首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高角度缝隙充填的碳酸盐岩储层可以等效为具有水平对称轴的横向各向同性介质.本文提出了适用于裂缝型碳酸盐岩的岩石物理模型构建流程,重点介绍了在碳酸盐岩各向同性背景中,综合利用微小裂隙模型和线性滑动模型添加缝隙系统,并分析了当缝隙充填不同流体时,各向异性参数随纵横波速比的变化特征.同时本文讨论了裂缝密度和缝隙充填流体对地震反射系数的影响,推导了不同类型流体充填时储层反射系数与裂缝密度的近似关系式,阐述了各向异性流体替换理论,最终实现饱含流体碳酸盐岩裂缝储层的纵横波速度和各向异性参数的估测.选取某碳酸盐岩工区A井对该方法进行试算,结果表明基于碳酸盐岩裂缝岩石物理模型估算的纵横波速度值与测井值吻合较好,而且估测所得的各向异性参数值也能够较好地反映出裂缝储层位置.  相似文献   

2.
Frequency-dependent amplitude variation with offset offers an effective method for hydrocarbon detections and analysis of fluid flow during production of oil and natural gas within a fractured reservoir. An appropriate representation for the frequency dependency of seismic amplitude variation with offset signatures should incorporate influences of dispersive and attenuating properties of a reservoir and the layered structure for either isotropic or anisotropic dispersion analysis. In this study, we use an equivalent medium permeated with aligned fractures that simulates frequency-dependent anisotropy, which is sensitive to the filled fluid of fractures. The model, where pores and fractures are filled with two different fluids, considers velocity dispersion and attenuation due to mesoscopic wave-induced fluid flow. We have introduced an improved scheme seamlessly linking rock physics modelling and calculations for frequency-dependent reflection coefficients based on the propagator matrix technique. The modelling scheme is performed in the frequency-slowness domain and can properly incorporate effects of both bedded structure of the reservoir and velocity dispersion quantified with frequency-dependent stiffness. Therefore, for a dispersive and attenuated layered model, seismic signatures represent a combined contribution of impedance contrast, layer thickness, anisotropic dispersion of the fractured media and tuning and interference of thin layers, which has been avoided by current conventional methods. Frequency-dependent amplitude variation with offset responses was studied via considering the influences of fracture fills, layer thicknesses and fracture weaknesses for three classes amplitude variation with offset reservoirs. Modelling results show the applicability of the introduced procedure for interpretations of frequency-dependent seismic anomalies associated with both layered structure and velocity dispersion of an equivalent anisotropic medium. The implications indicate that anisotropic velocity dispersion should be incorporated accurately to obtain enhanced amplitude variation with offset interpretations. The presented frequency-dependent amplitude variation with offset modelling procedure offers a useful tool for fracture fluid detections in an anisotropic dispersive reservoir with layered structures.  相似文献   

3.
Fluid identification in fractured reservoirs is a challenging issue and has drawn increasing attentions. As aligned fractures in subsurface formations can induce anisotropy, we must choose parameters independent with azimuths to characterize fractures and fluid effects such as anisotropy parameters for fractured reservoirs. Anisotropy is often frequency dependent due to wave-induced fluid flow between pores and fractures. This property is conducive for identifying fluid type using azimuthal seismic data in fractured reservoirs. Through the numerical simulation based on Chapman model, we choose the P-wave anisotropy parameter dispersion gradient (PADG) as the new fluid factor. PADG is dependent both on average fracture radius and fluid type but independent on azimuths. When the aligned fractures in the reservoir are meter-scaled, gas-bearing layer could be accurately identified using PADG attribute. The reflection coefficient formula for horizontal transverse isotropy media by Rüger is reformulated and simplified according to frequency and the target function for inverting PADG based on frequency-dependent amplitude versus azimuth is derived. A spectral decomposition method combining Orthogonal Matching Pursuit and Wigner–Ville distribution is used to prepare the frequency-division data. Through application to synthetic data and real seismic data, the results suggest that the method is useful for gas identification in reservoirs with meter-scaled fractures using high-qualified seismic data.  相似文献   

