首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Spatial-temporal rainfall modelling for flood risk estimation   总被引:4,自引:6,他引:4  
Some recent developments in the stochastic modelling of single site and spatial rainfall are summarised. Alternative single site models based on Poisson cluster processes are introduced, fitting methods are discussed, and performance is compared for representative UK hourly data. The representation of sub-hourly rainfall is discussed, and results from a temporal disaggregation scheme are presented. Extension of the Poisson process methods to spatial-temporal rainfall, using radar data, is reported. Current methods assume spatial and temporal stationarity; work in progress seeks to relax these restrictions. Unlike radar data, long sequences of daily raingauge data are commonly available, and the use of generalized linear models (GLMs) (which can represent both temporal and spatial non-stationarity) to represent the spatial structure of daily rainfall based on raingauge data is illustrated for a network in the North of England. For flood simulation, disaggregation of daily rainfall is required. A relatively simple methodology is described, in which a single site Poisson process model provides hourly sequences, conditioned on the observed or GLM-simulated daily data. As a first step, complete spatial dependence is assumed. Results from the River Lee catchment, near London, are promising. A relatively comprehensive set of methodologies is thus provided for hydrological application.  相似文献   

2.
Abstract

A novel approach is presented for combining spatial and temporal detail from newly available TRMM-based data sets to derive hourly rainfall intensities at 1-km spatial resolution for hydrological modelling applications. Time series of rainfall intensities derived from 3-hourly 0.25° TRMM 3B42 data are merged with a 1-km gridded rainfall climatology based on TRMM 2B31 data to account for the sub-grid spatial distribution of rainfall intensities within coarse-scale 0.25° grid cells. The method is implemented for two dryland catchments in Tunisia and Senegal, and validated against gauge data. The outcomes of the validation show that the spatially disaggregated and intensity corrected TRMM time series more closely approximate ground-based measurements than non-corrected data. The method introduced here enables the generation of rainfall intensity time series with realistic temporal and spatial detail for dynamic modelling of runoff and infiltration processes that are especially important to water resource management in arid regions.

Editor D. Koutsoyiannis

Citation Tarnavsky, E., Mulligan, M. and Husak, G., 2012. Spatial disaggregation and intensity correction of TRMM-based rainfall time series for hydrological applications in dryland catchments. Hydrological Sciences Journal, 57 (2), 248–264.  相似文献   

3.
The record length and quality of instantaneous peak flows (IPFs) have a great influence on flood design, but these high resolution flow data are not always available. The primary aim of this study is to compare different strategies to derive frequency distributions of IPFs using the Hydrologiska Byråns Vattenbalansavdelning (HBV) hydrologic model. The model is operated on a daily and an hourly time step for 18 catchments in the Aller‐Leine basin, Germany. Subsequently, general extreme value (GEV) distributions are fitted to the simulated annual series of daily and hourly extreme flows. The resulting maximum mean daily flow (MDF) quantiles from daily simulations are transferred into IPF quantiles using a multiple regression model, which enables a direct comparison with the simulated hourly quantiles. As long climate records with a high temporal resolution are not available, the hourly simulations require a disaggregation of the daily rainfall. Additionally, two calibrations strategies are applied: (1) a calibration on flow statistics; (2) a calibration on hydrographs. The results show that: (1) the multiple regression model is capable of predicting IPFs with the simulated MDFs; (2) both daily simulations with post‐correction of flows and hourly simulations with pre‐processing of precipitation enable a reasonable estimation of IPFs; (3) the best results are achieved using disaggregated rainfall for hourly modelling with calibration on flow statistics; and (4) if the IPF observations are not sufficient for model calibration on flow statistics, the transfer of MDFs via multiple regressions is a good alternative for estimating IPFs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
 The need for high resolution rainfall data at temporal scales varying from daily to hourly or even minutes is a very important problem in hydrology. For many locations of the world, rainfall data quality is very poor and reliable measurements are only available at a coarse time resolution such as monthly. The purpose of this work is to apply a stochastic disaggregation method of monthly to daily precipitation in two steps: 1. Initialization of the daily rainfall series by using the truncated normal model as a reference distribution. 2.␣Restructuring of the series according to various time series statistics (autocorrelation function, scaling properties, seasonality) by using a Markov chain Monte Carlo based algorithm. The method was applied to a data set from a rainfall network of the central plains of Venezuela, in where rainfall is highly seasonal and data availability at a daily time scale or even higher temporal resolution is very limited. A detailed analysis was carried out to study the seasonal and spatial variability of many properties of the daily rainfall as scaling properties and autocorrelation function in order to incorporate the selected statistics and their annual cycle into an objective function to be minimized in the simulation procedure. Comparisons between the observed and simulated data suggest the adequacy of the technique in providing rainfall sequences with consistent statistical properties at a daily time scale given the monthly totals. The methodology, although highly computationally intensive, needs a moderate number of statistical properties of the daily rainfall. Regionalization of these statistical properties is an important next step for the application of this technique to regions in where daily data is not available.  相似文献   

