首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
《Marine Chemistry》1986,19(2):153-160
Volatile hydrocarbons (VHCs) in the Kiel Bight atmosphere were collected by adsorption on silanized porous glass (PG). This material proved to have a good capacity to concentrate VHCs, and it is easy to clean and to maintain free of contaminants.VHC concentrations in the atmosphere of the Bight vary strongly, depending on the wind direction and the amount of precipitation. Southerly, southwesterly and westerly winds are responsible for the transportation of VHCs from the land to the Kiel Bight.  相似文献   

2.
The objective of this study is to understand the process of fluid flow in pipe and porous media with different pore structures.High-resolution Magnetic Resonance Imaging(MRI)technique was used to visualize the pore structure and measure fluid flow.The porous media was formed by packed bed of glass beads.Flow measurement was carried out by a modified spin echo sequence.The results show that the velocity distribution in pipe is annular and the linear relation between MRI velocity and actual velocity is found in pipe flow measurement.The flow distribution in porous media is rather heterogeneous,and it is consistent with heterogeneous pore structure.The flow through pores with the high volume flow rate is determined largely by geometrical effects such as pore size and cross-sectional area.  相似文献   

3.
We study the interactions between a non-breaking solitary wave and a submerged permeable breakwater experimentally and numerically. The particle image velocimetry (PIV) technique is employed to measure instantaneous free surface displacements and velocity fields in the vicinity of a porous dike. The porous medium, consisting of uniform glass spheres, is mounted on the seafloor. Due to the limited size of each field of view (FOV) for high spatial resolution purposes, four FOVs are set in order to form a continuous flow field around the structure. Quantitative mean properties are obtained by ensemble averaging 30 repeated instantaneous measurements. The Reynolds decomposition method is then adopted to separate the velocity fluctuations for each trial to estimate the turbulent kinetic energy. In addition, a highly accurate two-dimensional model with the volume of fluid interface tracking technique is used to simulate an idealized volume-averaged porous medium. The model is based on the Volume-Averaged Reynolds Averaged Navier–Stokes equations coupled with the non-linear kε turbulence closure solver. Comparisons are performed between measurements and numerical results for the time histories of the free surface elevation recorded by wave gauges and the spatial distributions of free surface displacement with the corresponding velocity and turbulent kinetic energy around the permeable object imaged by the PIV system. Fairly good agreements are obtained. It is found that the measured and modeled turbulent intensities on the weather side are much larger than those on the lee side of the object, and that the magnitude of the turbulent intensity increases with increasing wave height of a solitary wave at a constant water depth. The verified numerical model is then used to estimate the energy reflection, transmission and dissipation using the energy integral method by varying the aspect ratio and the grain size of the permeable obstacle.  相似文献   

4.
This paper presents a numerical model for simulating wave interaction with porous structures. Incompressible smoothed particle hydrodynamics in porous media (ISPHP) method is introduced in this study as a mesh free particle approach that is capable of efficiently tracking the large deformation of free surfaces in a Lagrangian coordinate system. The developed model solves two porous and pure fluid flows simultaneously by means of one equation that is equivalent to the unsteady 2D Navier–Stokes (NS) equations for the flows outside the porous media and the extended Forchheimer equation for the flows inside the porous media. Interface boundary between pure fluid and porous media is effectively modeled by the SPH integration technique. A two-step semi-implicit scheme is also used to solve the fluid pressure satisfying the fluid incompressibility criterion.The developed ISPHP model is then validated via different experimental and numerical data. Fluid flow pattern through porous dam with different porosities is studied and regular wave attenuation over porous seabed is investigated. As a practical case, wave running up and overtopping on a caisson breakwater protected by a porous armor layer are modeled. The results show good agreements between numerical and laboratory data in terms of free surface displacement, overtopping rate and pressure distribution. Based on this study, ISPHP model is an efficient method for simulating the coastal applications with porous structures.  相似文献   

5.
By the method of polarographic profiling performed with the help of an Au-Hg glass microelectrode, we obtained the first high-resolution vertical profiles of the distributions of oxygen, sulfides, oxidized and reduced forms of iron, reduced manganese, and iron monosulfide in pore waters of the bottom sediments in the Sevastopol Bay. It is shown that the regional features of the vertical distributions of the main polarographically active compounds are determined by the combination of several factors: the contents of organic carbon and iron and the sizes of particles of the sediments.  相似文献   