4.
Cross‐hole anisotropic electrical and seismic tomograms of fractured metamorphic rock have been obtained at a test site where extensive hydrological data were available. A strong correlation between electrical resistivity anisotropy and seismic compressional‐wave velocity anisotropy has been observed. Analysis of core samples from the site reveal that the shale‐rich rocks have fabric‐related average velocity anisotropy of between 10% and 30%. The cross‐hole seismic data are consistent with these values, indicating that observed anisotropy might be principally due to the inherent rock fabric rather than to the aligned sets of open fractures. One region with velocity anisotropy greater than 30% has been modelled as aligned open fractures within an anisotropic rock matrix and this model is consistent with available fracture density and hydraulic transmissivity data from the boreholes and the cross‐hole resistivity tomography data. However, in general the study highlights the uncertainties that can arise, due to the relative influence of rock fabric and fluid‐filled fractures, when using geophysical techniques for hydrological investigations.  相似文献   

5.
Based on the long-wavelength approximation, a set of parallel vertical fractures embedded in periodic thin interbeds can be regarded as an equivalent orthorhombic medium. Rock physics is the basis for constructing the relationship between fracture parameters and seismic response. Seismic scattering is an effective way to inverse anisotropic parameters. In this study, we propose a reliable method for predicting the Thomsen’s weak anisotropic parameters and fracture weaknesses in an orthorhombic fractured reservoir using azimuthal pre-stack seismic data. First, considering the influence of fluid substitution in mineral matrix, porosity, fractures and anisotropic rocks, we estimate the orthorhombic anisotropic stiffness coefficients by constructing an equivalent rock physics model for fractured rocks. Further, we predict the logging elastic parameters, Thomsen’s weak parameters, and fracture weaknesses to provide the initial model constraints for the seismic inversion. Then, we derive the P-wave reflection coefficient equation for the inversion of Thomsen’s weak anisotropic parameters and fracture weaknesses. Cauchy-sparse and smoothing-model constraint regularization taken into account in a Bayesian framework, we finally develop a method of amplitude variation with angles of incidence and azimuth (AVAZ) inversion for Thomsen’s weak anisotropic parameters and fracture weaknesses, and the model parameters are estimated by using the nonlinear iteratively reweighted least squares (IRLS) strategy. Both synthetic and real examples show that the method can directly estimate the orthorhombic characteristic parameters from the azimuthally pre-stack seismic data, which provides a reliable seismic inversion method for predicting Thomsen’s weak anisotropic parameters and fracture weaknesses.  相似文献   

6.
Elastic properties of saturated porous rocks with aligned fractures   总被引:4,自引:0,他引:4  
Elastic properties of fluid saturated porous media with aligned fractures can be studied using the model of fractures as linear-slip interfaces in an isotropic porous background. Such a medium represents a particular case of a transversely isotropic (TI) porous medium, and as such can be analyzed with equations of anisotropic poroelasticity. This analysis allows the derivation of explicit analytical expressions for the low-frequency elastic constants and anisotropy parameters of the fractured porous medium saturated with a given fluid. The five elastic constants of the resultant TI medium are derived as a function of the properties of the dry (isotropic) background porous matrix, fracture properties (normal and shear excess compliances), and fluid bulk modulus. For the particular case of penny-shaped cracks, the expression for anisotropy parameter ε has the form similar to that of Thomsen [Geophys. Prospect. 43 (1995) 805]. However, contrary to the existing view, the compliance matrix of a fluid-saturated porous-fractured medium is not equivalent to the compliance matrix of any equivalent solid medium with a single set of parallel fractures. This unexpected result is caused by the wave-induced flow of fluids between pores and fractures.  相似文献   

