首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
There is evidence that ice age cycles are paced by astronomical forcing, suggesting some kind of synchronisation phenomenon. Here, we identify the type of such synchronisation and explore systematically its uniqueness and robustness using a simple paleoclimate model akin to the van der Pol relaxation oscillator and dynamical system theory. As the insolation is quite a complex quasiperiodic signal involving different frequencies, the traditional concepts used to define synchronisation to periodic forcing are no longer applicable. Instead, we explore a different concept of generalised synchronisation in terms of (coexisting) synchronised solutions for the forced system, their basins of attraction and instabilities. We propose a clustering technique to compute the number of synchronised solutions, each of which corresponds to a different paleoclimate history. In this way, we uncover multistable synchronisation (reminiscent of phase- or frequency-locking to individual periodic components of astronomical forcing) at low forcing strength, and monostable or unique synchronisation at stronger forcing. In the multistable regime, different initial conditions may lead to different paleoclimate histories. To study their robustness, we analyse Lyapunov exponents that quantify the rate of convergence towards each synchronised solution (local stability), and basins of attraction that indicate critical levels of external perturbations (global stability). We find that even though synchronised solutions are stable on a long term, there exist short episodes of desynchronisation where nearby climate trajectories diverge temporarily (for about 50 kyr). As the attracting trajectory can sometimes lie close to the boundary of its basin of attraction, a small perturbation could quite easily make climate to jump between different histories, reducing the predictability. Our study brings new insight into paleoclimate dynamics and reveals a possibility for the climate system to wander throughout different climatic histories related to preferential synchronisation regimes on obliquity, precession or combinations of both, all over the history of the Pleistocene.  相似文献   

2.
3.
We present an atmosphere–ocean regional climate model for the Mediterranean basin, called the PROTHEUS system, composed by the regional climate model RegCM3 as the atmospheric component and by a regional configuration of the MITgcm model as the oceanic component. The model is applied to an area encompassing the Mediterranean Sea and compared to a stand-alone version of its atmospheric component. An assessment of the model performances is done by using available observational datasets. Despite a persistent bias, the PROTHEUS system is able to capture the inter-annual variability of seasonal sea surface temperature (SST) and also the fine scale spatio-temporal evolution of observed SST anomalies, with spatial correlation as high as 0.7 during summer. The close inspection of a 10-day strong wind event during the summer of 2000 proves the capability of the PROTHEUS system to correctly describe the daily evolution of SST under strong air–sea interaction conditions. As a consequence of the model’s skill in reproducing observed SST and wind fields, we expect a reliable estimation of air–sea fluxes. The model skill in reproducing climatological land surface fields is in line with that of state of the art regional climate models.  相似文献   

4.
5.
We analyze climate change in a cost–benefit framework, using the emission and concentration profiles of Wigley et al. (Nature 379(6562):240–243, 1996). They present five scenarios that cover the period 1990–2300 and are designed to reach stabilized concentration levels of 350, 450, 550, 650 and 750 ppmv, respectively. We assume that the damage cost in each year t is proportional to the corresponding gross world product and the square of the atmospheric temperature increase (ΔT(t)). The latter is estimated with a simple two-box model (representing the atmosphere and deep ocean). Coupling the damage cost with the abatement cost, we interpolate between the five scenarios to find the one that is optimal in the sense of minimizing the sum of discounted annual (abatement plus damage) costs over a time horizon of N years. Our method is simpler than ‘traditional’ models with the same purpose, and thus allows for a more transparent sensitivity study with respect to the uncertainties of all parameters involved. We report our central result in terms of the stabilized emission level E o and concentration level p o (i.e. their values at t = 300 years) of the optimal scenario. For the central parameter values (that is, N = 150 years, a discount rate r dis = 2%/year and a growth rate r gro = 1%/year of gross world product) we find E o  = 8.0 GtCO2/year and p o = 496 ppmv. Varying the parameters over a wide range, we find that the optimal emission level remains within a remarkably narrow range, from about 6.0 to 12 GtCO2/year for all plausible parameter values. To assess the significance of the uncertainties we focus on the social cost penalty, defined as the extra cost incurred by society relative to the optimum if one makes the wrong choice of the emission level as a result of erroneous damage and abatement cost estimates. In relative terms the cost penalty turns out to be remarkably insensitive to errors. For example, if the true damage costs are three times larger or smaller than the estimate, the total social cost of global climate change increases by less than 20% above its minimum at the true optimal emission level. Because of the enormous magnitude of the total costs involved with climate change (mitigation), however, even a small relative error implies large additional expenses in absolute terms. To evaluate the benefit of reducing cost uncertainties, we plot the cost penalty as function of the uncertainty in relative damage and abatement costs, expressed as geometric standard deviation and standard deviation respectively. If continued externality analysis reduces the geometric standard deviation of relative damage cost estimates from 5 to 4, the benefit is 0.05% of the present value G tot of total gross word product over 150 years (about $3.9 × 1015), and if further research reduces the standard deviation of relative abatement costs from 1 to 0.5, the benefit is 0.03% of G tot .  相似文献   

