进行了研究。鉴于现有的三角形定位模型受信号强度和环境干扰的约束影响,定位精度不高,提出了一种结合室内影响因素约束的权重改正定位模型,更加切合复杂的室内定位环境。通过试验测试和数据分析,经过加权去噪模型改正后的定位精度更高,适用性更广。 相似文献
13.
随着无线室内定位技术的发展,室内定位效果有了明显提升,但仅采用无线定位方法,定位点跳动频繁,定位效果较差,难以获取连续位置的准确定位。实际应用中不同的硬件平台也会影响具体定位方法的选择,通常需采用多种技术手段的组合以达到理想定位效果。本文基于微信公众平台的服务需要,提出了一种基于三边测量定位和步行者航位推算(PDR)融合的室内定位方法,通过地图信息匹配纠正定位结果,得到连续稳定的定位结果;并集成室内地图可视化技术,研发了一套基于微信平台的三维室内定位系统,在实际工程场景中进行应用,具有较好的定位效果。 相似文献
14.
随着室内定位技术的不断发展,室内导航渐渐成为可能。但由于室内定位精度和稳定性较差,导致定位点漂移,导航引导错误,用户体验感差,无法满足室内精细导航需求。文中根据室内空间的特点,结合GIS空间分析与导航推测算法,设计出一种适合室内定位约束与优化算法,能在不影响定位效率的情况下很大程度上改善定位效果。经实际场地实验,效果良好。 相似文献
15.
针对目前利用WiFi信号进行室内定位实时精度较低的问题,该文提出了一种改进的K最近邻算法。由于室内人体走动对于WiFi信号的不规律干扰,使得室内实时定位的精度带有很大的不确定性。为了实时地消除外界干扰带来的误差,改进的K最近邻算法增加了外部节点来监测周围WiFi信号的强度变化,通过将获取的信号强度与指纹数据库中对应节点的信号强度比对,获取差值,并应用于节点周围的客户端,来实时地校正客户端的定位结果。利用此算法在Android平台上的实验表明,该算法定位简单,可以较为明显地改善节点周围2.4m范围内的实时定位精度,使平均精度能提高0.8~1m左右。 相似文献
16.
针对传统的基于反向传播(BP)神经网络室内定位算法存在着低精度和慢收敛问题,且考虑到室内环境复杂,通常存在多径效应,无法使用信号强度衰减测距模型进行精确定位,提出一种改进的人工鱼群优化的BP神经网络WiFi指纹室内定位算法.利用人工鱼群觅食和寻优方式来提高全局寻优搜索的速度和能力,采用改进的人工鱼群算法(IAFSA)优化选取室内定位BP神经网络的权值和阈值,有效避免了传统BP神经网络的预测值易陷入局部最优的缺点,同时利用高斯滤波对信号进行去噪处理,建立采样点获取到的信号强度值(RSSI)与位置坐标的关系.实验结果证明所提方法与传统的BP神经网络方法相比,平均定位误差减少了0.75 m,平均定位精度提高32.2%,提高了定位可靠性,算法具有更好的稳定性. 相似文献
17.
针对传统超宽带(UWB)室内定位中非线性跟踪问题,基于当前统计(CS)模型和容积卡尔曼滤波(CKF),本文提出了一种新的定位算法。即采用奇异值分解(SVD)代替标准CKF算法中的Cholesky分解,提高了算法的稳定性,构造了奇异值分解容积卡尔曼滤波器(SCKF)。首先在CS模型的基础上改进了先验参数的函数形式,得到改进的CS模型(MCS),实现模型参数的自适应调整;然后将MCS模型引入SCKF滤波器,实现滤波算法的自适应调整;最后利用MCS-SCKF算法对UWB定位系统模型进行解算,从而得到移动目标位置。仿真和试验结果表明,该算法优于CS模型-卡尔曼滤波算法(CS-KF)和CS模型-SCKF算法(CS-SCKF),提高了UWB室内定位的定位精度。 相似文献
18.
19.
融合地磁/WiFi/PDR的自适应粒子滤波室内定位 总被引:1,自引:0,他引:1
随着国民经济的快速发展,人们在室内活动的时间越来越长,室内空间环境也越来越复杂,对室内环境的位置与导航服务的需求也越来越高。由于地磁信号具有稳定性的特点,且Wi Fi技术已得到广泛部署,融合使用地磁和Wi Fi定位具有一定的优势。因此,本文基于Android系统智能手机作为接收设备,融合地磁、Wi Fi及行人航迹推算(PDR)技术,通过自适应粒子滤波模型和随机抽样一致性算法对采集的信号进行处理。试验证明,地磁、Wi Fi、PDR三者融合进行室内定位的方法与其他单类方法相比,实现了将室内定位精度的误差最小降低到1.02 m。 相似文献