7.
Results of an experimental study of shear‐ and compressional‐wave propagation in an orthorhombically anisotropic medium are presented. The experiments were performed on a physical model consisting of two sets of fractures. The first set consisted of orientated rubber inclusions simulating weak material‐filled cracks. The second set consisted of a system of closely spaced parallel fractures simulated by thin plates of epoxy resin, superimposed orthogonally on the first set. Three cases of fracture orientations within the model were identified and studied. Case 1 is analogous to a jointed fracture reservoir with one vertical set of fluid‐filled cracks or fractures and one non‐filled horizontal set. This case is referred to as JFV. Case 2 is analogous to a double fracture reservoir with one horizontal set of fluid‐filled fractures or cracks and one non‐filled vertical set. This is referred to as DFH. Case 3 is analogous to a double fracture reservoir with two vertical sets of fractures or cracks, with only one fluid‐filled. Case 3 is referred to as DFV. A pulse transmission method was performed on all three modelled cases along the three principal axes. A directional variation in the compressional‐ and shear‐wave velocities, as well as distinct shear‐wave splitting, was observed. The elastic constants for each case were determined and differences between them were noted and compared with the controlled results of both layered (transverse isotropy, TI) and vertically fractured (azimuthally anisotropic models, VF) media. The differences in elastic moduli and velocities indicate the potential of recognizing the different fracture orientations and suggest an approach to designing a method of drilling to further enhance oil recovery and reservoir exploitation.  相似文献   

8.
Understanding the effects of in situ fluid content and fracture parameters on seismic characteristics is important for the subsurface exploration and production of fractured porous rocks. The ratio of normal-to-shear fracture compliance is typically utilized as a fluid indicator to evaluate anisotropy and identify fluids filling the fractures, but it represents an underdetermined problem because this fluid indicator varies as a function of both fracture geometry and fluid content. On the bases of anisotropic Gassmann's equation and linear-slip model, we suggest an anisotropic poroelasticity model for fractured porous reservoirs. By combining a perturbed stiffness matrix and asymptotic ray theory, we then construct a direct relationship between the PP-wave reflection coefficients and characteristic parameters of fluids(P-and S-wave moduli) and fractures(fracture quasi-weaknesses), thereby decoupling the effects of fluid and fracture properties on seismic reflection characterization.By incorporating fracture quasi-weakness parameters, we propose a novel parameterization method for elastic impedance variation with offset and azimuth(EIVOA). By incorporating wide-azimuth observable seismic reflection data with regularization constraints, we utilize Bayesian seismic inversion to estimate the fluid content and fracture parameters of fractured porous rocks. Tests on synthetic and real data demonstrate that fluid and fracture properties can be reasonably estimated directly from azimuthal seismic data and the proposed approach provides a reliable method for fluid identification and fracture characterization in a gas-saturated fractured porous reservoir.  相似文献   

9.
Attempts have previously been made to predict anisotropic permeability in fractured reservoirs from seismic Amplitude Versus Angle and Azimuth data on the basis of a consistent permeability‐stiffness model and the anisotropic Gassmann relations of Brown and Korringa. However, these attempts were not very successful, mainly because the effective stiffness tensor of a fractured porous medium under saturated (drained) conditions is much less sensitive to the aperture of the fractures than the corresponding permeability tensor. We here show that one can obtain information about the fracture aperture as well as the fracture density and orientation (which determines the effective permeability) from frequency‐dependent seismic Amplitude Versus Angle and Azimuth data. Our workflow is based on a unified stiffness‐permeability model, which takes into account seismic attenuation by wave‐induced fluid flow. Synthetic seismic Amplitude Versus Angle and Azimuth data are generated by using a combination of a dynamic effective medium theory with Rüger's approximations for PP reflection coefficients in Horizontally Transversely Isotropic media. A Monte Carlo method is used to perform a Bayesian inversion of these synthetic seismic Amplitude Versus Angle and Azimuth data with respect to the parameters of the fractures. An effective permeability model is then used to construct the corresponding probability density functions for the different components of the effective permeability constants. The results suggest that an improved characterization of fractured reservoirs can indeed be obtained from frequency‐dependent seismic Amplitude Versus Angle and Azimuth data, provided that a dynamic effective medium model is used in the inversion process and a priori information about the fracture length is available.  相似文献   