6.
A smoothed particle hydrodynamic (SPH) model is developed to simulate wave interaction with porous structures. The mean flow outside the porous structures is obtained by solving Reynolds Averaged Navier–Stokes (RANS) equations and the turbulence field is calculated by a large eddy simulation (LES) model. The porous flow is described by the spatially averaged Navier–Stokes type equations with the resistance effect of the porous media being represented by an empirical frictional source term. The interface boundaries between the porous flow and the outside flow are modeled by means of specifying a transition zone along the interface. The model is validated against other available numerical results and experimental data for wave damping over porous seabed with different levels of permeability. The validated model is then employed to investigate wave breaking over a submerged porous breakwater and good agreements between the SPH model results and the experimental data are obtained in terms of free surface displacement. In addition the predicted velocity, vorticity and pressure fields near the porous breakwater and in the breaking wave zone are also analyzed.  相似文献   

7.
The elimination of re-reflected waves in a wave channel by installing a porous medium in front of the wavemaker is investigated. The thickness of the porous wall required to eliminate the re-reflected waves is shown to be related to th porosity, friction coefficient, and wave period, as well as to both the positions of the porous medium and the test structure. However, this study indicates that the goal of eliminating re-reflected waves can be achieved by simply varying the thickness of the porous medium according to the wave period, with all the other factors arbitrarily selected.Assuming that the oscillation amplitude of the wavemaker board is constant, the primitive wave amplitude, before reaching the porous medium, becomes smaller as the wave period is increased. In addition, the study found that the required thickness of the porous medium for eliminating the re-reflected wave becomes larger as the wave period is increased. This results in a trend which further reduces the wave amplitude after the wave passes through the porous medium. In consequence, the oscillation amplitude of a wavemaker board has to be adjusted in a larger scale if the wave period is to be increased.  相似文献   

8.
The present study theoretically as well as experimentally investigates the interaction between waves and an array of porous circular cylinders with or without an inner porous plate based on the linear wave theory.To design more effective floating breakwaters,the transmission rate of waves propagating through the array is evaluated.Each cylinder in the array is partly made of porous materials.Specifically,it possesses a porous sidewall and an impermeable bottom.In addition,an inner porous plate is horizontally fixed inside the cylinders.It dissipates the wave more effectively and eliminates the sloshing phenomenon.The approach suggested by Kagemoto and Yue(1986) is adopted to solve the multiple-scatter problem,while a hierarchical interaction theory is adopted to deal with hydrodynamic interactions among a great number of bodies,which efficiently saves computation time.Meanwhile,a series of model tests with an array of porous cylinders is performed in a wave basin to validate the theoretical work and the calculated results.The draft of the cylinders,the location of the inner porous plate,and the spacing between adjacent cylinders are also adjusted to investigate their effects on wave dissipation.  相似文献   

9.
《Coastal Engineering》2006,53(10):845-855
This paper presents a study of wave damping over porous seabeds by using a two-dimensional numerical model. In this model, the flow outside of porous media is described by the Reynolds Averaged Navier–Stokes equations. The spatially averaged Navier–Stokes equations, in which the presence of porous media is considered by including additional inertia and nonlinear friction forces, is derived and implemented for the porous flow. Unlike the earlier models, the present model explicitly represents the flow resistance dependency on Reynolds number in order to cover wider ranges of porous flows. The numerical model is validated against available theories and experimental data. The comparison between the numerical results and the theoretical results indicates that the omission or linearization of the nonlinear resistance terms in porous flow models, which is the common practice in most of analytical models, can lead to significant errors in estimating wave damping rate. The present numerical model is used to simulate nonlinear wave interaction with porous seabeds and it is found that the numerical results compare well with the experimental data for different wave nonlinearity. The additional numerical tests are also conducted to study the effects of wavelength, seabed thickness and Reynolds number on wave damping.  相似文献   

