首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monthly indices of Southern Atmospheric Oscillation (SOI) and corresponding Wolf numbers, geoeffective solar flares, magnetic AE indices as well as daily average values of the southward component of the interplanetary magnetic field (IMF B z) and data on the wind characteristics at Antarctic stations Vostok, Leningradskaya, and Russkaya are analyzed. It is shown that a sharp decrease in the SOI indices, which corresponds to the beginning of El Nin’o (ENSO), is preceded one or two months before by a 20% increase in the monthly average Wolf numbers. In warm years of Southern Atmospheric Oscillation a linear relationship is observed between the SOI indices and the number of geoeffective solar flares with correlation coefficients p < ?0.5. It is shown that in warm years a change in the general direction of the surface wind to anomalous at the above stations is preceded one or two days before by an increase in the daily average values of IMF B z. An increase in the SOI indices is preceded one or two months before by a considerable increase in the monthly average values of the magnetic AE indices.  相似文献   

2.
A series of important aspects of the time and spatial variations in the critical frequency ratio fo(night)/fo(day) considered by one of the authors [Danilov, 2007, 2008] is specified. The list of the Eastern-Hemisphere stations, for which an analysis of the above indicated ratio was performed, is completed. The available stations of the Western Hemisphere are considered. It is shown that the character of the variations in the fo(night)/fo(day) ratio is independent of limitations imposed on the Ap index of magnetic activity for the analyzed days. The consideration of the long-term variations in geomagnetic activity using the annual mean value of the Ap index does not influence the principal conclusions of the study, although in some cases changes statistical characteristics of the obtained behavior of the fo(night)/fo(day) ratio after 1980. A comparison of the results, based on the interpretation of the trends of the fo(night)/fo(day) value with the changes in the stratosphere-ionosphere coupling from the 1980s to the 1990s obtained by the authors earlier, confirms the assumption that there occurs a systematic change in the zonal wind in the upper atmosphere.  相似文献   

3.
Rapid decompression experiments on natural volcanic rocks mimick explosive eruptions. Fragment size distributions (FSD) of such experimentally generated pyroclasts are investigated using fractal geometry. The fractal dimension of fragmentation, D, of FSD is measured for samples from Unzen (Japan) and Popocatépetl (Mexico) volcanoes.Results show that: (i) FSD are fractal and can be quantified by measuring D values; (ii) D increases linearly with potential energy for fragmentation (PEF) and, thus, with increasing applied pressure; (iii) the rate of increase of D with PEF depends on open porosity: the higher the open porosity, the lower the increase of D with PEF; (iv) at comparable open porosity, samples display a similar behavior for any rock composition.The method proposed here has the potential to become a standard routine to estimate eruptive energy of past and recent eruptions using values of D and open porosity, providing an important step towards volcanic hazard assessment.  相似文献   

4.
Daily temperatures at high latitudes of the Northern and Southern hemispheres and the corresponding levels of currents of solar protons and the PC, Ap, and Dst magnetic indices are considered. The character of variations in the surface temperature depending on these indices in different seasons during strong magnetic storms, when the Dst amplitude was smaller than ?50, has been indicated. The relationship of the indices in southern and northern atmospheric oscillations (SOI and NAO) to the Ap indices has been revealed. The monthly average Ap amplitude increases before the El Nino warm period, when the SOI index decreases from 0 to ?1.5 and the NAO index increases from ?0.5 to 0.9. The La Nina cold period, when SOI increases from ?0.1 to 1.3 and NAO decreases from 0.7 to ?0.45, begins after a decrease in the Ap index.  相似文献   

5.
Variations in the frequency of occurrence of riometer absorption, minimum frequency of reflection of the ionospheric F layer, minimum height, and height of maximum electron density of the ionospheric F layer near the solar minimum have been studied. Application of the superposed epoch technique has detected the Moon phase effect on these ionospheric parameters. This effect was: three events per day in the occurrence of riometer absorption, 0.056 MHz in the minimum frequency of reflection of the F layer, and 2.6 and 6.7 km, in the change of the minimum height of reflection and height of reflection from the region with maximum electron density of the ionospheric F layer, respectively. The lunar tide action changes the ionospheric conductivity and, thus, influences the current systems of the magnetosphere. Through changes of magnetospheric currents, the Moon phase effect is exhibited in the Ap and Dst indices and is 4.3 and 4.25 nT, respectively.  相似文献   