10.
Finite-difference modelling of S-wave splitting in anisotropic media   总被引:4,自引:0,他引:4  
We have implemented a 3D finite‐difference scheme to simulate wave propagation in arbitrary anisotropic media. The anisotropic media up to orthorhombic symmetry were modelled using a standard staggered grid scheme and beyond (monoclinic and triclinic) using a rotated staggered grid scheme. The rationale of not using rotated staggered grid for all types of anisotropic media is that the rotated staggered grid schemes are more expensive than standard staggered grid schemes. For a 1D azimuthally anistropic medium, we show a comparison between the seismic data generated by our finite‐difference code and by the reflectivity algorithm; they are in excellent agreement. We conducted a study on zero‐offset shear‐wave splitting using the finite‐difference modelling algorithm using the rotated staggered grid scheme. Our S‐wave splitting study is mainly focused on fractured media. On the scale of seismic wavelenghts, small aligned fractures behave as an equivalent anisotropic medium. We computed the equivalent elastic properties of the fractures and the background in which the fractures were embedded, using low‐frequency equivalent media theories. Wave propagation was simulated for both rotationally invariant and corrugated fractures embedded in an isotropic background for one, or more than one, set of fluid‐filled and dry fractures. S‐wave splitting was studied for dipping fractures, two vertical non‐orthogonal fractures and corrugated fractures. Our modelling results confirm that S‐wave splitting can reveal the fracture infill in the case of dipping fractures. S‐wave splitting has the potential to reveal the angle between the two vertical fractures. We also notice that in the case of vertical corrugated fractures, S‐wave splitting is sensitive to the fracture infill.  相似文献   

11.
In downhole microseismic monitoring, accurate event location relies on the accuracy of the velocity model. The model can be estimated along with event locations. Anisotropic models are important to get accurate event locations. Taking anisotropy into account makes it possible to use additional data – two S-wave arrivals generated due to shear-wave splitting. However, anisotropic ray tracing requires iterative procedures for computing group velocities, which may become unstable around caustics. As a result, anisotropic kinematic inversion may become time consuming. In this paper, we explore the idea of using simplified ray tracing to locate events and estimate medium parameters. In the simplified ray-tracing algorithm, the group velocity is assumed to be equal to phase velocity in both magnitude and direction. This assumption makes the ray-tracing algorithm five times faster compared to ray tracing based on exact equations. We present a set of tests showing that given perforation-shot data, one can use inversion based on simplified ray-tracing even for moderate-to-strong anisotropic models. When there are no perforation shots, event-location errors may become too large for moderately anisotropic media.  相似文献   

12.
In this paper, a two-dimensional integrated numerical model is developed to examine the influences of cross-anisotropic soil behaviour on the wave-induced residual liquefaction in the vicinity of a pipeline buried in a porous seabed. In the wave model, the RANS (Reynolds Averaged Navier–Stokes) equation is used to govern the wave motion. In the seabed model, the residual soil response in the vicinity of an embedded pipeline is considered with the 2-D elasto-plastic solution, where the phase-resolved shear stress is used as a source for the build-up of residual pore pressure. Classical Biot׳s consolidation equation is used for linking the solid-pore fluid interaction. The validation of the proposed integrated numerical model is conducted by the comparisons with the previous experimental data. Numerical examples show that the pore pressures can accumulate to a large value, thus resulting in a larger area of liquefaction potential in the given anisotropic soil compared to that with isotropic solution. The influences of anisotropic parameters on the wave-induced residual soil response in the vicinity of pipeline are significant. A high rate of pore pressure accumulation and dissipation is observed and the liquefaction potential develops faster as the anisotropic parameters increase. Finally, a simplified approximation based on a detailed parametric investigations is proposed for the evaluation of maximum liquefaction depth (zL) in engineering application.  相似文献   