6.
The University of Oklahoma’s Advanced Regional Prediction System (ARPS) was used to examine the impacts of varying mean soil moisture and model resolution on the magnitude and frequency of precipitation events in the U.S. Central Plains and to determine whether modeled soil moisture and precipitation fields exhibit scale invariance using the statistical moments. It was found that high soil moisture resulted in greater precipitation amounts and a higher frequency of events, suggesting the occurrence of a positive soil moisture–precipitation feedback. The scaling analysis performed on cumulative precipitation determined that these fields did not exhibit signs of self-similarity and, therefore, statistical properties cannot be predicted at other resolutions. The scaling properties of soil moisture were highly variable in time which has important implications for the use of remotely sensed data, as scaling properties from 1 day cannot necessarily be applied to subsequent days.  相似文献   

7.
8.
The hydrology of coastal catchments is influenced by both sea level and climate. Hence, a comprehensive assessment of the impact of climate change on coastal catchments is a challenging task. In the present study, a coupled groundwater–surface water model is forced by dynamically downscaled results from a general circulation model. The effects on water quantity and quality of a relatively large lake used for water supply are analyzed. Although stream inflow to the lake is predicted to decrease during summer, the storage capacity of the lake is found to provide a sufficient buffer to support sustainable water abstraction in the future. On the other hand, seawater intrusion into the stream is found to be a significant threat to the water quality of the lake, possibly limiting its use for water supply and impacting the aquatic environment. Additionally, the results indicate that the nutrient load to the lake and adjacent coastal waters is likely to increase significantly, which will increase eutrophication and have negative effects on the surface water ecology. The hydrological impact assessment is based on only one climate change projection; nevertheless, the range of changes generated by other climate models indicates that the predicted results are a plausible realization of climate change impacts. The problems identified here are expected to be relevant for many coastal regimes, where the hydrology is determined by the interaction between saline and fresh groundwater and surface water systems.  相似文献   

9.
The mechanisms involved in Atlantic meridional overturning circulation (AMOC) decadal variability and predictability over the last 50 years are analysed in the IPSL–CM5A–LR model using historical and initialised simulations. The initialisation procedure only uses nudging towards sea surface temperature anomalies with a physically based restoring coefficient. When compared to two independent AMOC reconstructions, both the historical and nudged ensemble simulations exhibit skill at reproducing AMOC variations from 1977 onwards, and in particular two maxima occurring respectively around 1978 and 1997. We argue that one source of skill is related to the large Mount Agung volcanic eruption starting in 1963, which reset an internal 20-year variability cycle in the North Atlantic in the model. This cycle involves the East Greenland Current intensity, and advection of active tracers along the subpolar gyre, which leads to an AMOC maximum around 15 years after the Mount Agung eruption. The 1997 maximum occurs approximately 20 years after the former one. The nudged simulations better reproduce this second maximum than the historical simulations. This is due to the initialisation of a cooling of the convection sites in the 1980s under the effect of a persistent North Atlantic oscillation (NAO) positive phase, a feature not captured in the historical simulations. Hence we argue that the 20-year cycle excited by the 1963 Mount Agung eruption together with the NAO forcing both contributed to the 1990s AMOC maximum. These results support the existence of a 20-year cycle in the North Atlantic in the observations. Hindcasts following the CMIP5 protocol are launched from a nudged simulation every 5 years for the 1960–2005 period. They exhibit significant correlation skill score as compared to an independent reconstruction of the AMOC from 4-year lead-time average. This encouraging result is accompanied by increased correlation skills in reproducing the observed 2-m air temperature in the bordering regions of the North Atlantic as compared to non-initialized simulations. To a lesser extent, predicted precipitation tends to correlate with the nudged simulation in the tropical Atlantic. We argue that this skill is due to the initialisation and predictability of the AMOC in the present prediction system. The mechanisms evidenced here support the idea of volcanic eruptions as a pacemaker for internal variability of the AMOC. Together with the existence of a 20-year cycle in the North Atlantic they propose a novel and complementary explanation for the AMOC variations over the last 50 years.  相似文献   

