首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An integrated dust storm modeling system is developed for the prediction of dust storms. The system couples a wind erosion scheme, a dust transportation model and the Penn State/UCAR modeling system (MM5) with a geographic information database. The system can be used for the prediction of dust emission rate and dust concentration associated with individual dust storm events. Two severe dust storm events occurred in spring 2002, one on the 19th–22nd of March and the other on the 6th–9th of April. The integrated modeling system is used to simulate the two events. The numerical results are compared with surface weather records and satellite images and good agreement is found between the model results and observation in dust concentration distribution and evolutions. The Gobi Desert in southern Mongolia and the Badain Jaran Desert, Tengger Desert and Hunshandake sandy land in Inner Mongolia (China) are identified to be the dust sources for the two events. The dominant modes of dust particles over western Inner Mongolia and Mongolia are from 2 to 11 μm in size, and 2 to 22 μm over Beijing and its surrounding area. The emission of particles in the 2–11 μm size range is found to be most important for Northeast Asian dust storms.  相似文献   

2.
Modeling mineral dust emissions from Chinese and Mongolian deserts   总被引:6,自引:0,他引:6  
The present study investigates the frequency and intensity of mineral dust emissions over the deserts of eastern Asia from 1996 to 2001. Mineral dust emissions are simulated using a physical dust emission scheme over a region extending from 35.5°N to 47°N and from 73°E to 125°E. The input parameters required by the dust emission model are (1) surface features data including aerodynamic roughness length, soil dry size distribution and texture; and (2) meteorological surface data, mainly wind speed, soil moisture and snow cover. The way by which these surface features and meteorological data can be assessed is described and discussed. The influence of soil moisture and snow cover is taken into account and their effects on simulated dust emission are quantified.The simulations reproduce on a daily basis the location and intensity of the severe events of April 1998 and spring 2001 as recorded by the meteorological stations and/or described in various studies. Based on 6 yr of simulations, the main dust source regions are identified and their relative contributions to the total dust emissions are quantified.The seasonal cycle of the dust storms frequency is well reproduced with a maximum in spring. The simulations suggest that it is mainly controlled by the emissions occurring in the Taklimakan desert in latter spring and in summer, and by those occurring in the northern deserts of China in winter. The Taklimakan desert appears to be the most frequent and steady source of dust emissions during the studied period. On the other hand, in the Gobi desert, only a few dust emission events are simulated, but the dust amount emitted during each event is generally very large. In the northern deserts of China, dust emissions are frequent and their intensity is variable.These results show an important annual and inter-annual variability of the emitted dust (between 100 Mt yr− 1 and 460 Mt yr− 1), mainly controlled by the occurrence of severe events in the Gobi desert and in the northern deserts of China.  相似文献   

3.
Contributions of the nine potential dust source regions (North and South Africa, the Arabian Peninsula, Central Asia, eastern and western China, North and South America, and Australia) to the global dust budget are investigated with a global dust transport model. A six-year simulation (1990 to 1995) indicates that the greatest contributor to the global dust budget is found to be North Africa (the Sahara Desert), which accounts for 58% of the total global dust emission and 62% of the total global dust load in the atmosphere. Australian dust dominates the southern hemisphere. The dust emission and atmospheric dust load originating from East Asia (eastern and western China) are estimated to be 214 Tg yr− 1 and 1.1 Tg, respectively, which are 11% and 6% of the total global dust emission and dust load. Dust from East Asia dominates the atmospheric load over China and Mongolia (about 70%), Korea (60%), Japan (50%), and the North Pacific Ocean (40%). The contribution of dust originating from regions other than East Asia to the dust load over these East Asian countries and the North Pacific Ocean cannot be ignored. The simulated total dust deposition flux on Greenland suggests a possible overestimation of the Saharan dust and an underestimation of the East Asian dust in the Arctic region, which may be a common problem with global dust transport models. Possible reasons for the underestimation of the East Asian dust are discussed.  相似文献   