13.
Azimuthal anisotropy in rocks can result from the presence of one or more sets of partially aligned fractures with orientations determined by the stress history of the rock. A shear wave propagating in an azimuthally anisotropic medium splits into two components with different polarizations if the source polarization is not aligned with the principal axes of the medium. For vertical propagation of shear waves in a horizontally layered medium containing vertical fractures, the shear‐wave splitting depends on the shear compliance of the fractures, but is independent of their normal compliance. If the fractures are not perfectly vertical, the shear‐wave splitting also depends on the normal compliance of the fractures. The normal compliance of a fluid‐filled fracture decreases with increasing fluid bulk modulus. For dipping fractures, this results in a decrease in shear‐wave splitting and an increase in shear‐wave velocity with increasing fluid bulk modulus. The sensitivity of the shear‐wave splitting to fluid bulk modulus depends on the interconnectivity of the fracture network, the permeability of the background medium and on whether the fracture is fully or partially saturated.  相似文献   

14.
在长波长假设条件下,水平层状地层中发育一组垂直排列的裂缝构成了等效正交各向异性介质.各向异性参数与裂缝弱度参数的估算有助于非均匀各向异性介质的各向异性特征描述,而弹性逆散射理论是非均匀介质参数反演的有效途径.基于地震散射理论,我们首先推导了非均匀正交介质中纵波散射系数方程,并通过引入正交各向异性特征参数,提出了一种新颖的正交各向异性方位弹性阻抗参数化方法.为了提高反演的稳定性与横向连续性,我们发展了贝叶斯框架下的正交各向异性方位弹性阻抗反演方法,同时考虑了柯西稀疏约束正则化和平滑模型约束正则化,最终使用非线性的迭代重加权最小二乘策略实现了各向异性特征参数的稳定估算.模型和实际资料处理表明,反演结果与测井解释数据相吻合,证明了该方法能够稳定可靠地从方位叠前地震资料中获取各向异性特征参数,减小参数估算的不确定性,为非均匀正交介质的各向异性预测提供了一种高可靠性的地震反演方法.  相似文献   

15.
Fractured rock is often modelled under the assumption of perfect fluid pressure equalization between the fractures and equant porosity. This is consistent with laboratory estimates of the characteristic squirt-flow frequency. However, these laboratory measurements are carried out on rock samples which do not contain large fractures. We consider coupled fluid motion on two scales: the grain scale which controls behaviour in laboratory experiments and the fracture scale. Our approach reproduces generally accepted results in the low- and high-frequency limits. Even under the assumption of a high squirt-flow frequency, we find that frequency-dependent anisotropy can occur in the seismic frequency band when larger fractures are present. Shear-wave splitting becomes dependent on frequency, with the size of the fractures playing a controlling role in the relationship. Strong anisotropic attenuation can occur in the seismic frequency band. The magnitude of the frequency dependence is influenced strongly by the extent of equant porosity. With these results, it becomes possible in principle to distinguish between fracture- and microcrack-induced anisotropy, or more ambitiously to measure a characteristic fracture length from seismic data.  相似文献   

16.
An understanding of fluid flow through natural fractures in rocks is important in many areas, such as in the hydrocarbon and water industries, and in the safe design of disposal sites for domestic, industrial and nuclear waste. It is often impractical to obtain this information by field or laboratory scale measurements, so numerical modelling of fluid flow must be carried out using synthetic fractures with rough fracture surfaces that are representative of the natural rock fractures. Clearly there are two practical requirements; (i) the development of a method for analysing natural rock fractures to obtain their characteristic parameters, and (ii) the development of techniques for creating high quality synthetic fractures using these parameters. We have implemented these practical requirements in two new software packages. The first, ParaFrac allows the analysis and parameterisation of fracture surfaces and apertures. The second, SynFrac, enables the numerical synthesis of fracture surfaces and apertures with basic prescribed parameters. Synthetic fractures are created using, (i) a new model, which takes full account of the complex matching properties of fracture surfaces using two new parameters, a minimum matching fraction and a transition length and (ii) an improved method of partially correlated random number generation. This model more closely captures the often complex matching properties of real rock fractures than previous more simplified models.  相似文献   