6.
The dependence of the zonal geomagnetic indices (AE, Ap, Kp, Kn, and Dst) on the solar wind parameters (the electric field E y component, dynamic pressure P d and IMF irregularity σB) has been studied for two types of events: magnetic clouds and high-speed streams. Based on the empirical relationships, it has been established that the AE, Ap, Kp, and Kn indices are directly proportional to the E y value at E y < 12 mV m?1 and are inversely proportional to this value at E y > 12 mV m?1 for the first-type events. On the contrary, the dependence of Dst on E y is monotonous nonlinear. A linear dependence of all geomagnetic indices on E y is typical of the second-type events. It has been indicated that the specific features of geoeffectiveness of magnetic clouds and high-speed solar wind streams are caused by the dependence of the electric field potential across the polar cap on the electric field, solar wind dynamic pressure, and IMF fluctuations.  相似文献   

7.
Variations of Earth’s oblateness (J 2) reflect a large scale mass redistribution within the Earth system. The climate effect causing J 2 interannual variations is still not clear, though previous studies indicated it may be related to EI Niño–Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). However, we have a new discovery of the significant Antarctic oscillation (AAO) signals in J 2 interannual variations, especially on 4–6 year scales based on cross wavelet and wavelet coherence analysis with 95% confidence test during 1979–2012. The results additionally indicate that the close phase relationship between J 2 and AAO (AAO leading J 2 variations by 3 ± 2 months in phase) is far superior to that between J 2 and ENSO/PDO on 4–6 year scales. In this work, we discuss, for the first time, a possible geophysical mechanism of AAO effecting J 2 variations. The investigations are based on the definition of AAO and its spatial–temporal behavior influencing the large-scale mass movement. Finally, an approximate quantitative estimate of the AAO imprint on J 2 with an emphasis on the atmospheric contribution is made.  相似文献   

8.
The dependence of the correlation coefficient r(h, fo) between the stratospheric parameter h(100) and critical frequency foF2 revealed in the data of two solar cycles (1979–1989 and 1990–2000) on geomagnetic activity is analyzed. It is shown that the character of the r(h, fo) dependence on limitation on the Ap geomagnetic index is the same in both cycles but depends on the time of day and solar activity level for the given year. It is also found that there is a considerable difference in the absolute values of r(h, fo) between two cycles.  相似文献   

9.
Equations of regression are derived for the intense magnetic storms of 1957?2016. They reflect the nonlinear relation between Dstmin and the effective index of geomagnetic activity Ap(τ) with a timeweighted factor τ. Based on this and on known estimations of the upper limit of the magnetic storm intensity (Dstmin =–2500 nT), the maximal possible value Ap(τ)max ~ 1000 nT is obtained. This makes it possible to obtain initial estimates of the upper limit of variations in some parameters of the thermosphere and ionosphere that are due to geomagnetic activity. It is found, in particular, that the upper limit of an increase in the thermospheric density is seven to eight times larger than for the storm in March 1989, which was the most intense for the entire space era. The maximum possible amplitude of the negative phase of the ionospheric storm in the number density of the F2-layer maximum at midlatitudes is nearly six times higher than for the March 1989 storm. The upper limit of the F2-layer rise in this phase of the ionospheric storm is also considerable. Based on qualitative analysis, it is found that the F2-layer maximum in daytime hours at midlatitudes for these limiting conditions is not pronounced and even may be unresolved in the experiment, i.e., above the F1-layer maximum, the electron number density may smoothly decrease with height up to the upper boundary of the plasmasphere.  相似文献   