5.
The partitioning of rainfall into surface runoff and infiltration influences many other aspects of the hydrologic cycle including evapotranspiration, deep drainage and soil moisture. This partitioning is an instantaneous non-linear process that is strongly dependent on rainfall rate, soil moisture and soil hydraulic properties. Though all rainfall datasets involve some degree of spatial or temporal averaging, it is not understood how this averaging affects simulated partitioning and the land surface water balance across a wide range of soil and climate types. We used a one-dimensional physics-based model of the near-surface unsaturated zone to compare the effects of different rainfall discretization (5-min point-scale; hourly point-scale; hourly 0.125° gridded) on the simulated partitioning of rainfall for many locations across the United States. Coarser temporal resolution rainfall data underpredicted seasonal surface runoff for all soil types except those with very high infiltration capacities (i.e., sand, loamy sand). Soils with intermediate infiltration capacities (i.e., loam, sandy loam) were the most affected, with less than half of the expected surface runoff produced in most soil types when the gridded rainfall dataset was used as input. The impact of averaging on the water balance was less extreme but non-negligible, with the hourly point-scale predictions exhibiting median evapotranspiration, drainage and soil moisture values within 10% of those predicted using the higher resolution 5-min rainfall. Water balance impacts were greater using the gridded hourly dataset, with average underpredictions of ET up to 27% in fine-grained soils. The results suggest that “hyperresolution” modelling at continental to global scales may produce inaccurate predictions if there is not parallel effort to produce higher resolution precipitation inputs or sub-grid precipitation parameterizations.  相似文献   

6.
Great emphasis is being placed on the use of rainfall intensity data at short time intervals to accurately model the dynamics of modern cropping systems, runoff, erosion and pollutant transport. However, rainfall data are often readily available at more aggregated level of time scale and measurements of rainfall intensity at higher resolution are available only at limited stations. A distribution approach is a good compromise between fine-scale (e.g. sub-daily) models and coarse-scale (e.g. daily) rainfall data, because the use of rainfall intensity distribution could substantially improve hydrological models. In the distribution approach, the cumulative distribution function of rainfall intensity is employed to represent the effect of the within-day temporal variability of rainfall and a disaggregation model (i.e. a model disaggregates time series into sets of higher solution) is used to estimate distribution parameters from the daily average effective precipitation. Scaling problems in hydrologic applications often occur at both space and time dimensions and temporal scaling effects on hydrologic responses may exhibit great spatial variability. Transferring disaggregation model parameter values from one station to an arbitrary position is prone to error, thus a satisfactory alternative is to employ spatial interpolation between stations. This study investigates the spatial interpolation of the probability-based disaggregation model. Rainfall intensity observations are represented as a two-parameter lognormal distribution and methods are developed to estimate distribution parameters from either high-resolution rainfall data or coarse-scale precipitation information such as effective intensity rates. Model parameters are spatially interpolated by kriging to obtain the rainfall intensity distribution when only daily totals are available. The method was applied to 56 pluviometer stations in Western Australia. Two goodness-of-fit statistics were used to evaluate the skill—daily and quantile coefficient of efficiency between simulations and observations. Simulations based on cross-validation show that kriging performed better than other two spatial interpolation approaches (B-splines and thin-plate splines).  相似文献   