4.
Element composition of dust from a shallow Dunde ice core, Northern China   总被引:1,自引:0,他引:1  
The Dunde ice cap (38°06'N, 96°24'E, with a summit of 5325 m) is situated at the centre of the northern Chinese deserts and receives dust from these regions. Here, we present the trace and rare earth element (REE) compositions of dust extracted from a shallow ice core from the Dunde ice cap, which provide a framework to trace the source of Dunde dust. Trace and REE parameters of Dunde dust show characteristics of a typical eolian deposit, with an average La/Th ratio of 2.6, a Th/U ratio of 3.7, and a strong negative Eu anomaly (0.61). The dirty layers in the ice core section have the same element characteristics as in the clear layers, indicating that the dust in Dunde is well-mixed and has a stable composition. Trace element and REE ratio plots show that Dunde dust has a similar composition to the finer fraction materials in the Taklimakan desert, suggesting that the Tarim Basin might be an important source for Dunde dust under the present circulation, but not favoring a material contribution from Badain Jaran. Our results reveal distinct differences in composition between Dunde dust and Chinese loess materials, which suggests that they have different sources.  相似文献   

5.
The Aeolian Dust Experiment on Climate Impact (ADEC) was initiated in April 2000 as a joint five-year Japan–China project. The goal was to understand the impact of aeolian dust on climate via radiative forcing (RF). Field experiments and numerical simulations were conducted from the source regions in northwestern China to the downwind region in Japan in order to understand wind erosion processes temporal and spatial distribution of dust during their long-range transportation chemical, physical, and optical properties of dust and the direct effect of radiative forcing due to dust. For this, three intensive observation periods (IOP) were conducted from April 2002 to April 2004.The in situ and network observation results are summarized as follows: (1) In situ observations of the wind erosion process revealed that the vertical profile of moving sand has a clear size dependency with height and saltation flux and that threshold wind velocity is dependent on soil moisture. Results also demonstrated that saltation flux is strongly dependent on the parent soil size distribution of the desert surface. (2) Both lidar observations and model simulations revealed a multiple dust layer in East Asia. A numerical simulation of a chemical transport model, CFORS, illustrated the elevated dust layer from the Taklimakan Desert and the lower dust layer from the Gobi Desert. The global-scale dust model, MASINGAR, also simulated the dust layer in the middle to upper free troposphere in East Asia, which originated from North Africa and the Middle East during a dust storm in March 2003. Raman lidar observations at Tsukuba, Japan, found the ice cloud associated with the dust layer at an altitude of 6 to 9 km. Analysis from lidar and the radio-sonde observation suggested that the Asian dust acted as ice nuclei at the ice-saturated region. These results suggest the importance of dust's climate impact via the indirect effect of radiative forcing due to the activation of dust into ice nuclei. (3) Studies on the aerosol concentration indicated that size distributions of aerosols in downwind regions have bimodal peaks. One peak was in the submicron range and the other in the supermicron range. The main soluble components of the supermicron peak were Na+, Ca2+, NO3, and Cl. In the downwind region in Japan, the dust, sea salt, and a mixture of the two were found to be dominant in coarse particles in the mixed boundary layer. (4) Observation of the optical properties of dust by sky-radiometer, particle shoot absorption photometer (PSAP), and Nephelometer indicated that unpolluted dust at source region has a weaker absorption than originally believed.A sensitivity experiment of direct RF by dust indicated that single scattering albedo is the most important of the optical properties of dust and that the sensitivity of instantaneous RF in the shortwave region at the top of the atmosphere to the refractive index strongly depends on surface albedo. A global scale dust model, MASINGAR, was used for evaluation of direct RF due to dust. The results indicated the global mean RF at the top and the bottom of the atmosphere were − 0.46 and − 2.13 W m− 2 with cloud and were almost half of the RF with cloud-free condition.  相似文献   