10.
The development of new technological equipment for the implementation of highly effective methods of recovering highly viscous oil from deep reservoirs is an important scientific and technical challenge. Thermal recovery methods are promising approaches to solving the problem. It is necessary to carry out theoretical and experimental research aimed at developing oil-well tubing (OWT) with composite heatinsulating coatings on the basis of basalt and glass fibers. We used the method of finite element analysis in Nastran software, which implements complex scientific and engineering calculations, including the calculation of the stress-strain state of mechanical systems, the solution of problems of heat transfer, the study of nonlinear static, the dynamic transient analysis of frequency characteristics, etc. As a result, we obtained a mathematical model of thermal conductivity which describes the steady-state temperature and changes in the fibrous highly porous material with the heat loss by Stefan–Boltzmann’s radiation. It has been performed for the first time using the method of computer modeling in Nastran software environments. The results give grounds for further implementation of the real design of the OWT when implementing thermal methods for increasing the rates of oil production and mitigating environmental impacts.  相似文献   

11.
Numerical modeling of nonlinear water waves over heterogeneous porous beds   总被引:1,自引:0,他引:1  
Eric C. Cruz  Qin Chen   《Ocean Engineering》2007,34(8-9):1303-1321
The transformation of nonlinear water waves over porous beds is studied by applying a numerical model based on Chen's [2006. Fully nonlinear Boussinesq-type equations for waves and currents over porous beds. Journal of Engineering Mechanics, 132:2, 220–230] Boussinesq-type equations for highly nonlinear waves on permeable beds. The numerical model uses a high-order time-marching solution and fourth-order finite-difference schemes for discretization of first-order spatial derivatives to obtain a computational accuracy consistent with the model equations. By forcing the wave celerity and spatial porous-damping rate of the linearized model to match the exact linear theory for horizontal porous bed over a prescribed range of relative depths, the values of the model parameters are optimally determined. Numerical simulations of the damped wave propagation over finite-thickness porous layer demonstrate the accuracy of both the numerical model and governing equations, which have been shown by prior theoretical analyses to be accurate for both nominal and thick porous layers. These simulations also elucidate on the significance of the higher-order porous-damping terms and the influence of the hydraulic parameters. Application of the model to the simulation of the wave field around a laboratory-scale submerged porous mound provides a measure of its capability, as well as useful insight into the scaling of the porous-resistance coefficients. For application to heterogeneous porous beds, the assumption of weak spatial variation of the porous resistance is examined using truncated forms of the governing equations. The results indicate that the complete set of Boussinesq-type equations is applicable to porous beds of nonhomogeneous makeup.  相似文献   

12.
In the light of increasing oil exploration and production in the northern North Sea, the Brent, Beryl and Forties oil fields, representing three different types of operation, and a number of stations between the Forties field and the Firth of Forth, were sampled to determine the levels of total (by fluorescence), alkane (by glass capillary gas chromatography) and aromatic (by gas chromatography-mass spectrometry) hydrocarbons in water and sediments. Close to the Beryl platform, where diesel-washed drill cuttings have been dumped, there was an accumulation of petrogenic hydrocarbons in the sediment, resulting in a build up of certain aryl hydrocarbons, notably the dibenzthiophenes and 3- and 4-ring aromatic compounds. In all the sediment samples analysed for aromatic hydrocarbons, relatively large amounts of 5- and 6-ring compounds were found in areas expected to be free of pollution, as well as from areas around oil platforms and from the Firth of Forth. Their source is likely to be windborne combustion products.  相似文献   

13.
This paper aims to investigate the effects of the porous baffles on the suppression of sloshing for the tanks with axisymmetric geometries under lateral excitation. Based on the assumptions of inviscid, irrotational, incompressible liquid and small amplitude sloshing, an axisymmetric boundary element method (BEM) for 3D Laplace equation is derived by using the Green's theorem together with the weighted residual method. And a zoning method is employed to model fluid domain in the tanks with complex porous baffles. Meanwhile, the porous baffles are treated motioning together with the tanks, and the velocity across the porous baffle is assumed to be linearly proportional to the pressure gradient between each side of the porous baffle. And the mechanism of suppressing the sloshing response is mainly the energy dissipation of the fluid passing through the porous baffle. Moreover, the linear free surface boundary conditions are also used to solve the governing equations. Compared with other numerical methods, the most prominent advantage of the BEM in solving axisymmetric potential problem is that only the boundaries of half the cross-section instead of the entire problem domain should be discretized, which can cut down large amount of memory and time costs. The present method is verified by comparing the numerical results with the existing literatures, and excellent agreements are obtained. Meanwhile, the proposed models are applied to investigate the effects of the porous baffles on sloshing response in circular cylindrical, annular cylindrical and conical tanks. The effects of the porous baffle length, porous-effect parameter, installation angle and baffle height on the sloshing force, natural frequency and surface elevation are studied. Additionally, some typical sloshing pressure distributions, velocity potential contours and velocity fields are plotted. The results show that swirls at the tips of the baffles can be observed in many cases, and the top-mounted porous baffle makes more significant suppression effects on sloshing response than that of bottom-mounted porous baffle, while increasing the number of ring porous baffles can achieve better restraint effects on sloshing response. And increasing the baffle length of the horizontal wall-mounted ring porous baffle can significantly decrease the sloshing frequencies, as well as the first non-dimensional natural frequency decreases with decrease in porous-effect parameter of the coaxial porous baffle. In addition, remarkable effects on sloshing can be obtained when reasonable designed by selecting the optimal porous-effect parameter, installation angle and baffle height. And this paper can be a useful guide for the seismic design and analysis of many actual liquid storage tanks (such as the Advanced Passive PWR, large water cooling tower, etc.).  相似文献   