7.
Increasing precipitation extremes are one of the possible consequences of a warmer climate. These may exceed the capacity of urban drainage systems, and thus impact the urban environment. Because short‐duration precipitation events are primarily responsible for flooding in urban systems, it is important to assess the response of extreme precipitation at hourly (or sub‐hourly) scales to a warming climate. This study aims to evaluate the projected changes in extreme rainfall events across the region of Sicily (Italy) and, for two urban areas, to assess possible changes in Depth‐Duration‐Frequency (DDF) curves. We used Regional Climate Model outputs from Coordinated Regional Climate Downscaling Experiment for Europe area ensemble simulations at a ~12 km spatial resolution, for the current period and 2 future horizons under the Representative Concentration Pathways 8.5 scenario. Extreme events at the daily scale were first investigated by comparing the quantiles estimated from rain gauge observations and Regional Climate Model outputs. Second, we implemented a temporal downscaling approach to estimate rainfall for sub‐daily durations from the modelled daily precipitation, and, lastly, we analysed future projections at daily and sub‐daily scales. A frequency distribution was fitted to annual maxima time series for the sub‐daily durations to derive the DDF curves for 2 future time horizons and the 2 urban areas. The overall results showed a raising of the growth curves for the future horizons, indicating an increase in the intensity of extreme precipitation, especially for the shortest durations. The DDF curves highlight a general increase of extreme quantiles for the 2 urban areas, thus underlining the risk of failure of the existing urban drainage systems under more severe events.  相似文献   

8.
The temporal‐spatial resolution of input data‐induced uncertainty in a watershed‐based water quality model, Hydrologic Simulation Program‐FORTRAN (HSPF), is investigated in this study. The temporal resolution‐induced uncertainty is described using the coefficient of variation (CV). The CV is found to decrease with decreasing temporal resolution and follow a log‐normal relation with time interval for temperature data while it exhibits a power‐law relation for rainfall data. The temporal‐scale uncertainties in the temperature and rainfall data follow a general extreme value distribution and a Weibull distribution, respectively. The Nash‐Sutcliffe coefficient (NSC) is employed to represent the spatial resolution induced uncertainty. The spatial resolution uncertainty in the dissolved oxygen and nitrate‐nitrogen concentrations simulated using HSPF is observed to follow a general extreme value distribution and a log‐normal distribution, respectively. The probability density functions (PDF) provide new insights into the effect of temporal‐scale and spatial resolution of input data on uncertainties involved in watershed modelling and total maximum daily load calculations. This study exhibits non‐symmetric distributions of uncertainty in water quality modelling, which simplify weather and water quality monitoring and reducing the cost involved in flow and water quality monitoring. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Simulation of quick runoff components such as surface runoff and associated soil erosion requires temporal high‐resolution rainfall intensities. However, these data are often not available because such measurements are costly and time consuming. Current rainfall disaggregation methods have shortcomings, especially in generating the distribution of storm events. The objectives of this study were to improve point rainfall disaggregation using a new magnitude category rainfall disaggregation approach. The procedure is introduced using a coupled disaggregation approach (Hyetos and cascade) for multisite rainfall disaggregation. The new procedure was tested with ten long‐term precipitation data sets of central Germany using summer and winter precipitation to determine seasonal variability. Results showed that dividing the rainfall amount into four daily rainfall magnitude categories (1–10, 11–25, 26–50, >50 mm) improves the simulation of high rainfall intensity (convective rainfall). The Hyetos model category approach (HyetosCat) with seasonal variation performs representative to observed hourly rainfall compared with without categories on each month. The mean absolute percentage accuracy of standard deviation for hourly rainfall is 89.7% in winter and 95.6% in summer. The proposed magnitude category method applied with the coupled HyetosCat–cascade approach reproduces successfully the statistical behaviour of local 10‐min rainfall intensities in terms of intermittency as well as variability. The root mean square error performance statistics for disaggregated 10‐min rainfall depth ranges from 0.20 to 2.38 mm for summer and from 0.12 to 2.82 mm for the winter season in all categories. The coupled stochastic approach preserves the statistical self‐similarity and intermittency at each magnitude category with a relatively low computational burden. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
A spatial–temporal point process model of rainfall is fitted to data taken from 23 sites across the Thames catchment, London. For the period January 1970 to December 1988 the sites have daily data, whilst for the period January 1989 to November 2003 the sites have hourly data. In addition, the records contain missing values. The fitted model is used to infill the missing values, to disaggregate the daily data to hourly data and to generate spatially consistent series at a further 25 sites across the catchment. The model is validated by considering statistical properties that are not used in the fitting procedure, which include extreme values, the proportion of dry intervals, and annual totals. Overall the performance of the model is good, with the exception of an over-estimation in cross-correlation between pairs of sites for the disaggregated series.  相似文献   