6.
Dust particles, like photons, carry information from remote sites in space and time. From knowledge of the dust particles' birthplace and their bulk properties, we can learn about the remote environment out of which the particles were formed. This approach is called “Dust Astronomy” which is carried out by means of a dust telescope on a Dust Observatory in space. Targets for a dust telescope are the local interstellar medium and nearby star forming regions, as well as comets and asteroids. Dust from interstellar and interplanetary sources is distinguished by accurately sensing their trajectories. Trajectory sensors may use the electric charge signals that are induced when charged grains fly through the detector. Modern in-situ dust impact detectors are capable of providing mass, speed, physical and chemical information of dust grains in space. A Dust Observatory mission is feasible with state-of-the-art technology. It will (1) provide the distinction between interstellar dust and interplanetary dust of cometary and asteroidal origin, (2) determine the elemental composition of impacting dust particles, and (3) monitor the fluxes of various dust components as a function of direction and particle masses.  相似文献   

7.
Modern-day synoptic-scale eastern Mediterranean climatology provides a useful context to synthesize the diverse late Pleistocene (60–12 ka) paleohydrologic and paleoenvironmental indicators of past climatic conditions in the Levant and the deserts to its south and east. We first critically evaluate, extract, and summarize paleoenvironmental and paleohydrologic records. Then, we propose a framework of eastern Mediterranean atmospheric circulation features interacting with the morphology and location of the southeast Mediterranean coast. Together they strongly control the spatial distribution of rainfall and wind pattern. This cyclone–physiography interaction enforces the observed rainfall patterns by hampering rainfall generation south and southeast of the latitude of the north Sinai coast, currently at 31°15′.The proposed framework explains the much-increased rains in Lebanon and northern Israel and Jordan as deduced from pollen, rise and maintenance of Lake Lisan, and speleothem formation in areas currently arid and semiarid. The proposed framework also accounts for the southward and eastward transition into semiarid, arid, and hyperarid deserts as expressed in thick loess accumulation at the deserts' margins, dune migration from west to east in the Sinai and the western Negev, and the formation of hyperarid (< 80 mm yr− 1) gypsic–salic soils in the southern Negev and Sinai. Our climatic synthesis explains the hyperarid condition in the southern Negev, located only 200–250 km south of the much-increased rains in the north, probably reflecting a steeper rainfall gradient than the present-day gradient from the wetter Levant into its bordering southern and eastern deserts.At present, the rainiest winter seasons in Lebanon and northern and central Israel are associated with more frequent (+ 20%), deeper Cyprus Lows traversing the eastern Mediterranean at approximately the latitude of southern Turkey. Even these wettest years in northern Israel do not yield above average annual rainfall amounts in the hyperarid southern Negev. This region is mainly influenced by the Active Red Sea Troughs that produce only localized rains. The eastern Mediterranean Cyprus Lows also produce more dust storms and transport higher amounts of suspended dust to the loess area than any other atmospheric pattern. Concurrent rainfall and dust are essential to the late Pleistocene formation of the elongated thick loess zone along the desert northern margin. Even with existing dust storms, the lack of rain and very sparse vegetation account for the absence of late Pleistocene loess sequences from the southern Negev and the formation of hyperarid soils.When the north Sinai coast shifted 30–70 km northwest due to last glacial global sea level lowering, the newly exposed coastal areas supplied the sand and dust to these active eastern Mediterranean cyclones. This enforced the latitude of the northern boundary of the loess zone to be directly due east of the LGM shoreline. This shift of coast to the northwest inhibited rainfall in the southern Levant deserts and maintained their hyperaridity. Concurrently, frequent deep eastern Mediterranean Cyprus Lows were funneled along the northern Mediterranean increasing (probably doubling) the rains in central and northern Israel, Lebanon, southwestern Syria and northern Jordan. These storms and rains formed lakes, forests, and speleothems only a short distance north of the deserts in the southern Levant.  相似文献   

