首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An outbreak of red oak borer, an insect infesting red oak trees, prompted the need for a biomass model of closed-canopy oak-hickory forests in the rugged terrain of the Arkansas Ozarks. Multiple height percentiles were calculated from small-footprint aerial LIDAR data, and image segmentation was employed to partition the LIDAR-derived surface into structurally homogeneous modeling units. In situ reference data were incorporated into a machine-learning algorithm that produced a regression-tree model for predicting aboveground woody biomass per segment. Model results on training data appear adequate for prediction purposes (mean error 2.38 kg/m2, R 2 = 0.83). Model performance on withheld test data reveals slightly lower accuracy (2.77 kg/m2, R 2 = 0.72).  相似文献   

2.
This paper highlights a novel segmentation approach for single trees from LIDAR data and compares the results acquired both from first/last pulse and full waveform data. In a first step, a conventional watershed-based segmentation procedure is set up, which robustly interpolates the canopy height model from the LIDAR data and identifies possible stem positions of the tallest trees in the segments calculated from the local maxima of the canopy height model. Secondly, this segmentation approach is combined with a special stem detection method. Stem positions in the segments of the watershed segmentation are detected by hierarchically clustering points below the crown base height and reconstructing the stems with a robust RANSAC-based estimation of the stem points. Finally, a new three-dimensional (3D) segmentation of single trees is implemented using normalized cut segmentation. This tackles the problem of segmenting small trees below the canopy height model. The key idea is to subdivide the tree area in a voxel space and to set up a bipartite graph which is formed by the voxels and similarity measures between the voxels. Normalized cut segmentation divides the graph hierarchically into segments which have a minimum similarity with each other and whose members (= voxels) have a maximum similarity. The solution is found by solving a corresponding generalized eigenvalue problem and an appropriate binarization of the solution vector. Experiments were conducted in the Bavarian Forest National Park with conventional first/last pulse data and full waveform LIDAR data. The first/last pulse data were collected in a flight with the Falcon II system from TopoSys in a leaf-on situation at a point density of 10 points/m2. Full waveform data were captured with the Riegl LMS-Q560 scanner at a point density of 25 points/m2 (leaf-off and leaf-on) and at a point density of 10 points/m2 (leaf-on). The study results prove that the new 3D segmentation approach is capable of detecting small trees in the lower forest layer. So far, this has been practically impossible if tree segmentation techniques based on the canopy height model were applied to LIDAR data. Compared to a standard watershed segmentation procedure, the combination of the stem detection method and normalized cut segmentation leads to the best segmentation results and is superior in the best case by 12%. Moreover, the experiments show clearly that using full waveform data is superior to using first/last pulse data.  相似文献   

3.
Improved monitoring and understanding of tree growth and its responses to controlling factors are important for tree growth modeling. Airborne Laser Scanning (ALS) can be used to enhance the efficiency and accuracy of large-scale forest surveys in delineating three-dimensional forest structures and under-canopy terrains. This study proposed an ALS-based framework to quantify tree growth and competition. Bi-temporal ALS data were used to quantify tree growth in height (ΔH), crown area (ΔA), crown volume (ΔV), and tree competition for 114,000 individual trees in two conifer-dominant Sierra Nevada forests. We analyzed the correlations between tree growth attributes and controlling factors (i.e. tree sizes, competition, forest structure, and topographic parameters) at multiple levels. At the individual tree level, ΔH had no consistent correlations with controlling factors, ΔA and ΔV were positively related to original tree sizes (R?>?0.3) and negatively related to competition indices (R?R|?>?0.7), ΔV was positively related to original tree sizes (|R|?>?0.8). Multivariate regression models were simulated at individual tree level for ΔH, ΔA, and ΔV with the R2 ranged from 0.1 to 0.43. The ALS-based tree height estimation and growth analysis results were consistent with field measurements.  相似文献   