14.
Ming Zhao  Liang Cheng 《Ocean Engineering》2010,37(14-15):1357-1366
A finite element model is established for simulating flow in and out a porous media. The extended Darcy equation inside the porous media and the Navier–Stokes equations in the fluid are coupled via the continuity condition at the interface between the two media. The model is firstly validated against the analytical and the numerical results available in literature. Then it is applied to simulate flow past a circular cylinder covered by a porous layer. The effect of the porous layer on the reduction of lift coefficient is investigated numerically. It is found that the lift reduction can be achieved by properly choosing the porous material. However, the amount of reduction greatly depends on the Reynolds number, the permeability and the Forchheimer coefficient.  相似文献   

15.
波浪与大孔隙多孔介质相互作用的耦合数学模型   总被引:1,自引:0,他引:1  
建立了波浪与大孔隙多孔介质相互作用的耦合数学模型,波浪域的控制方程为雷诺时均方程和k-ε紊流模型。对于计算域的入射波采用推板式造波,它可以是线性波、椭圆余弦波和孤立波。采用PLIC-VOF法追踪波浪自由表面。对于多孔介质内的孔隙流场采用非线性Forchheimer方程,两区域共享连续方程,最后导出的波浪域与孔隙流域的压力修正方程具有完全相同的形式,利用这个方程能够同时而不是分别求解波浪场和孔隙流场,避免了在内部边界上给定匹配条件,实现了波浪场与孔隙流场的同步耦合。波浪与粗颗粒海床、平底床面上抛石潜堤及斜坡上抛石潜堤相互作用的验证计算结果表明该模型可用于研究波浪与大孔隙多孔介质相互作用的问题。  相似文献   

16.
Incompressible SPH flow model for wave interactions with porous media   总被引:1,自引:0,他引:1  
The paper presents an Incompressible Smoothed Particle Hydrodynamics (ISPH) method to simulate wave interactions with a porous medium. The SPH method is a mesh free particle modeling approach that is capable of tracking the large deformation of free surfaces in an easy and accurate manner. The ISPH method employs a strict incompressible hydrodynamic formulation to solve the fluid pressure and the numerical solution is obtained by using a two-step semi-implicit scheme. The ISPH flow model solves the unsteady 2D Navier–Stokes (NS) equations for the flows outside the porous media and the NS type model equations for the flows inside the porous media. The presence of porous media is considered by including additional friction forces into the equations. The developed ISPH model is first validated by the solitary and regular waves damping over a porous bed and the solitary wave interacting with a submerged porous breakwater. The convergence of the method and the sensitivity of relevant model parameters are discussed. Then the model is applied to the breaking wave interacting with a breakwater covered with a layer of porous materials. The computational results demonstrate that the ISPH flow model could provide a promising simulation tool in coastal hydrodynamic applications.  相似文献   