8.
The characteristics of Asian dust events that occurred in Northeast Asia during the springtime from 1993 to 2004 are investigated using 3-hourly SYNOP reports (World Meteorological Organization). Occurrences of blowing sand and dust storm are low in 1997 and 1999, but have increased rapidly since 2000. The maximum occurrence was recorded in 2002. Wind velocity of 6.5 m s− 1 as a threshold wind velocity is not so exactly consistent with the occurrence of blowing sand. However, wind velocity of 14 m s− 1 as a strong wind causing dust storm had similar tendency to those of dust storm and Dust Storm Index.Source regions of Asian dust are divided into three regions (A: dry arid, B: semi-arid, and C: cultivated), based upon the occurrence of blowing sand and dust storm. Eight meteorological stations are selected in three regions, which have frequent occurrences of blowing sand. Source regions of Asian dust that affect the Korean peninsula are gradually extending eastward. Positive anomalies of NDVI occurred in 1994, 1995, and 1998 when temperature was high and precipitation was heavy. However, the frequent occurrence of the dust phenomena is not always consistent with lots of vegetation, high temperature, and much precipitation in this study.  相似文献   

9.
A general circulation model is used to evaluate changes to the circulation and dust transport in the martian atmosphere for a range of past orbital conditions. A dust transport scheme, including parameterized dust lifting, is incorporated within the model to enable passive or radiatively active dust transport. The focus is on changes which relate to surface features, as these may potentially be verified by observations. Obliquity variations have the largest impact, as they affect the latitudinal distribution of solar heating. At low obliquities permanent CO2 ice caps form at both poles, lowering mean surface pressures. At higher obliquities, solar insolation peaks at higher summer latitudes near solstice, producing a stronger, broader meridional circulation and a larger seasonal CO2 ice cap in winter. Near-surface winds associated with the main meridional circulation intensify and extend polewards, with changes in cap edge position also affecting the flow. Hence the model predicts significant changes in surface wind directions as well as magnitudes. Dust lifting by wind stress increases with obliquity as the meridional circulation and associated near-surface winds strengthen. If active dust transport is used, then lifting rates increase further in response to the larger atmospheric dust opacities (hence circulation) produced. Dust lifting by dust devils increases more gradually with obliquity, having a weaker link to the meridional circulation. The primary effect of varying eccentricity is to change the impact of varying the areocentric longitude of perihelion, l, which determines when the solar forcing is strongest. The atmospheric circulation is stronger when l aligns with solstice rather than equinox, and there is also a bias from the martian topography, resulting in the strongest circulations when perihelion is at northern winter solstice. Net dust accumulation depends on both lifting and deposition. Dust which has been well mixed within the atmosphere is deposited preferentially over high topography. For wind stress lifting, the combination produces peak net removal within western boundary currents and southern midlatitude bands, and net accumulation concentrated in Arabia and Tharsis. In active dust transport experiments, dust is also scoured from northern midlatitudes during winter, further confining peak accumulation to equatorial regions. As obliquity increases, polar accumulation rates increase for wind stress lifting and are largest for high eccentricities when perihelion occurs during northern winter. For dust devil lifting, polar accumulation rates increase (though less rapidly) with obliquity above o=25°, but increase with decreasing obliquity below this, thus polar dust accumulation at low obliquities may be increasingly due to dust lifted by dust devils. For all cases discussed, the pole receiving most dust shifts from north to south as obliquity is increased.  相似文献   

10.
Carol S. Breed 《Icarus》1977,30(2):326-340
Geomorphic features in the Hellespontus region, Mars, were compared with dunes of the crescentic ridge type in numerous terrestrial sand seas quantitatively by dimensional analysis of dune lengths, widths, and wavelengths. Mean values for the Hellespontus dunes are close to mean values derived from measurements of all sampled terrestrial sand seas. Terrestrial analogs of form and areal distribution of the Hellespontus dunes are shown by comparison of scale ratios derived from the measurements. Dunes of similar form occur in South West Africa, in Pakistan, in the southeastern Arabian peninsula, in the Sahara, in eastern USSR and northern China, and in western North America. Terrestrial analogs closest to form and areal distribution of the Hellespontus dunes are in the Kara Kum Desert, Turkmen SSR, and in the Ala Shan (Gobi) Desert, China.  相似文献   