4.
用地基激光雷达提取单木结构参数——以白皮松为例   总被引:6,自引:1,他引:5  
以白皮松(Pinus bungeana Zucc)为研究对象,针对地基激光雷达TLS扫描的3维点云数据在单株木垂直方向的分布特征,提出了一种基于体元化方法的树干覆盖度变化检测方法,获取单木枝下高;然后根据获取的枝下高引入2维凸包算法获取垂直方向分层树冠轮廓,并计算树冠体积和冠幅;同时获取的单木参数还有胸径与树高。结果表明:单木枝下高的估测精度较高,R2与RMSE分别为0.97 m和0.21 m;胸径估测结果的R2与RMSE分别为0.79 cm和1.07 cm;采用逐步线性回归方法建立单木树冠体积与其他单木参数的相关关系,模型变量包括冠幅、叶子填充树冠长度和胸径,样本数为20,模型的R2与RMSE分别是0.967 m3和2.64 m3。本文方法能较准确地估测枝下高,TLS数据具有对树冠结构3维建模的潜力。  相似文献   

5.
The objective of this study was to investigate the relationship between crown closure and tree density in mixed forest stands using Landsat Thematic Mapper (TM) reflectance values (TM 1- TM 5 and TM 7) and six vegetation indices (SR, DVI, SAVI, NDVI, TVI and NLI). In this study, multiple regression analysis was used to estimate the relationships between the crown closure and tree density (number of tree stems per hectare) using reflectance values and vegetation indices (VIs). The results demonstrated that the model that used SR and DVI had the best performances in terms of crown closure (R2?=?0.674) and the model that used the DVI and SAVI had the best performances in terms of tree density (R2?=?0.702). The regression model that used TM 1, TM 3 together with TM 4 showed the performances of the crown closure (R2?=?0.610) and the regression model that used TM 1 showed the performances of the tree density (0.613). Results obtained from this research show that vegetation indices (VIs) were a better predictor of crown closure and tree density than other TM bands.  相似文献   

6.
Forest structural diversity metrics describing diversity in tree size and crown shape within forest stands can be used as indicators of biodiversity. These diversity metrics can be generated using airborne laser scanning (LiDAR) data to provide a rapid and cost effective alternative to ground-based inspection. Measures of tree height derived from LiDAR can be significantly affected by the canopy conditions at the time of data collection, in particular whether the canopy is under leaf-on or leaf-off conditions, but there have been no studies of the effects on structural diversity metrics. The aim of this research is to assess whether leaf-on/leaf-off changes in canopy conditions during LiDAR data collection affect the accuracy of calculated forest structural diversity metrics. We undertook a quantitative analysis of LiDAR ground detection and return height, and return height diversity from two airborne laser scanning surveys collected under leaf-on and leaf-off conditions to assess initial dataset differences. LiDAR data were then regressed against field-derived tree size diversity measurements using diversity metrics from each LiDAR dataset in isolation and, where appropriate, a mixture of the two. Models utilising leaf-off LiDAR diversity variables described DBH diversity, crown length diversity and crown width diversity more successfully than leaf-on (leaf-on models resulted in R² values of 0.66, 0.38 and 0.16, respectively, and leaf-off models 0.67, 0.37 and 0.23, respectively). When LiDAR datasets were combined into one model to describe tree height diversity and DBH diversity the models described 75% and 69% of the variance (R² of 0.75 for tree height diversity and 0.69 for DBH diversity). The results suggest that tree height diversity models derived from airborne LiDAR, collected (and where appropriate combined) under any seasonal conditions, can be used to differentiate between simple single and diverse multiple storey forest structure with confidence.  相似文献   

7.
ABSTRACT

Forests of the Sierra Nevada (SN) mountain range are valuable natural heritages for the region and the country, and tree height is an important forest structure parameter for understanding the SN forest ecosystem. There is still a need in the accurate estimation of wall-to-wall SN tree height distribution at fine spatial resolution. In this study, we presented a method to map wall-to-wall forest tree height (defined as Lorey’s height) across the SN at 70-m resolution by fusing multi-source datasets, including over 1600 in situ tree height measurements and over 1600?km2 airborne light detection and ranging (LiDAR) data. Accurate tree height estimates within these airborne LiDAR boundaries were first computed based on in situ measurements, and then these airborne LiDAR-derived tree heights were used as reference data to estimate tree heights at Geoscience Laser Altimeter System (GLAS) footprints. Finally, the random forest algorithm was used to model the SN tree height from these GLAS tree heights, optical imagery, topographic data, and climate data. The results show that our fine-resolution SN tree height product has a good correspondence with field measurements. The coefficient of determination between them is 0.60, and the root-mean-squared error is 5.45?m.  相似文献   