10.
《大气与海洋》2013,51(3):129-139
Abstract

Both the earth‐reflected shortwave and outgoing longwave radiation (OLR) fluxes at the top of the atmosphere (TOA) as well as surface‐absorbed solar fluxes from Canadian Regional Climate Model (CRCM) simulations of the Mackenzie River Basin for the period March 2000 to September 2003 are compared with the radiation fluxes deduced from satellite observations. The differences between the model and satellite solar fluxes at the TOA and at the surface, which are used in this paper to evaluate the CRCM performance, have opposite biases under clear skies and overcast conditions, suggesting that the surface albedo is underestimated while cloud albedo is overestimated. The slightly larger differences between the model and satellite fluxes at the surface compared to those at the TOA indicate the existence of a small positive atmospheric absorption bias in the model. The persistent overestimation of TOA reflected solar fluxes and underestimation of the surface‐absorbed solar fluxes by the CRCM under all sky conditions are consistent with the overestimation of cloud fraction by the CRCM. This results in a larger shortwave cloud radiative forcing (CRF) both at the TOA and at the surface in the CRCM simulation. The OLR from the CRCM agrees well with the satellite observations except for persistent negative biases during the winter months under all sky conditions. Under clear skies, the OLR is slightly underestimated by the CRCM during the winter months and overestimated in the other months. Under overcast conditions the OLR is underestimated by the CRCM, suggesting an underestimation of cloud‐top temperature by the CRCM. There is an improvement in differences between model and satellite fluxes compared to previously reported results largely because of changes to the treatment of the surface in the model.  相似文献   

11.
12.
13.
Intraseasonal variability in the eastern Pacific warm pool in summer is studied, using a regional ocean?Catmosphere model, a linear baroclinic model (LBM), and satellite observations. The atmospheric component of the model is forced by lateral boundary conditions from reanalysis data. The aim is to quantify the importance to atmospheric deep convection of local air?Csea coupling. In particular, the effect of sea surface temperature (SST) anomalies on surface heat fluxes is examined. Intraseasonal (20?C90?day) east Pacific warm-pool zonal wind and outgoing longwave radiation (OLR) variability in the regional coupled model are correlated at 0.8 and 0.6 with observations, respectively, significant at the 99% confidence level. The strength of the intraseasonal variability in the coupled model, as measured by the variance of outgoing longwave radiation, is close in magnitude to that observed, but with a maximum located about 10° further west. East Pacific warm pool intraseasonal convection and winds agree in phase with those from observations, suggesting that remote forcing at the boundaries associated with the Madden?CJulian oscillation determines the phase of intraseasonal convection in the east Pacific warm pool. When the ocean model component is replaced by weekly reanalysis SST in an atmosphere-only experiment, there is a slight improvement in the location of the highest OLR variance. Further sensitivity experiments with the regional atmosphere-only model in which intraseasonal SST variability is removed indicate that convective variability has only a weak dependence on the SST variability, but a stronger dependence on the climatological mean SST distribution. A scaling analysis confirms that wind speed anomalies give a much larger contribution to the intraseasonal evaporation signal than SST anomalies, in both model and observations. A LBM is used to show that local feedbacks would serve to amplify intraseasonal convection and the large-scale circulation. Further, Hovm?ller diagrams reveal that whereas a significant dynamic intraseasonal signal enters the model domain from the west, the strong deep convection mostly arises within the domain. Taken together, the regional and linear model results suggest that in this region remote forcing and local convection?Ccirculation feedbacks are both important to the intraseasonal variability, but ocean?Catmosphere coupling has only a small effect. Possible mechanisms of remote forcing are discussed.  相似文献   

