首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The problem of Rayleigh-Taylor instability of superposed viscous magnetized fluids through porous medium is investigated in a partially-ionized medium. The fluid has ionized and neutralized particle components interacting with collisions. The effect of surface tension on R-T instability is also included in the present problem. The magnetohydrodynamic equations are modified for finite-Larmor radius corrections which is in the form of tensor. The equations of problem are linearized and using appropriate boundary condition, general dispersion relation is derived for two superposed fluids separated by horizontal boundary. The first part of the dispersion relation gives stable mode and condition is investigated using Hurwitz conditions. The second part of the dispersion relation shows that the growth rate of unstable system is reduced due to FLR corrections, viscosity, and collisional frequency of the neutrals. The role of surface tension on the system is also discussed.  相似文献   

2.
The effect of finite conductivity on the Rayleigh-Taylor instability of an incompressible, viscous rotating fluid through a porous medium has been studied in the presence of a two-dimensional horizontal magnetic field. It has been shown that the solution is characterized by a variational principle. By making use of the existence of the variational principle, proper solutions have been obtained for a semi-infinite fluid in which density has a one-dimensional (exponential) vertical stratification. The dispersion relation has been derived and solved numerically. It is found that finite resistivity and porosity have a destabilizing effect on the Rayleigh-Taylor instability while rotation has a stabilizing effect.  相似文献   

3.
The Rayleigh-Taylor instability of two rotating superposed fluids in the presence of a vertical magnetic field has been investigated. It is shown thatn 2 is purely real, wheren is the growth rate of a perturbation. In the basis of this fact it is shown that a unique dispersion relation exists if the lighter fluid lies beneath the heavier one. However, if the heavier fluid lies beneath the lighter fluid, then no unique dispersion relation exists. The effect of rotation is to slow down the rate at which potentially unstable stratification departs from the equilibrium position.  相似文献   

4.
The gravitational instability of an infinite homogeneous self-gravitating plasma through porous medium is considered to include, separately, the effects due to rotation and collisions between ionized and neutral components. The dispersion relations are obtained in both cases. It is found that the gravitational instability of a composite and rotating plasma in the presence of a variable horizontal magnetic field through porous medium is determined by the Jeans's criterion.  相似文献   

5.
The gravitational instability of flow through porous medium for some hydrodynamical and hydromagnetical systems of astrophysical interest is investigated. The effects of rotation, magnetic field, viscosity and finite electrical conductivity are studied for the gravitational instability through porous medium. The effect of suspended particles on the instability is also considered. It is found that Jean's criterion remains unchanged in the presence of porosity, viscosity, finite conductivity, rotation, magnetic field and suspended particles in the medium.  相似文献   

6.
The effect of rotation on the self-gravitational instability of an infinite homogeneous magnetised gas-particle medium in the presence of suspended particles is investigated. The conductivity of the medium is assumed to be finite. The equations of the problem are linearized and the general dispersion relation is obtained. The rotation is assumed along two different directions separately and separate dispersion relation for each case is obtained. The dispersion relation for propagation parallel and perpendicular to the uniform magnetic field along with rotation is derived. It is found that in presence of suspended particles, magnetic field, finite conductivity, rotation and viscosity, Jeans's criterion determines the condition of gravitational instability of gas-particle medium.  相似文献   

7.
The gravitational instability of an infinite homogenous rotating plasma through a porous medium in the presence of a uniform magnetic field with finite electrical and thermal conductivities has been studied. With the help of relevant linearized perturbation equations of the problem, a general dispersion relation is obtained, which is further reduced for the special cases of rotation, parallel and perpendicular to the megnetic field acting in the vertical direction. Longitudinal and transverse modes of propagation are discussed separately. It is found that the joint effect of various parameters is simply to modify the Jeans's condition of instability. The effect of finite electrical conductivity is to remove the effect of magnetic field where as the effect of thermal conductivity is to replace the adiabatic velocity of sound by the isothermal one. Rotation has its effect only along the magnetic field in the transverse mode of propagation for an inviscid plasma, thereby stabilizing the system. Porosity reduces the effect of both, the magnetic field and the rotation, in the transverse mode of propagation in both the cases of rotation. The effect of viscosity is to remove the rotational effects parallel to the magnetic field in the transverse mode of propagation.  相似文献   