8.
Pine plantations in Australia are subject to a range of abiotic and biotic damaging agents that affect tree health and productivity. In order to optimise management decisions, plantation managers require regular intelligence relating to the status and trends in the health and condition of trees within individual compartments. Remote sensing technology offers an alternative to traditional ground-based assessment of these plantations. Automated estimation of foliar crown health, especially in degraded crowns, can be difficult due to mixed pixels when there is low or fragmented vegetation cover. In this study we apply a linear spectral unmixing approach to high spatial resolution (50 cm) multispectral imagery to quantify the fractional abundances of the key image endmembers: sunlit canopy, shadow, and soil. A number of Pinus radiata tree crown attributes were modelled using multiple linear regression and endmember fraction images. We found high levels of significance (r2 = 0.80) for the overall crown colour and colour of the crown leader (r2 = 0.79) in tree crowns affected by the fungal pathogen Sphaeropsis sapinea, which produces both needle necrosis and chlorosis. Results for stands associated with defoliation and chlorosis through infestation by the aphid Essigella californica were lower with an r2 = 0.33 for crown transparency and r2 = 0.31 for proportion of crown affected. Similar analysis of data from a nitrogen deficient site produced an outcome somewhat in between the other two damaging agents. Overall the sunlit canopy image fraction has been the most important variable used in the modelling of forest condition for all damaging agents.  相似文献   

9.
Leaf to canopy upscaling approach affects the estimation of canopy traits   总被引:1,自引:0,他引:1  
In remote sensing applications, leaf traits are often upscaled to canopy level using sunlit leaf samples collected from the upper canopy. The implicit assumption is that the top of canopy foliage material dominates canopy reflectance and the variability in leaf traits across the canopy is very small. However, the effect of different approaches of upscaling leaf traits to canopy level on model performance and estimation accuracy remains poorly understood. This is especially important in short or sparse canopies where foliage material from the lower canopy potentially contributes to the canopy reflectance. The principal aim of this study is to examine the effect of different approaches when upscaling leaf traits to canopy level on model performance and estimation accuracy using spectral measurements (in-situ canopy hyperspectral and simulated Sentinel-2 data) in short woody vegetation. To achieve this, we measured foliar nitrogen (N), leaf mass per area (LMA), foliar chlorophyll and carbon together with leaf area index (LAI) at three vertical canopy layers (lower, middle and upper) along the plant stem in a controlled laboratory environment. We then upscaled the leaf traits to canopy level by multiplying leaf traits by LAI based on different combinations of the three canopy layers. Concurrently, in-situ canopy reflectance was measured using an ASD FieldSpec-3 Pro FR spectrometer, and the canopy traits were related to in-situ spectral measurements using partial least square regression (PLSR). The PLSR models were cross-validated based on repeated k-fold, and the normalized root mean square errors (nRMSEcv) obtained from each upscaling approach were compared using one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test. Results of the study showed that leaf-to-canopy upscaling approaches that consider the contribution of leaf traits from the exposed upper canopy layer together with the shaded middle canopy layer yield significantly (p < 0.05) lower error (nRMSEcv < 0.2 for canopy N, LMA and carbon) as well as high explained variance (R2 > 0.71) for both in-situ hyperspectral and simulated Sentinel-2 data. The widely-used upscaling approach that considers only leaf traits from the upper illuminated canopy layer yielded a relatively high error (nRMSEcv>0.2) and lower explained variance (R2 < 0.71) for canopy N, LMA and carbon. In contrast, canopy chlorophyll upscaled based on leaf samples collected from the upper canopy and total canopy LAI exhibited a more accurate relationship with spectral measurements compared with other upscaling approaches. Results of this study demonstrate that leaf to canopy upscaling approaches have a profound effect on canopy traits estimation for both in-situ hyperspectral measurements and simulated Sentinel-2 data in short woody vegetation. These findings have implications for field sampling protocols of leaf traits measurement as well as upscaling leaf traits to canopy level especially in short and less foliated vegetation where leaves from the lower canopy contribute to the canopy reflectance.  相似文献   