14.
The Weather Research and Forecast (WRF) model with its land surface model NOAH was set up and applied as regional climate model over Europe. It was forced with the latest ERA-interim reanalysis data from 1989 to 2008 and operated with 0.33° and 0.11° resolution. This study focuses on the verification of monthly and seasonal mean precipitation over Germany, where a high quality precipitation dataset of the German Weather Service is available. In particular, the precipitation is studied in the orographic terrain of southwestern Germany and the dry lowlands of northeastern Germany. In both regions precipitation data is very important for end users such as hydrologists and farmers. Both WRF simulations show a systematic positive precipitation bias not apparent in ERA-interim and an overestimation of wet day frequency. The downscaling experiment improved the annual cycle of the precipitation intensity, which is underestimated by ERA-interim. Normalized Taylor diagrams, i.e., those discarding the systematic bias by normalizing the quantities, demonstrate that downscaling with WRF provides a better spatial distribution than the ERA interim precipitation analyses in southwestern Germany and most of the whole of Germany but degrades the results for northeastern Germany. At the applied model resolution of 0.11°, WRF shows typical systematic errors of RCMs in orographic terrain such as the windward–lee effect. A convection permitting case study set up for summer 2007 improved the precipitation simulations with respect to the location of precipitation maxima in the mountainous regions and the spatial correlation of precipitation. This result indicates the high value of regional climate simulations on the convection-permitting scale.  相似文献   

15.
Abstract

A recently published slab model formulation of lake thermodynamics (Goyette et al., 2000), including an empirical factor to adjust the incoming heat flux so that the modelled lake surface temperature agrees with observed climatology, leads to a distinct lack of energy conservation. The empirical adjustment conceptually represents an exchange of heat between the mixed‐layer water (the slab that is explicitly simulated in the model) and deeper layers of water. It ensures a realistic temporal progression of temperature in the mixed layer, but the thermodynamic balance of the deeper water is not considered. When the deeper water is considered, it is found that the empirical adjustment accounts for the entire heat input to the deeper water, and on an annual mean basis, it is considerably unbalanced. This reveals a flaw in this model concept and, although not entirely invalidating the model, it needs to be included as a caveat in its use.  相似文献   

16.
17.
The sea surface temperature anomaly pattern differs between the central Pacific (CP) and eastern Pacific (EP) El Niños during boreal summer. It is expected that the respective atmospheric response will be different. In order to identify differences in the responses to these two phenomena, we examine the Community Atmosphere Model Version 4 simulations forced with observed monthly sea surface temperature during 1979–2010 and compare with the corresponding observations. For CP El Niño, a triple precipitation anomaly pattern appears over East Asia. During EP El Niño, the triple pattern is not as significant as and shifts eastward and southward compared to CP El Niño. We also examine the influence of CP La Niña and EP La Niña on East Asia. In general, the impact of CP (EP) La Niña on tropics and East Asia seems to be opposite to that of CP (EP) El Niño. However, the impacts between the two types of La Niña are less independent compared to the two types of warm events. Both types of El Niño (La Niña) correspond to a stronger (weaker) western North Pacific summer monsoon. The sensitivity experiments support this result. But the CP El Niño (La Niña) may have more significant influence on East Asia summer climate than EP El Niño (La Niña), as the associated low-level anomalous wind pattern is more distinct and closer to the Asian continent compared to EP El Niño (La Niña).  相似文献   

18.
19.
Residuals from agricultural pesticides threaten the environment and human health. Climate change alters these externalities because it affects pest pressure and pesticide application rates. This study examines damages from pesticide externalities in US agriculture under different climate projections and the effects of alternative regulations. We find divergent impacts of externality regulation and climate change on agricultural production in the US. A Pigovian tax on pesticide externalities generally increases crop production cost, but farm revenue improves because of increased commodity prices. Climate change generally decreases US farm revenue because production increases and prices fall. Results also show a heterogeneous effect of climate change on pest management intensities across major crops.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号