11.
This study is concerned with the mechanisms of dust storm development in East Asia and the characteristics of the responsible synoptic systems. Two severe East Asian dust storms which occurred in spring 2002 are analyzed using synoptic and remote sensing data. The relationships between the formation and the movement of the dust storms and the evolution of the synoptic systems are examined. It is shown that a dust storm may develop when a synoptic system moves to the desert area of Northeast Asia with a surface wind speed exceeding 6 m s− 1. Numerical simulations of the two dust storms are carried out using a dust storm forecasting model. The performance of the model is verified with observations. The dust sources are found to be consistent with the desert regions in Northeast Asia, but cover a somewhat larger area than the observations suggest. Finally, we present a conceptual model of dust storm generation and movement in East Asia on the basis of numerical modeling and synoptic analysis.  相似文献   

12.
T.J. Ringrose  M.C. Towner 《Icarus》2003,163(1):78-87
Dust devil data from Mars is limited by a lack of data relating to diurnal dust devil behaviour. Previous work looking at the Viking Lander meteorological data highlighted seasonal changes in temporal occurrence of dust devils and gave an indication of typical dust devil diameter, size, and internal dynamics. The meteorological data from Viking Lander 2 for sols 1 to 60 have been revisited to provide detailed diurnal dust devil statistics. Results of our analysis show that the Viking Lander 2 experienced a possible 38 convective vortices in the first 60 sols of its mission with a higher occurrence in the morning compared to Earth, possibly as a result of turbulence generated by the Lander body. Dust devil events have been categorised by statistical confidence and intensity. Some initial analysis and discussion of the results is also presented. Assuming a similar dust loading to the vortices seen by Mars Pathfinder, it is estimated that the amount of dust lofted in the locality of the Lander is approximately 800 ± 10 kgsol−1km−2.  相似文献   

13.
Dust devils – convective vortices made visible by the dust and debris they entrain – are common in arid environments and have been observed on Earth and Mars. Martian dust devils have been identified both in images taken at the surface and in remote sensing observations from orbiting spacecraft. Observations from landing craft and orbiting instruments have allowed the dust devil translational forward motion (ground velocity) to be calculated, but it is unclear how these velocities relate to the local ambient wind conditions, for (i) only model wind speeds are generally available for Mars, and (ii) on Earth only anecdotal evidence exists that compares dust devil ground velocity with ambient wind velocity. If dust devil ground velocity can be reliably correlated to the ambient wind regime, observations of dust devils could provide a proxy for wind speed and direction measurements on Mars. Hence, dust devil ground velocities could be used to probe the circulation of the martian boundary layer and help constrain climate models or assess the safety of future landing sites.We present results from a field study of terrestrial dust devils performed in the southwest USA in which we measured dust devil horizontal velocity as a function of ambient wind velocity. We acquired stereo images of more than a 100 active dust devils and recorded multiple size and position measurements for each dust devil. We used these data to calculate dust devil translational velocity. The dust devils were within a study area bounded by 10 m high meteorology towers such that dust devil speed and direction could be correlated with the local ambient wind speed and direction measurements.Daily (10:00–16:00 local time) and 2-h averaged dust devil ground speeds correlate well with ambient wind speeds averaged over the same period. Unsurprisingly, individual measurements of dust devil ground speed match instantaneous measurements of ambient wind speed more poorly; a 20-min smoothing window applied to the ambient wind speed data improves the correlation. In general, dust devils travel 10–20% faster than ambient wind speed measured at 10 m height, suggesting that their ground speeds are representative of the boundary layer winds a few tens of meters above ground level. Dust devil ground motion direction closely matches the measured ambient wind direction.The link between ambient winds and dust devil ground velocity demonstrated here suggests that a similar one should apply on Mars. Determining the details of the martian relationship between dust devil ground velocity and ambient wind velocity might require new in situ or modelling studies but, if completed successfully, would provide a quantitative means of measuring wind velocities on Mars that would otherwise be impossible to obtain.  相似文献   