10.
Agricultural residues have gained increasing interest as a source of renewable energy. The development of methods and techniques that allow to inventory residual biomass needs to be explored further. In this study, the residual biomass of olive trees was estimated based on parameters derived from using a Terrestrial Laser Scanning System (TLS). To this end, 32 olive trees in 2 orchards in the municipality of Viver, Central Eastern Spain, were selected and measured using a TLS system. The residual biomass of these trees was pruned and weighed. Several algorithms were applied to the TLS data to compute the main parameters of the trees: total height, crown height, crown diameter and crown volume. Regarding the last parameter, 4 methods were tested: the global convex hull volume, the convex hull by slice volume, the section volume, and the volume measured by voxels. In addition, several statistics were computed from the crown points for each tree. Regression models were calculated to predict residual biomass using 3 sets of potential explicative variables: firstly, the height statistics retrieved from 3D cloud data for each crown tree, secondly, the parameters of the trees derived from TLS data and finally, the combination of both sets of variables. Strong relationships between residual biomass and TLS parameters (crown volume parameters) were found (R2 = 0.86, RMSE = 2.78 kg). The pruning biomass prediction fraction was improved by 6%, in terms of R2, when the variance of the crown-point elevations was selected (R2 = 0.92, RMSE = 2.01 kg). The study offers some important insights into the quantification of residual biomass, which is essential information for the production of biofuel.  相似文献   

11.
This paper presents a method for individual tree crown extraction and characterisation from a canopy surface model (CSM). The method is based on a conventional algorithm used for localising LM on a smoothed version of the CSM and subsequently for modelling the tree crowns around each maximum at the plot level. The novelty of the approach lies in the introduction of controls on both the degree of CSM filtering and the shape of elliptic crowns, in addition to a multi-filtering level crown fusion approach to balance omission and commission errors. The algorithm derives the total tree height and the mean crown diameter from the elliptic tree crowns generated. The method was tested and validated on a mountainous forested area mainly covered by mature and even-aged black pine (Pinus nigra ssp. nigra [Arn.]) stands. Mean stem detection per plot, using this method, was 73.97%. Algorithm performance was affected slightly by both stand density and heterogeneity (i.e. tree diameter classes’ distribution). The total tree height and the mean crown diameter were estimated with root mean squared error values of 1.83 m and 1.48 m respectively. Tree heights were slightly underestimated in flat areas and overestimated on slopes. The average crown diameter was underestimated by 17.46% on average.  相似文献   

12.
The aim of study is to map the carbon dioxide (CO2) emission of the aboveground tree biomass (AGB) in case of a fire event. The suitability of low point density, discrete, multiple-return, Airborne Laser Scanning (ALS) data and the influence of several characteristics of these data and the study area on the results obtained have been evaluated. A sample of 45 circular plots representative of Pinus halepensis Miller stands were used to fit and validate the model of AGB. The ALS point clouds were processed to obtain the independent variables and a multivariate linear regression analysis between field data and ALS-derived variables allowed estimation of AGB. Then, the influence of several characteristics on the residuals of the model was analyzed. Finally, conversion factors were applied to obtain the CO2 values. The AGB model presented a R2 value of 0.84 with a relative root-mean-square error of 27.35%. This model included ALS variables related to vegetation height variability and to canopy density. Terrain slope, aspect, canopy cover, scan angle and the number of laser returns did not influence AGB estimations at plot level.  相似文献   

13.
The aim of this study is to present an automatic approach for olive tree dendrometric parameter estimation from airborne laser scanning (ALS) data. The proposed method is based on a unique combination of the alpha-shape algorithm applied to normalized point cloud and principal component analysis. A key issue of the alpha-shape algorithm is to define the α parameter, as it directly affects the crown delineation results. We propose to adjust this parameter based on a group of representative trees in an orchard for which the classical field measurements were performed. The best value of the α parameter is one whose correlation coefficient of dendrometric parameters between field measurements and estimated values is the highest. We determined crown diameters as principal components of ALS points representing a delineated crown. The method was applied to a test area of an olive orchard in Spain. The tree dendrometric parameters estimated from ALS data were compared with field measurements to assess the quality of the developed approach. We found the method to be equally good or even superior to previously investigated semi-automatic methods. The average error is 19% for tree height, 53% for crown base height, and 13% and 9% for the length of the longer diameter and perpendicular diameter, respectively.  相似文献   