11.
This paper presents an approach to estimating the probability distribution of annual discharges Q based on rainfall-runoff modelling using multiple rainfall events. The approach is based on the prior knowledge about the probability distribution of annual maximum daily totals of rainfall P in a natural catchment, random disaggregation of the totals into hourly values, and rainfall-runoff modelling. The presented Multi-Event Simulation of Extreme Flood method (MESEF) combines design event method based on single-rainfall event modelling, and continuous simulation method used for estimating the maximum discharges of a given exceedance probability using rainfall-runoff models. In the paper, the flood quantiles were estimated using the MESEF method, and then compared to the flood quantiles estimated using classical statistical method based on observed data.  相似文献   

12.
《水文科学杂志》2013,58(5):886-898
Abstract

Temporal resolution of rainfall plays an important role in determining the hydrological response of river basins. Rainfall temporal variability can be considered as one of the most critical elements when dealing with input data of rainfall—runoff models. In this paper, a typical lumped rainfall—runoff model is applied to long- and short-term runoff prediction using rainfall data sets with different temporal resolution, including daily, hourly and 10-min interval data, and the dependency of model performance on the time interval of the rainfall data is discussed. Furthermore, the effect of temporal resolution on model parameter values is analysed. As results, rainfall data with shorter temporal resolution provide better performance in short-term river discharge estimation, especially for storm discharge estimation. The most accurate results are obtained on the peak discharge and recession part of the hydrograph by using 10-min interval rainfall data. It is concluded that model parameter values are influenced not only by the temporal resolution of calculation but also by the rainfall intensity—duration relationship. This study provides useful information about determination of hydrological model parameters using data of different temporal resolutions.  相似文献   