17.
Solitary wave evolution over a shelf including porous damping is investigated using Volume-Averaged Reynolds Averaged Navier–Stokes equations. Porous media induced damping is determined based on empirical formulations for relevant parameters, and numerical results are compared with experimental information available in the literature. The aim of this work is to investigate the effect of wave damping on soliton disintegration and evolution along the step for both breaking and non-breaking solitary waves. The influence of several parameters such as geometrical configuration (step height and still water level), porous media properties (porosity and nominal diameter) or solitary wave characteristics (wave height) is analyzed. Numerical simulations show the porous bed induced wave damping is able to modify wave evolution along the step. Step height is observed as a relevant parameter to influence wave evolution. Depth ratio upstream and downstream of the edge appears to be the more relevant parameter in the transmission and reflection coefficients than porosity or the ratio of wave height–water depth. Porous step also modifies the fission and the solitary wave disintegration process although the number of solitons is observed to be the same in both porous and impermeable steps. In the absence of breaking, porous bed triggers a faster fission of the incident wave into a second and a third soliton, and the leading and the second soliton reduces their amplitude while propagating. This decrement is observed to increase with porosity. Moreover, the second soliton is released before on an impermeable step. Breaking process is observed to dominate over the wave dissipation at the porous bottom. Fission is first produced on a porous bed revealing a clear influence of the bottom characteristics on the soliton generation. The amplitude of the second and third solitons is very similar in both impermeable and porous steps but they evolved differently due to the effect of bed damping.  相似文献   

18.
Wave reflection by a vertical wall with a horizontal submerged porous plate   总被引:3,自引:0,他引:3  
By applying the linear water wave theory and the eigenfunction expansion method, the wave reflection by a vertical wall with a horizontal submerged porous plate is investigated in this paper. The numerical results, concerning the effects of the dimensionless plate length, the relative water depth, and the porous effect parameter of the plate on the wave loads on the plate and the wave height near the wall as well as the reflection coefficient, are discussed. It is found that the submerged plate increases the complexity of the phenomenon related to the wave reflection and refraction in the close region of the wall, and leads to the occurrence of the phenomenon of wave trapping. The results indicate that there may exist a process of focusing wave energy near the wall for small dimensionless porous effect parameters, whereas the increase of the dimensionless porous effect parameter decreases gradually the wave height until setdown occurs. The behavior of a larger plate with proper porosity is similar to that of a wave absorber which can significantly suppress not only the wave height above the plate but also the reflection waves. The ability of the porous plate to reduce the wave height on the wall surface is, in general, directly proportional to the dimensionless plate length and may be strongest for a proper value of the dimensionless porous effect parameter. It is also demonstrated that the wave loads on a porous plate are smaller than those on an impermeable plate.  相似文献   

19.
Wave transformation over submerged permeable breakwater on porous bottom   总被引:1,自引:0,他引:1  
A numerical model is presented in this study to investigate the wave transformation over a submerged permeable breakwater on a porous slope seabed. For this purpose, the time-dependent mild-slope equation is newly derived for waves propagating over two layers of porous medium. This new mild-slope equation involves the parameters of the porous medium, and it is a type of hyperbolic differential equation, therefore numerically efficient. The validity of the present model is verified based on the comparisons with the previous experiments. The effects of the permeable properties of both the porous seabed and the submerged permeable breakwater are discussed in detail. The geometry of the submerged permeable breakwater to the wave transformation is also investigated based on the numerical solutions.  相似文献   

20.
Modified Moving Particle method in Porous media (MMPP) is introduced in this study for simulating a flow interaction with porous structures. By making use of the sub-particle scale (SPS) turbulence model, a unified set of equations are introduced for the entire computational domain and a proper boundary treatment is suggested at the interfaces between fluid and the porous media. Similar to the Incompressible Smoothed Particle Hydrodynamic (ISPH) method, a robust two-step semi-implicit scheme is utilized to satisfy the incompressibility criterion. By means of the introduced model, different flow regimes through multi-layered porous structures with arbitrary shapes can be simulated and there is no need to implement calibration factors.The developed MMPP model is then validated via simulating the experiments of Liu et al. (1999) i.e. linear and turbulent flows through porous dams and the experiments of Sakakiyama and Liu (2001) i.e. wave overtopping on a caisson breakwater protected by multi layered porous materials. Good agreements between numerical and laboratory data present the ability of the introduced model in simulating various flow regimes through multi-layered porous structures. It is concluded that the turbulent flow is an important issue particularly at the interface between the free fluid and porous media and consequently, the accuracy of the previous Lagrangian models that were based on neglecting the turbulence effect can be improved significantly by means of the present model. In addition, to satisfy the continuity criteria in the SPH models, it is necessary to modify density of particles in accordance with their porosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号