14.
This study tests the capacity of relatively low density (<1 return/m2) airborne laser scanner data for discriminating between Douglas-fir, western larch, ponderosa pine, and lodgepole pine in a western North American montane forest and it evaluates the relative importance of intensity, height, and return type metrics for classifying tree species. Collectively, Exploratory Data Analysis, Pearson Correlation, ANOVA, and Linear Discriminant Analysis show that structural and intensity characteristics generated from LIDAR data are useful for classifying species at dominant and individual tree levels in multi-aged, mixed conifer forests. Proportions of return types and mean intensities are significantly different between species (p-value < 0.001) for plot-level dominant species and individual trees. Classification accuracies based on single variables range from 49%–61% at the dominant species level and 37%–52% for individual trees. The accuracy can be improved to 95% and 68% respectively by using multiple variables. The inclusion of proportion of return type greatly improves the classification accuracy at the dominant species level, but not for individual trees, while canopy height improves the accuracy at both levels. Overall differences in intensity and return type between species largely reflect variations in the physical structure of trees and stands. These results are consistent with the findings of others and point to airborne laser scanning as a useful source of data for species classification. However, there are still many knowledge gaps that prevent accurate mapping of species using ALS data alone, particularly with relatively sparse datasets like the one used in this study. Further investigations using other datasets in different forest types will likely result in improvements to species identification and mapping for some time to come.  相似文献   

15.
基于机载激光雷达点云数据提取林木参数方法研究   总被引:2,自引:0,他引:2  
本文通过黑河流域遥感—地面观测同步试验,获取林木参数,对机载激光雷达与实地观测获取的林木参数进行对比分析,论证了本文提出的基于机载激光雷达点云数据提取林木参数的算法是可行的。试验通过机载激光雷达点云数据,研究由点云数据生成冠层高度模型(CHM),提出从CHM中提取单株木参数(树高、冠幅等)的关键算法;同时,通过在试验区布设1个100m×100m超级样地和16个25m×25m的子样地,利用DGPS和全站仪对单株木进行精确定位与树木参数测量。  相似文献   

16.
李旺  牛铮  高帅  覃驭楚 《遥感学报》2013,17(6):1612-1626
利用机载激光雷达点云数据,计算了9种度量指标,并将其分为冠层的高度指标、结构复杂度指标和覆盖度指标。利用高度指标和结构复杂度指标,结合大量实测单木结构与年龄估测数据,从样点和区域尺度分别分析了青海云杉林冠层垂直结构分布,分析得知实验区内主要以中龄林和成熟林为主,冠层垂直分布复杂程度偏低,高度分化程度一般。通过回归分析发现首次回波覆盖度指标FCI与实测的有效植被面积指数PAIe有良好的相关性(R2=0.66),在此基础上基于辐射传输模型反演了实验区内PAIe的水平分布,且用实测数据验证发现反演的PAIe略高于实测值(R2=0.67),绝对平均误差为0.65。分析结果很好地反映了激光雷达在森林空间结构信息提取方面的应用潜力。  相似文献   

17.
机载激光雷达及高光谱的森林乔木物种多样性遥感监测   总被引:1,自引:0,他引:1  
利用机载LiDAR和高光谱数据并结合37个地面调查样本数据,基于结构差异与光谱变异理论,通过相关分析法分别筛选了3个最优林冠结构参数和6个最优光谱指数,在单木尺度上利用自适应C均值模糊聚类算法,在神农架国家自然保护区开展森林乔木物种多样性监测,实现了森林乔木物种多样性的区域成图。研究结果表明,(1)基于结合形态学冠层控制的分水岭算法可以获得较高精度的单木分割结果(R~2=0.88,RMSE=13.17,P0.001);(2)基于LiDAR数据提取的9个结构参数中,95%百分位高度、冠层盖度和植被穿透率为最优结构参数,与Shannon-Wiener指数的相关性达到R~2=0.39—0.42(P0.01);(3)基于机载高光谱数据筛选的16个常用的植被指数中,CRI、OSAVI、Narrow band NDVI、SR、Vogelmann index1、PRI与Shannon-Wiener指数的相关性最高(R~2=0.37—0.45,P0.01);(4)在研究区,利用以30 m×30 m为窗口的自适应模糊C均值聚类算法可预测的最大森林乔木物种数为20,物种丰富度的预测精度为R~2=0.69,RMSE=3.11,Shannon-Wiener指数的预测精度为R~2=0.70,RMSE=0.32。该研究在亚热带森林开展乔木物种多样性监测,是在区域尺度上进行物种多样性成图的重要实践,可有效补充森林生物多样性本底数据的调查手段,有助于实现生物多样性的长期动态监测及科学分析森林物种多样性的现状和变化趋势。  相似文献   