8.
The gravitational instability of an infinite homogeneous finitely conducting viscid fluid through porous medium is studied in the presence of a uniform vertical magnetic field and finite ion Larmor radius (FLR) effects. The medium is considered uniformly rotating along and perpendicular to the direction of the prevalent magnetic field. A general dispersion relation is obtained from the relevant linearized perturbation equations of the problem. Furthermore, the wave propagation along and perpendicular to the direction of existing magnetic field has been discussed for each direction of the rotation. It is found that the simultaneous presence of viscosity finite conductivity, rotation, medium porosity, and FLR corrections does not essentially change the Jeans's instability condition. The stabilizing influence of FLR in the case of transverse propagation is reasserted for a non-rotating and inviscid porous medium. It is shown that the finite conductivity has destabilizing influence on the transverse wave propagation whereas for longitudinal propagation finite conductivity does not affect the Jean's criterion.  相似文献   

9.
Thermosolutal-convective instability of a composite plasma in a stellar atmosphere is considered. The effect of a variable horizontal magnetic field and the simultaneous effect of a uniform rotation and a variable horizontal magnetic field have been considered on the thermosolutal-convective instability. We have derived the sufficient conditions for the existence of monotonic instability. It is found that the criteria for monotonic instability hold good in the presence of a variable horizontal magnetic field as well as in the presence of a uniform rotation and a variable horizontal magnetic field.  相似文献   

10.
We study the linear theory of the magnetized Rayleigh–Taylor instability in a system consisting of ions and neutrals. Both components are affected by a uniform vertical gravitational field. We consider ions and neutrals as two separate fluid systems that can exchange momentum through collisions. However, ions have a direct interaction with the magnetic field lines but neutrals are not affected by the field directly. The equations of our two-fluid model are linearized and by applying a set of proper boundary conditions, a general dispersion relation is derived for our two superposed fluids separated by a horizontal boundary. We found two unstable modes for a range of wavenumbers. It seems that one of the unstable modes corresponds to the ions and the other one is for the neutrals. Both modes are reduced with increasing particle collision rate and ionization fraction. We show that if the two-fluid nature is considered, the RT instability would not be suppressed and we also show that the growth time of the perturbations increases. As an example, we apply our analysis to the Local Clouds which seem to have arisen because of the RT instability. Assuming that the clouds are partially ionized, we find that the growth rate of these clouds increases in comparison to the fully ionized case.  相似文献   

11.
Kelvin-Helmholtz instability of two superimposed fluids has been studied. One of the fluids is non-conducting and the other is conducting with finite resistivity. The fluids are assumed rotating and slipping past each other with a relative velocity. The neutral particles are also incorporated in one of the fluids of the system. A general dispersion relation has been derived and discussed under different conditions. The effect of rotation and the neutral particles, considering an infinitely-conducting system has also been analyzed and it is observed that small rotation and the presence of neutral particles destabilize the system. The effect of neutral particles is to decrease the effect of magnetic field, angular velocity, and the gravitational field. It has been found that an otherwise stable mode becomes overstable and grows exponentially in the presence of finite resistivity.  相似文献   

12.
The effect of rotation on the self-gravitational instability of an infinite homogeneous magnetized Hall plasma is considered with the inclusion of finite Larmor radius corrections and the effect of suspended particles. A general dispersion relation is obtained from the linearized set of equations. The particular cases of the effect of rotation along and perpendicular to the direction of the magnetic field are considered. The effects of Hall current, finite Larmor radius, and suspended particles on the waves propagated parallel and perpendicular to the uniform magnetic field are investigated along with the uniform rotation of the medium. It is found that in the presence of suspended particles, magnetic field, Hall current, rotation and finite Larmor radius, the Jeans criterion determines the condition of gravitational instability of a gas-particle medium.  相似文献   

13.
The instability of two superposed homogeneous fluids is discussed under gravitational force and uniform magnetic field. The perturbation propagation is taken simultaneously along and perpendicular to streaming motion in the horizontal plane z=0. The critical wave numberk * has been found and some special cases of interest are discussed.  相似文献   

14.
The problem of gravitational instability of an infinite homogeneous self-gravitating medium carrying a uniform magnetic field in the presence of Hall effect has been investigated to include the effect due to rotation. The dispersion relation has been obtained. It has been found that the Jeans's criterion for the instability remains unaffected even when the effect due to rotation is considered in the presence of Hall effect carrying a uniform magnetic.  相似文献   

