首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
《水文科学杂志》2013,58(5):886-898
Abstract

Temporal resolution of rainfall plays an important role in determining the hydrological response of river basins. Rainfall temporal variability can be considered as one of the most critical elements when dealing with input data of rainfall—runoff models. In this paper, a typical lumped rainfall—runoff model is applied to long- and short-term runoff prediction using rainfall data sets with different temporal resolution, including daily, hourly and 10-min interval data, and the dependency of model performance on the time interval of the rainfall data is discussed. Furthermore, the effect of temporal resolution on model parameter values is analysed. As results, rainfall data with shorter temporal resolution provide better performance in short-term river discharge estimation, especially for storm discharge estimation. The most accurate results are obtained on the peak discharge and recession part of the hydrograph by using 10-min interval rainfall data. It is concluded that model parameter values are influenced not only by the temporal resolution of calculation but also by the rainfall intensity—duration relationship. This study provides useful information about determination of hydrological model parameters using data of different temporal resolutions.  相似文献   

2.
《水文科学杂志》2013,58(6):1121-1136
Abstract

One of the most significant anticipated consequences of global climate change is the change in frequency of hydrological extremes. Predictions of climate change impacts on the regime of hydrological extremes have traditionally been conducted by a top-down approach that involves a high degree of uncertainty associated with the temporal and spatial characteristics of general circulation model (GCM) outputs and the choice of downscaling technique. This study uses the inverse approach to model hydrological risk and vulnerability to changing climate conditions in the Seyhan River basin, Turkey. With close collaboration with the end users, the approach first identifies critical hydrological exposures that may lead to local failures in the Seyhan River basin. The Hydro-BEAM hydrological model is used to inversely transform the main hydrological exposures, such as floods and droughts, into corresponding meteorological conditions. The frequency of critical meteorological conditions is investigated under present and future climate scenarios by means of a weather generator based on the improved K-nearest neighbour algorithm. The weather generator, linked with the output of GCMs in the last step of the proposed methodology, allows for the creation of an ensemble of scenarios and easy updating when improved GCM outputs become available. Two main conclusions were drawn from the application of the inverse approach to the Seyhan River basin. First, floods of 100-, 200- and 300-year return periods under present conditions will have 102-, 293- and 1370-year return periods under the future conditions; that is, critical flood events will occur much less frequently under the changing climate conditions. Second, the drought return period will change from 5.3 years under present conditions to 2.0 years under the future conditions; that is, critical drought events will occur much more frequently under the changing climate conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号