18.
The accurate estimation of leaf water content (LWC) and knowledge about its spatial variation are important for forest and agricultural management since LWC provides key information for evaluating plant physiology. Hyperspectral data have been widely used to estimate LWC. However, the canopy reflectance can be affected by canopy structure, thereby introducing error to the retrieval of LWC from hyperspectral data alone. Radiative transfer models (RTM) provide a robust approach to combine LiDAR and hyperspectral data in order to address the confounding effects caused by the variation of canopy structure. In this study, the INFORM model was adjusted to retrieve LWC from airborne hyperspectral and LiDAR data. Two structural parameters (i.e. stem density and crown diameter) in the input of the INFORM model that affect canopy reflectance most were replaced by canopy cover which could be directly obtained from LiDAR data. The LiDAR-derived canopy cover was used to constrain in the inversion procedure to alleviate the ill-posed problem. The models were validated against field measurements obtained from 26 forest plots and then used to map LWC in the southern part of the Bavarian Forest National Park in Germany. The results show that with the introduction of prior information of canopy cover obtained from LiDAR data, LWC could be retrieved with a good accuracy (R2 = 0.87, RMSE = 0.0022 g/cm2, nRMSE = 0.13). The adjustment of the INFORM model facilitated the introduction of prior information over a large extent, as the estimation of canopy cover can be achieved from airborne LiDAR data.  相似文献   

19.
Digital elevation models (DEMs) resulting from LIDAR (light detection and ranging) surveys are now more available in the hydrology and hydraulics (H&H) community, not only for hydraulic applications in small areas close to river networks but also for hydrologic applications in whole basins. Several questions arise when trying to combine LIDAR data and hydrologic models. Despite the long processing time, LIDAR-derived DEMs can provide more accurate information that is useful for basin hydrogeomorphic characterization, in comparison with DEMs at resolutions commonly used in hydrologic applications (cell size 20-30 m). Of particular focus here are river network properties and the instantaneous unit hydrograph (IUH) framework. Two case studies, one in Italy and the other in the USA, are presented in which three DEMs are analyzed with differing resolutions as follows: "standard," i.e., a resolution commonly used in hydrologic applications (cell size 20-30 m), LIDAR (cell size 1-2.5 m), and LIDAR-resampled at the same resolution as the "standard" DEM. Results suggest that the higher spatial resolution LIDAR-derived data are preferable and can introduce more detailed information about basin hydrogeomorphic behavior.  相似文献   

20.
中国南方森林冠顶高度Lidar反演—以江西省为例   总被引:1,自引:0,他引:1  
董立新  李贵才  唐世浩 《遥感学报》2011,15(6):1308-1321
激光雷达(Lidar)与光学遥感的有效结合对中国南方区域森林冠顶高度反演意义重大,而国产卫星将为中国森林生态研究提供新的数据源。本文联合利用大脚印激光雷达GLA和国产MERSI数据,在实现GLAS波形数据处理和不同地形条件下森林冠顶高度反演算法基础上,建立了区域尺度不同森林类型林分冠顶高度GLAS+MERSI联合反演关系模型,进行了江西地区森林冠顶高度反演。总体上,GLAS激光雷达森林冠顶高度估算精度较高;且在与MERSI 250 m数据的联合反演模型中,针叶林模型精度较好(R2=0.7325);阔叶林次之(R2=0.6095);混交林较差(R2=0.4068)。分析发现,考虑了光学遥感生物物理参数的GLAS+MERSI联合关系模型在区域森林冠顶高度估算中有较高精度,且在空间分布上与土地覆盖数据分布特征非常一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号