17.
根据Chapman理论模型,在各向异性介质(如HTI介质)中,当入射角在0-45。范围内,慢横波会发生较大的衰减和频散,且对流体粘度敏感,而P波和快横波则比较小。对于沿裂隙法向传播的慢横波,其振幅受流体影响很大。因此,在P波响应对流体不敏感的情况下,可利用慢横波来获得裂隙型油气藏的流体信息。本文分析了胜利油田垦71地区三维三分量地震数据,检测出的慢横波振幅和旅行时异常与该区的测井资料十分吻合。分析结果还发现,与含油区相比,含水区会产生更高的横波分裂。在含水区,慢横波振幅会产生明显变化,而在含油区则几乎没有变化。  相似文献   

18.
Numerous experimental studies indicate that as a result of shear stress, the elastic behavior of granular media becomes both non-linear and anisotropic. This paper presents a simple constitutive model for sands with respect to anisotropic elasticity. To this aim, using the concept of second order fabric tensor, a simplified elasticity theory is presented which is capable of considering the effect of induced anisotropy on the elastic response. SANISAND is the name used for a family of simple anisotropic sand models developed in the framework of critical state soil mechanics and bounding surface plasticity. An existing SANISAND model is modified in order to include the proposed anisotropic elasticity. The modified model simulations are compared with those obtained from the other members of this family. It is shown that considering anisotropic elasticity can take part in explanation of drastic loss of mean principal stress when sand is subjected to reverse loading in dilative branch of behavior and as a result, improve the liquefaction simulations.  相似文献   

19.
The dependence of shear‐wave splitting in fractured reservoirs on the properties of the filling fluid may provide a useful attribute for identifying reservoir fluids. If the direction of wave propagation is not perpendicular or parallel to the plane of fracturing, the wave polarized in the plane perpendicular to the fractures is a quasi‐shear mode, and therefore the shear‐wave splitting will be sensitive to the fluid bulk modulus. The magnitude of this sensitivity depends upon the extent to which fluid pressure can equilibrate between pores and fractures during the period of the deformation. In this paper, we use the anisotropic Gassmann equations and existing formulations for the excess compliance due to fracturing to estimate the splitting of vertically propagating shear waves as a function of the fluid modulus for a porous medium with a single set of dipping fractures and with two conjugate fracture sets, dipping with opposite dips to the vertical. This is achieved using two alternative approaches. In the first approach, it is assumed that the deformation taking place is quasi‐static: that is, the frequency of the elastic disturbance is low enough to allow enough time for fluid to flow between both the fractures and the pore space throughout the medium. In the second approach, we assume that the frequency is low enough to allow fluid flow between a fracture set and the surrounding pore space, but high enough so that there is not enough time during the period of the elastic disturbance for fluid flow between different fracture sets to occur. It is found that the second approach yields a much stronger dependence of shear‐wave splitting on the fluid modulus than the first approach. This is a consequence of the fact that at higher wave frequencies there is not enough time for fluid pressure to equilibrate and therefore the elastic properties of the fluid have a greater effect on the magnitude of the shear‐wave splitting.  相似文献   

20.
为研究裂缝、裂隙介质中波致流引起的衰减,将裂缝看作背景孔隙岩石中非常薄且孔隙度非常高的层状介质,并等价成White周期层状模型.分别考虑不同类型的裂隙和孔隙之间的挤喷流影响,结合改进的Biot方程,推导得到裂缝裂隙介质的刚度与频率的关系.当缝隙中饱含流体时,介质的衰减和速度频散受裂缝、孔隙之间和裂隙、孔隙之间流体流动的显著影响.在低频极限下,裂缝裂隙介质的性质由各向异性Gassmann理论和挤喷流模型获得;而在非常高的频率时,由于缝隙中的压力来不及达到平衡,波致流的影响可忽略.分析表明,裂隙密度主要影响波的衰减,而裂隙纵横比主要控制优势衰减频率和速度显著变化的频率范围;由于不同裂隙的衰减机制不同,衰减和速度频散大小有所差异,但基本趋势相同.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号