首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We have studied the correlation among X-ray absorption, optical reddening and nuclear dust morphology in Seyfert 2 galaxies. Two main conclusions emerge: (i) the Balmer decrement and the amount of X-ray absorption are anticorrelated over a wide range of column density,     – the correlation no longer applies to Compton-thick objects     , although they span a comparable range in Balmer decrement; (ii) Compton-thin Seyfert 2s seem to prefer nuclear environments, which are rich in dust on scales of hundreds of parsecs. On the other hand, Compton-thick Seyferts indifferently exhibit 'dust-poor' and 'dust-rich' environments. These results support an extension of the Seyfert unification scenario (as recently proposed by Matt ), where Compton-thick Seyfert 2s are observed through compact 'torii', whereas Compton-thin ones are obscured by dust on much larger scales.  相似文献   

2.
We discuss the gamma-ray absorption in the inner region of the microquasar SS433. Our investigation includes several contributions to the opacity of this system. They result from the ambient fields generated by the primary star, possibly an A-type supergiant, and a very extended disk around the black hole. Besides the sharp and dramatic absorption effect that occurs every time the star crosses the emission zone, we find in the UV photon field from the extended disk an important source of absorption for very high energy gamma-rays. This results in periodic gamma-ray observational signatures.  相似文献   

3.
We report multi-epoch Giant Metrewave Radio Telescope (GMRT) H  i observations of the z  = 0.3127 damped absorber towards the quasar PKS 1127−145, which reveal variability in both the absorption profile and the flux of the background source, over a time-scale of a few days.
The observed variations cannot be explained by simple interstellar scintillation (ISS) models where there are only one or two scintillating components and all of the ISS occurs in the Galaxy. More complicated models, where either there are more scintillating components or some of the ISS occurs in the interstellar medium of the z =0.3127 absorber, may be acceptable. However, the variability can probably be best explained in models incorporating motion (on sub-VLBI scales) of a component of the background continuum source, with or without some ISS.
All models producing the variable 21-cm absorption profile require small-scale variations in the 21-cm optical depth of the absorber. The length-scale for the opacity variations is ∼0.1 pc in pure superluminal motion models, and ∼10 pc in pure ISS models. Models involving subluminal motion, combined with scintillation of the moving component, require opacity variations on far smaller scales of ∼ 10–100 au .  相似文献   

4.
5.
6.
We present MERLIN neutral hydrogen absorption measurements against supernova remnants in the central starburst region of M82 with an angular resolution of ∼ 0.4 arcsec. We detect H  I absorption or set significant upper limits against 33 supernova remnants from which we have been able to deduce column densities. Hence, using these measurements, we are able to probe the neutral hydrogen distribution and dynamics of the interstellar medium in M82 along 33 lines of sight on linear scales of order 1 pc.   Our results show column densities ranging from <1.6 to >30 × 1021 atom cm−2 with the highest values seen towards the edge of the 250-pc 'ring'. The absorption velocities show a gradient of 7.3 ± 4 km s−1 arcsec−1, consistent with rotation parameters of this 'ring' inferred from other measurements. The absorption velocities against individual remnants show deviations of typically 30 km s−1 from simple solid body rotation, and a number show multiple velocity absorption features. Although some of these deviations may be the result of the remnants being embedded at different depths within the neutral gas, the velocities cannot be explained by a simple rotating ring.  相似文献   

7.
8.
X-ray spectroscopy offers an opportunity to study the complex mixture of emitting and absorbing components in the circumnuclear regions of active galactic nuclei (AGN), and to learn about the accretion process that fuels AGN and the feedback of material to their host galaxies. We describe the spectral signatures that may be studied and review the X-ray spectra and spectral variability of active galaxies, concentrating on progress from recent Chandra, XMM-Newton and Suzaku data for local type 1 AGN. We describe the evidence for absorption covering a wide range of column densities, ionization and dynamics, and discuss the growing evidence for partial-covering absorption from data at energies ≳ 10 keV. Such absorption can also explain the observed X-ray spectral curvature and variability in AGN at lower energies and is likely an important factor in shaping the observed properties of this class of source. Consideration of self-consistent models for local AGN indicates that X-ray spectra likely comprise a combination of absorption and reflection effects from material originating within a few light days of the black hole as well as on larger scales. It is likely that AGN X-ray spectra may be strongly affected by the presence of disk-wind outflows that are expected in systems with high accretion rates, and we describe models that attempt to predict the effects of radiative transfer through such winds, and discuss the prospects for new data to test and address these ideas.  相似文献   

9.
Spectroscopy at 8–13 μm with T-ReCS on Gemini-S is presented for three galaxies with substantial silicate absorption features, NGC 3094, NGC 7172 and NGC 5506. In the galaxies with the deepest absorption bands, the silicate profile towards the nuclei is well represented by the emissivity function derived from the circumstellar emission from the red supergiant, μ Cephei which is also representative of the mid-infrared absorption in the diffuse interstellar medium in the Galaxy. There is spectral structure near 11.2 μm in NGC 3094 which may be due to a component of crystalline silicates. In NGC 5506, the depth of the silicate absorption increases from north to south across the nucleus, suggestive of a dusty structure on scales of tens of parsecs. We discuss the profile of the silicate absorption band towards galaxy nuclei and the relationship between the 9.7-μm silicate and 3.4-μm hydrocarbon absorption bands.  相似文献   