10.
Parameters of the interplanetary magnetic field and solar wind plasma during periods of 163 isolated substorms have been studied. It is shown that the solar wind velocity V and plasma density N remain approximately constant for at least 3 h before substorm onset Т o and 1 h after Т o . On average, the velocity of the solar wind exhibits a stable trend toward anticorrelation with its density over the whole data array. However, the situation is different if the values of V and N are considered with respect to the intensity of substorms observed during that period. With the growth of substorm intensity, quantified as the maximum absolute value of AL index, an increase in both the solar wind plasma velocity and density, at which these substorms appear, is obsreved. It has been found that the magnitude of the solar wind dynamic pressure P is closely related to the magnetosphere energy load defined as averaged values of the Kan–Lee electric field EKL and Newell parameter dΦ/dt averaged for 1 h interval before Т o . The growth of the dynamic pressure is accompanied by an increase in the load energy necessary for substorm generation. This interrelation between P and values of EKL and dΦ/dt is absent in other, arbitrarily chosen periods. It is believed that the processes accompanying increasing dynamic pressure of the solar wind result in the formation of magnetosphere conditions that increasingly impede substorm generation. Thus, the larger is P, the more solar wind energy must enter the Earth’s magnetosphere during the period of the growth phase for substorm generation. This energy is later released during the period of the substorm expansion phase and creates even more intense magnetic bays.  相似文献   

11.
A recently proposed model of foam impact on the air–sea drag coefficient C d has been employed for the estimation of the effective foam-bubble radius R b variation with wind speed U10 in hurricane conditions. The model relates C d (U10) with the effective roughness length Z eff (U10) represented as a sum of aerodynamic roughness lengths of the foam-free and foam-covered sea surfaces Z w (U10) and Z f (U10) weighted with the foam coverage coefficient α f (U10). This relation is treated for known phenomenological distributions C d (U10), Z w (U10), and α f (U10) at strong wind speeds as an inverse problem for the effective roughness parameter of foam-covered sea surface Z f (U10). The present study is aimed at the estimation of the effective roughness of the sea surface assuming that the measurement data for the effective drag coefficient are known. The effective foam-bubble size is found as a function of the wind speed.  相似文献   

12.
Simultaneous observations of high-latitude long-period irregular pulsations at frequencies of 2.0–6.0 mHz (ipcl) and magnetic field disturbances in the solar wind plasma at low geomagnetic activity (Kp ~ 0) have been studied. The 1-s data on the magnetic field registration at Godhavn (GDH) high-latitude observatory and the 1-min data on the solar wind plasma and IMF parameters for 2011–2013 were used in an analysis. Ipcl (irregular pulsations continuous, long), which were observed against a background of the IMF Bz reorientation from northward to southward, have been analyzed. In this case other solar wind plasma and IMF parameters, such as velocity V, density n, solar wind dynamic pressure P = ρV2 (ρ is plasma density), and strength magnitude B, were relatively stable. The effect of the IMF Bz variation rate on the ipcl spectral composition and intensity has been studied. It was established that the ipcl spectral density reaches its maximum (~10–20 min) after IMF Bz sign reversal in a predominant number of cases. It was detected that the ipcl average frequency (f) is linearly related to the IMF Bz variation rate (ΔBzt). It was shown that the dependence of f on ΔBzt is controlled by the α = arctan(By/Bx) angle value responsible for the MHD discontinuity type at the front boundary of magnetosphere. The results made it possible to assume that the formation of the observed ipcl spectrum, which is related to the IMF Bz reorientation, is caused by solar wind plasma turbulence, which promotes the development of current sheet instability and surface wave amplification at the magnetopause.  相似文献   

13.
The possibilities of improving the semiempirical model of cosmic ray (CR) modulation, proposed by us previously, are discussed. The following characteristics have been considered as model parameters in order to describe long-period CR variations using a unified model and to more completely reflect solar cycles in CR modulation as a complex interaction between two systems of fields (large-scale and local): the value and sign of the polar solar field, the average strength of the solar magnetic field (the B ss integral index), partial indices (zone-even (ZE) and zone-odd (ZO) and sector-even (SE) and sector-odd (SO) indices), the tilt of the heliospheric current sheet, and the special index (F x ) taking into account X ray flares. The role of each index in CR modulation has been revealed. When we described the long-term CR variations using many parameters and taking into account the integral index or one of four partial indices, the best results of modulation modeling during 1976–1999 were obtained for the B ss total energetic index and SO index. A difference between the model calculations and observations increases beginning from the middle of 2000; the problem features of the CR behavior and the specific features of modeling this behavior in cycle 23 of solar activity (SA) are discussed. It is assumed that a decrease in the CR density at the last SA minimums (from cycle to cycle) can be related to a decrease in the ZO index and to a recently detected similar decrease in the vertical component of the solar dipole magnetic moment.  相似文献   