14.
We present for the first time a detailed report on the discovery of a new meteorite collection region in the Lut Desert, eastern–southeastern Iran, describing its geological, morphological, and climatic setting. Our search campaigns, alongside with the activity of meteorite hunters, yielded >200 meteorite finds. Here, we report on their classification, spatial distribution, and terrestrial weathering. All the collected meteorites are ordinary chondrites (OCs). The most abundant by far are the highly weathered paired H5 distributed in the northwest of Kalut area (central Lut, Kerman dense collection area). The second are well‐preserved paired L5 also found in Kalut region. A detailed study of the geochemistry and mineralogy of selected meteorites reveals significant effects of terrestrial weathering. Fe,Ni metal (hereafter simply metal) and troilite are transformed into Fe oxyhydroxides. A rather unusual type of troilite weathering to pyrite/marcasite is observed in most of the Lut Desert meteorites. Magnetic measurements and X‐ray diffractometry confirm the occurrence of terrestrial weathering products, with the dominance of maghemite, goethite, and hematite. Mobile elements, such as Li, Sr, Mo, Ba, Tl, Th, and U, are enriched with respect to fresh falls. Meanwhile, a decrease in the V, Cr, Co, Rb (and possibly Fe) due to terrestrial weathering is detectable. The total carbon and CaCO3 is higher than in samples from other hot deserts. The weathering effects observed in the Lut Desert OCs can be used as distinctive indicators to distinguish them from meteorites from other regions of the Earth. Measurements of terrestrial age (14C) show a range of 10–30 ka, which is in the range of ages reported for meteorites from other hot deserts except the Atacama Desert (Chile). Considering the high potential of the Lut Desert in meteorite preservation, systematic works should lead to the discovery of more samples giving access to interesting material for future studies.  相似文献   

15.
On the basis of observations by the space telescope Glazar at 1640 Å the distribution of early (O-B-A) type stars and absorption matter in the directions of 20 known OB associations have been investigated. Forty-four stellar groups were found in these directions. The dust matter is distributed within these groups quite non-uniformly and patchy. It is absent in the space between these groups. It has been shown that 93 stars have dense circumstellar dust envelopes and half of them are sources of IR-radiation (IRAS observations). Dust clouds exist in the directions of Per OB1, Aur OB1 and Car OB1 at distances of 460, 1000, 1000 pc, respectively. Twenty new stellar groups of OB types were found.Published in Astrofizika, Vol. 38, No. 4, pp. 528–532, October–December, 1995.  相似文献   

16.
We explore the occurrence of dust in M-type Mira atmospheres and its effect on limb darkening under schematic assumptions about dust temperatures and dust particle properties. Dust particles that are thermodynamically coupled to the surrounding gas may form and may affect limb darkening, though only by very little in infrared continuum bandpasses. Dust particles that assume the equilibrium temperature given by the mean intensity of the radiation field only form under rare circumstances. Unexpectedly large or wavelength-dependent infrared continuum radii observed by interferometry are unlikely to be caused by atmospheric dust, except possibly near 1 μm; however, radius measurements may be significantly affected by molecular band contamination.  相似文献   

17.
Takeshi Imamura  Yuko Ito 《Icarus》2011,211(1):498-503
A Hovmöller diagram analysis of the dust optical depth measured by the Mars Global Surveyor Thermal Emission Spectrometer shows the occurrence of quasi-periodic westwardly-propagating disturbances with timescales of 10-20 sols during summer in the south polar region of Mars. Dust clouds emerge repeatedly around the region with a latitude of around 70-80°S and a longitude of 240-300°E, move westward at speeds of 3-6 m s−1, reach the region with a longitude of 60-120°E, and finally disappear. This longitude range coincides with elevated terrains in the south polar region, and in this region an increase of dust optical depth encircling the south pole is also observed. This implies that the quasi-periodic dust events will contribute to the enhancement of the atmospheric dust loading in this region. These dust events might be related to baroclinic instability caused by the thermal contrast across the CO2 cap edge, or the horizontal advection or vertical convection with radiative-dynamical feedback. The westward movement of the dust clouds suggests steady westward winds blowing in the near-surface layer, where the quasi-periodic dust lifting is expected to occur. Such a westward cap-edge flow will be created by the Coriolis force acting on the flow from the ice side to the regolith side.  相似文献   