10.
We present 0.15-arcsec (25-pc) resolution MERLIN observations of neutral hydrogen absorption detected towards the nuclear region of the type 2 Seyfert galaxy NGC 5929. Absorption is detected only towards the north-eastern radio component with a column density of (6.5 ± 0.6) × 1021 cm−2. Based on comparison with an HST WFPC2 continuum image, we propose that the absorption is caused by a 1.5-arcsec structure of neutral gas and dust offset 0.3 arcsec south-east of the nucleus and running NE–SW. A separate cloud of dust is apparent 1.5 arcsec to the south-west of the nucleus in the HST image. A comparison of the centroid velocity (2358 ± 5 km s−1) and full width at half-maximum (43 ± 6 km s−1) of the absorbing gas with previous [O  III ] observations suggests that both the neutral and ionized gas are undergoing galactic rotation towards the observer in the north-east and away from the observer in the south-west. The main structure is consistent with an inclined ring of gas and dust encircling the active galactic nucleus (AGN); alternatively it may be a bar or inner spiral arm. We do not detect neutral hydrogen absorption or dust obscuration against the radio nucleus (column density < 3.1 × 1021 cm−2) expected by a torus of neutral gas and dust in unified models of AGNs for a type 2 Seyfert galaxy.  相似文献   

11.
We present subarcsecond MERLIN 0.4-GHz (73 cm) and 1.6-GHz (18 cm) radio measurements of the nuclear region of the Seyfert galaxy NGC 4151. By comparison with higher frequency observations, we deduce that one component (C4) shows a low-frequency turnover which we interpret as evidence for free–free absorption by ionized gas with an emission measure between 3 × 105 and 106 pc cm−6. The free–free absorption appears to be localized to a region ∼50 pc in extent, and we consider models in which the ionized gas may be closely associated with a neutral molecular torus.  相似文献   

12.
13.
We have monitored the Seyfert galaxy NGC 3227 with the Rossi X-ray Timing Explorer ( RXTE ) since 1999 January. During late 2000 and early 2001 we observed an unusual hardening of the 2–10 keV X-ray spectrum which lasted several months. The spectral hardening was not accompanied by any correlated variation in flux above 8 keV. We therefore interpret the spectral change as transient absorption by a gas cloud of column density 2.6 × 1023 cm−2 crossing the line of sight to the X-ray source. A spectrum obtained by XMM–Newton during an early phase of the hard-spectrum event confirms the obscuration model and shows that the absorbing cloud is only weakly ionized. The XMM–Newton spectrum also shows that ∼10 per cent of the X-ray flux is not obscured, but this unabsorbed component is not significantly variable and may be scattered radiation from a large-scale scattering medium. Applying the spectral constraints on the cloud ionization parameter and assuming that the cloud follows a Keplerian orbit, we constrain the location of the cloud to be   R ∼ 10–100  light-days from the central X-ray source, and its density to be   n H∼ 108 cm−3  , implying that we have witnessed the eclipse of the X-ray source by a broad line region cloud.  相似文献   

14.
15.
16.
Using MERLIN with 0.2-arcsec resolution we have observed neutral hydrogen absorption against the central region of the starburst galaxy NGC 3628. The central region resolves into ∼16 continuum components at 1.4 GHz. From comparison with published 15-GHz data, we infer that these components are supernova remnants, although three components may be consistent with a weak active galactic nucleus. Neutral hydrogen absorption is seen against the continuum emission with column densities ∼1022 cm−2. The absorption appears to be from two separate absorbing structures. Assuming a simple morphology, the main velocity structure can be attributed to a ring of neutral gas with a radius 130 pc rotating around a central starburst with a velocity gradient of 1270 km s−1 kpc−1. From simple assumptions, the mass interior to this ring is 0.9 × 109 M. The second absorption structure may represent outflow from the starburst region or a large-scale galactic structure. Alternatively the absorption structure may be non-axisymmetric, such as a bar.  相似文献   

17.
18.
19.
Recent work by Risaliti, Maiolino & Salvati suggests that more than half of all Seyfert 2 galaxies in the local Universe are Compton-thick ( N H>1024 cm−2). This has implications for AGN synthesis models for the X-ray background, the flexibility of which for the inclusion of large numbers of high- z type 2 sources we examine here. We highlight the importance of Compton down-scattering in determining the individual source spectra and the fit to the X-ray background spectrum, and demonstrate how parameter space 'opens up' considerably if a super-solar iron abundance is assumed for the absorbing material. This is illustrated with a model which satisfies the present constraints, but which predicts substantial numbers of type 2 sources at the faint flux levels soon to be probed for the first time by the Chandra and XMM missions. We demonstrate also how a strong negative K -correction facilitates the detection of sources with 10∼24 N H1025 cm−2 out to the highest redshifts at which they could plausibly exist.  相似文献   

20.
Absorption of radio emission through normal cyclotron resonance within pulsar magnetospheres is considered. The optical depth for cyclotron damping is calculated using a plasma distribution with an intrinsically relativistic spread. We argue that such a broad distribution is plausible for pulsar plasmas and that it implies that a class of pulsars that should have cyclotron damping extends to include young pulsars with shorter periods and stronger magnetic fields. There is no obvious observational evidence for disruption of radio pulses, which implies that the optical depth cannot be too large. We propose that cyclotron resonance may cause marginal absorption of radio emission. It is shown that such marginal absorption produces potentially observable asymmetric features for double-peak pulse profiles with wide separation, with one peak tending to be suppressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号