14.
The observation of extreme waves at FINO 1 during storm Britta on the 1st November 2006 has initiated a series of research studies regarding the mechanisms behind. The roles of stability and the presence of the open cell structures have been previously investigated but not conclusive. To improve our understanding of these processes, which are essential for a good forecast of similarly important events offshore, this study revisits the development of storm Britta using an atmospheric and wave coupled modeling system, wind and wave measurements from ten stations across the North Sea, cloud images and Synthetic Aperture Radar (SAR) data. It is found here that a standard state-of-the-art model is capable of capturing the important characteristics of a major storm like Britta, including the storm path, storm peak wind speed, the open cells, and peak significant wave height (H s ) for open sea. It was also demonstrated that the impact of the open cells has negligible contribution to the development of extreme H s observed at FINO 1. At the same time, stability alone is not sufficient in explaining the development of extreme H s . The controlling conditions for the development of Britta extreme H s observed at FINO 1 are the persistent strong winds and a long and undisturbed fetch over a long period.  相似文献   

15.
Paleomagnetic samples were collected from four localities located in the southern rim of the Tarim basin. The samples were taken from volcanic rocks erupted between Jurassic and Quaternary. Detailed analysis of all samples has been carried out with progressive thermal demagnetization. A characteristic remanence (ChRM) with higher unblocking temperature has been isolated from all samples. The pole position from the middle Jurassic is at 52.5°N, 187.9°E(dp = 3.7°,dm =6.5°); the directions of the ChRM of Cretaceous correspond to a paleopole at 69.7°N, 211.6°E (dp = 9.8°,dm = 15.9°); the Quaternary pole from the Pulu site is at 79. 9°N, 183.1°E(dp = 1.6°.dm =2.4°). On the basis of these new paleomagnetic data, tectonic evolution of Tarim block is presented.  相似文献   

16.
Intense quasimonchromatic geomagnetic pulsations with a period of ~15 min, observed on the Earth’s surface in the near-noon sector at the beginning of the recovery phase of a very strong (Dst min = ?260 nT) magnetic storm of May 15, 2005, are analyzed. The variations were registered at auroral latitudes only in the X field component, and wave activity shifted into the postnoon sector of the polar cap an hour later; in this case pulsations were observed in the X and Y field components. Within the magnetosphere the source of magnetic pulsations could be the surface waves on the magnetopause caused by the pulse of the solar wind magnetic pressure. Geomagnetic pulsations in the polar cap, observed in phase at different latitudes, could apparently reflect quasiperiodic variations in the NBZ system of field-aligned currents. Such variations can originate due to the series of pulsed reconnections in the postnoon outer cusp at large (~20 nT) positive B z values and large (about ?40 nT) negative values of IMF B x .  相似文献   

17.
The regularities in the southward drift of the ionospheric current centers and luminosity boundaries during strong magnetic storms of November 2003 and 2004 (with Dst ≈ ?400 and ?470 nT, respectively) are studied based on the global geomagnetic observations and TV measurements of auroras. It has been indicated that the eastward and westward electrojets in the dayside and nightside sectors simultaneously shift equatorward to minimal latitudes of Φ min ° ~53°–55°. It has been obtained that the Φ min ° latitude decreases with increasing negative values of Dst, IMF B z component, and westward electric field strength in the solar wind. The dependence of the electrojet equatorward shift velocity (V av) on the rate of IMF B z variations (ΔB z t) has been determined. It is assumed that the electrojet dynamics along the meridian is caused by a change in the structure of the magnetosphere and electric fields in the solar wind and the Earth’s magnetosphere.  相似文献   