15.
The self-gravitational instability of an ionized, thermally-conducting, magnetized, rotating plasma flow through a porous medium has been studied in the presence of suspended particles. The ionized gas-particle medium has been considered rotating along and perpendicular to the vertical magnetic field. Propagation of the plasma waves has been studied for the longitudinal and the transverse modes for both the cases of rotation. A general dispersion relation has been derived with the help of relevant perturbation equations, using the method of normal mode analysis. The Jeans criterion determines the condition of gravitational instability in all the cases with some modifications introduced by the various parameters considered. Thermal conductivity replaces the adiabatic sonic speed by the isothermal one. Considering the longitudinal mode of propagation with perpendicular rotational axis, for an inviscid plasma with adiabatic behaviour the effect of both, the rotation and the suspended particles has been removed by the magnetic field. For the transverse mode of propagation with the axis of rotation parallel to the magnetic field, the viscosity removes the effect of both, the rotation and the suspended particles. Porosity reduces the effect of both, the rotation and the magnetic field, whereas the concentration of the suspended particles reduces the rotational effect.  相似文献   

16.
The self-gravitating instability of an infinitely extending axisymmetric cylinder of viscoelastic medium permeated with non uniform magnetic field and rotation is studied for both the strongly coupled plasma (SCP) and weakly coupled plasma (WCP). The non uniform magnetic field and rotation are considered to act along the axial direction of the cylinder. The normal mode method of perturbations is applied to obtain the dispersion relation. The condition for the onset of gravitational instability has been derived from the dispersion relation under both strongly and weakly coupling limits. It is found that the Jeans criterion for gravitational collapse gets modified due to the presence of shear and bulk viscosities for the SCP, however, the magnetic field and rotation whether uniform or non uniform has no effect on the Jeans criterion of an infinitely extending axisymmetric cylinder of a self-gravitating viscoelastic medium.  相似文献   

17.
The Kelvin-Helmholtz discontinuity in two superposed viscous conducting fluids has been investigated in the presence of a two-dimensional horizontal uniform magnetic field. The streaming motion is also assumed to be two-dimensional. The stability analysis has been carried out for two highly viscous fluids of uniform densities. It is found that the streaming motion has dual influence on the unstable system, destabilizing for low values of streaming velocity and stabilizing for high values of streaming velocity. The effect of viscosity is, however, found to be stabilizing as the growth rate of the unstable configuration decreases on increasing the viscosity.  相似文献   

18.
Magnetogravitational instability of a thermally-conducting, rotating plasma flowing through a porous medium with finite conductivity and finite Larmor radius in the presence of suspended particles has been investigated. The wave propagation has been considered for both parallel and perpendicular axes of rotation. Magnetic field is being taken in the vertical direction. A general dispersion relation has been derived through relevant linearized perturbation equations. It has been observed that the condition of instability is determined by the Jeans's criterion in its modifed form. Thermal conductivity replaces the adiabatic velocity of sound by the isothermal one. Rotation decreases the Larmor radius. Porosity decreases the Alfvén velocity. In case of a viscous medium the effects of FLR, rotation, and suspended particles are not observed in the Jeans's condition, for transverse propagation for rotational axis parallel to the magnetic field. The effects of rotation and FLR are decreased by the porosity and the suspended particles. Finite conductivity removes the Alfvén velocity from Jeans's condition.  相似文献   

19.
The frictional effect of collisions of ionized with neutral atoms on the Taylor instability of a composite plasma in porous medium is considered in presence of a variable horizontal magnetic field. The system is stable for stable density stratification. The magnetic field can stabilize a system which was unstable in its absence. The medium permeability has a decreasing or an increasing effect on the growth rates. With the increase in collisional frequency, the growth rates decrease but may have increasing influence in certain region.  相似文献   

20.
Thermosolutal-convective instability of a stellar atmosphere is considered. The criteria for monotonic instability are derived. The effects of a variable horizontal magnetic field and the simultaneous presence of a uniform rotation and a uniform horizontal magnetic field have been considered on the thermosolutal-convective instability. The criteria derived for monotonic instability are found to hold good in the presence of a variable horizontal magnetic field as well as in the presence of a uniform rotation and a uniform horizontal magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号