18.
Abstract— We have identified four comets which have produced low‐velocity Earth‐crossing dust streams within the past century: 7P/Pons‐Winnecke, 26P/Grigg‐Skjellerup, 73P/Schwassmann‐Wachmann 3, and 103P/Hartley 2. These comets have had the rare characteristics of low eccentricity, low inclination orbits with nodes very close to 1 AU. Dust from these comets is directly injected into Earth‐crossing orbits by radiation pressure, unlike the great majority of interplanetary dust particles collected in the stratosphere which spend millennia in space prior to Earth‐encounter. Complete dust streams from these comets form within a few decades, and appreciable amounts of dust are accreted by the Earth each year regardless of the positions of the parent comets. Dust from these comets could be collected in the stratosphere and identified by its short space exposure age, as indicated by low abundances of implanted solar‐wind noble gases and/or lack of solar flare tracks. Dust from Grigg‐Skjellerup probably has the highest concentration at Earth orbit. We estimate that the proportion of dust from this comet will reach at least several percent of the background interplanetary dust flux in the >40 μm size range during April 23–24 of 2003.  相似文献   

19.
Ionized gases containing fine (μm to sub-μm sized) charged dust grains, referred to as dusty plasmas, occur in diverse cosmic and laboratory environments. Dust occurs in many space and astrophysical environments, including planetary rings, comets, the Earth's ionosphere, and interstellar molecular clouds. Dust also occurs in laboratory plasmas, including processing plasmas, and crystallized dusty plasmas. Charged dust can lead to various effects in a plasma. In this review, some physical processes in dusty plasmas are discussed, with an emphasis on applications to dusty plasmas in space. This includes theoretical work on several wave instabilities, the role of dust as an electron source, and Coulomb crystals of positively charged dust. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
In the last 15 years, more than 2700 meteorites have been recovered and officially classified from the Atacama Desert. Although the number of meteorites collected in the Atacama has risen, the physical and climatic properties of the dense collection areas (DCAs) have not been fully characterized. In this article, we compiled the published data of all classified meteorites found in the Atacama Desert to (i) describe the distribution by meteorite groups, (ii) compare the weathering degree of chondrites among different Atacama DCAs and other hot and cold deserts, and (iii) determine the preservation conditions of chondrites in the main Atacama DCAs in relation with the local climatic conditions. The 35 DCAs so far identified in the Atacama Desert are located in three main morphotectonic units: The Coastal Range (CR), Central Depression (CD), and Pre-Andean Range/Basement. A comparison with reported weathering data from other cold and hot deserts indicates that the mean terrestrial weathering of Atacama chondrites (W1–2), displays less alteration than other hot deserts (W2–3) and resembles the weathering distribution of the Antarctic meteorites (W1–2). The highest abundance of Atacama chondrites with low weathering (≤W2) is localized in the CD (78.8%, N = 1435), which is protected from the coastal fog influence and seasonal rainfalls and displays the oldest surfaces in the Atacama Desert. The morphogenetic classification based on present-day temperatures and precipitations of the main Atacama DCAs reveals similar regional/subregional climatic conditions in the most productive areas and a truly productive surface for meteorite recovery between 5% and 58% of the quadrangles formally defined for each Atacama DCA. Our morphogenetic classification lacks consideration of some meteorological parameters such as the coastal fog, so it cannot fully explain the differences in weathering patterns among CR chondrites. Future studies of chondrite preservation in the Atacama DCAs should consider other meteorological variables such as relative humidity, specific humidity, or dew point, in combination with exposure ages of meteorites and its surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号