18.
Specific variations in the critical frequency of the ionospheric F 2 layer during magnetospheric substorms have been found based on the data of vertical sounding stations in Europe and North America. Maximal attention has been paid to the positive peaks of ΔfoF2 with a duration of 6–8 h before the beginning of the substorm expansion phase (T 0). The possible physical mechanisms by which these peaks are formed (related to the impact of fast particles in the foreshock region of the solar wind on the Earth’s magnetosphere and different for middle and high latitudes) have been considered. The positive peaks of ΔfoF2 can be used in a short-term prediction of the ionospheric disturbance onset and space weather on the whole.  相似文献   

19.
To alert the public to the possibility of tornado (T), hail (H), or convective wind (C), the National Weather Service (NWS) issues watches (V) and warnings (W). There are severe thunderstorm watches (SV), tornado watches (TV), and particularly dangerous situation watches (PV); and there are severe thunderstorm warnings (SW), and tornado warnings (TW). Two stochastic models are formulated that quantify uncertainty in severe weather alarms for the purpose of making decisions: a one-stage model for deciders who respond to warnings, and a two-stage model for deciders who respond to watches and warnings. The models identify all possible sequences of watches, warnings, and events, and characterize the associated uncertainties in terms of transition probabilities. The modeling approach is demonstrated on data from the NWS Norman, Oklahoma, warning area, years 2000–2007. The major findings are these. (i) Irrespective of its official designation, every warning type {SW, TW} predicts with a significant probability every event type {T, H, C}. (ii) An ordered intersection of SW and TW, defined as reinforced warning (RW), provides additional predictive information and outperforms SW and TW. (iii) A watch rarely leads directly to an event, and most frequently is false. But a watch that precedes a warning does matter. The watch type \(\{SV\), TV, \(PV\}\) is a predictor of the warning type \(\{SW\), RW, \(TW\}\) and of the warning performance: It sharpens the false alarm rate of the warning and the predictive probability of an event, and it increases the average lead time of the warning.  相似文献   

20.
The variations in the density of the ionospheric F2 layer maximum (NmF2) under the action of the zonal plasma drift perpendicularly to the magnetic (B) and electric (E) fields in the direction geomagnetic west-geomagnetic east have been studied using the three-dimensional nonstationary theoretical model of electron and ion densities (N e and N i ) and temperatures (T e and T i ) in the low-latitude and midlatitude ionospheric F region and plasmasphere. The method of numerical calculations of N e , N i , T e , and T i , including the advantages of the Lagrangian and Eulerian methods, is used in the model. A dipole approximation of the geomagnetic field (B), taking into account the non-coincidence of the geographic and geomagnetic poles and differences between the positions of the Earth’s and geomagnetic dipole centers, is accepted in the calculations. The calculated NmF2 and altitudes of the F2 layer maximum (hmF2) have been compared with these quantities measured at 16 low-latitude ionospheric sounding stations during the geomagnetically quiet period October 11–12, 1958. This comparison made it possible to correct the input model parameters: the NRLMSISE-00 model [O], the meridional component of the neutral wind velocity according to the HWW90 model, and the meridional component of the equatorial plasma drift due to the electric field specified by the empirical model. It has been indicated that the effect of the zonal E × B plasma drift on NmF2 can be neglected under daytime conditions and changes in NmF2 and hmF2 under the action of this drift are insignificant under nighttime conditions north of 25° and south of ?26° geomagnetic latitude. The effect of the zonal E × B plasma drift on NmF2 and hmF2 is most substantial in the nightside ionosphere approximately from ?20° to 20° geomagnetic latitude, and the neglect of this drift results in an up to 2.4-fold underestimation of NmF2. The found dependence of the effect of the zonal E × B plasma drift on NmF2 and hmF2 on geomagnetic latitude is related to the longitudinal asymmetry of B, asymmetry of the neutral wind about the geomagnetic equator, and changes in the meridional E × B plasma drift at a change in geomagnetic longitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号