13.
Several rainfall measurement techniques are available for hydrological applications, each with its own spatial and temporal resolution and errors. When using these rainfall datasets as input for hydrological models, their errors and uncertainties propagate through the hydrological system. The aim of this study is to investigate the effect of differences between rainfall measurement techniques on groundwater and discharge simulations in a lowland catchment, the 6.5‐km2 Hupsel Brook experimental catchment. We used five distinct rainfall data sources: two automatic raingauges (one in the catchment and another one 30 km away), operational (real‐time and unadjusted) and gauge‐adjusted ground‐based C‐band weather radar datasets and finally a novel source of rainfall information for hydrological purposes, namely, microwave link data from a cellular telecommunication network. We used these data as input for the, a recently developed rainfall‐runoff model for lowland catchments, and intercompared the five simulated discharges time series and groundwater time series for a heavy rainfall event and a full year. Three types of rainfall errors were found to play an important role in the hydrological simulations, namely: (1) Biases, found in the unadjusted radar dataset, are amplified when propagated through the hydrological system; (2) Timing errors, found in the nearest automatic raingauge outside the catchment, are attenuated when propagated through the hydrological system; (3) Seasonally varying errors, found in the microwave link data, affect the dynamics of the simulated catchment water balance. We conclude that the hydrological potential of novel rainfall observation techniques should be assessed over a long period, preferably a full year or longer, rather than on an event basis, as is often done. Copyright © 2016 The Authors. Hydrological Processes. Published by John Wiley & Sons Ltd.  相似文献   

14.
Testing hydrological models over different spatio‐temporal scales is important for both evaluating diagnostics and aiding process understanding. High‐frequency (6‐hr) stable isotope sampling of rainfall and runoff was undertaken during 3‐week periods in summer and winter within 12 months of daily sampling in a 3.2‐km2 catchment in the Scottish Highlands. This was used to calibrate and test a tracer‐aided model to assess the (a) information content of high‐resolution data, (b) effect of different calibration strategies on simulations and inferred processes, and (c) model transferability to <1‐km2 subcatchment. The 6‐hourly data were successfully incorporated without loss of model performance, improving the temporal resolution of the modelling, and making it more relevant to the time dynamics of the isotope and hydrometric response. However, this added little new information due to old‐water dominance and riparian mixing in this peatland catchment. Time variant results, from differential split sample testing, highlighted the importance of calibrating to a wide range of hydrological conditions. This also provided insights into the nonstationarity of catchment mixing processes, in relation to storage and water ages, which varied markedly depending on the calibration period. Application to the nested subcatchment produced equivalent parameterization and performance, highlighting similarity in dominant processes. The study highlighted the utility of high‐resolution data in combination with tracer‐aided models, applied at multiple spatial scales, as learning tools to enhance process understanding and evaluation of model behaviour across nonstationary conditions. This helps reveal more fully the catchment response in terms of the different mechanistic controls on both wave celerites and particle velocities.  相似文献   

15.
Abstract

Transfer function models of the rainfall–runoff relationship with various complexities are developed to investigate the hydrological behaviour of a tropical peat catchment that has undergone continuous drainage for a long time. The study reveals that a linear transfer function model of order one and noise term of ARIMA (1,0,0) best represents the monthly rainfall–runoff relationship of a drained peat catchment. The best-fitted transfer function model is capable of illustrating the cumulative hydrological effects of the catchment when subjected to drainage. Transfer function models of daily rainfall–runoff relationships for each year of the period 1983–1993 are also developed to decipher the changes in hydrological behaviour of the catchment due to drainage. The results show that the amount of rain water temporarily stored in the peat soil decreased and the catchment has become more responsive to rainfall over the study period.

Editor Z.W. Kundzewicz; Associate editor D. Hughes

Citation Katimon, A., Shahid, S., Abd Wahab, A.K., and Shabri, A., 2013. Hydrological behaviour of a drained agricultural peat catchment in the tropics. 2: Time series transfer function modelling approach. Hydrological Sciences Journal, 58 (6), 1310–1325.  相似文献   

16.
Water budget analyses are important for the evaluation of the water resources in semiarid and arid regions. The lack of observed data is the major obstacle for hydrological modelling in arid regions. The aim of this study is the analysis and calculation of the natural water resources of the Western Dead Sea subsurface catchment, one which is highly sensitive to rainfall resulting in highly variable temporal and spatial groundwater recharge. We focus on the subsurface catchment and subsequently apply the findings to a large‐scale groundwater flow model to estimate the groundwater discharge to the Dead Sea. We apply a semidistributed hydrological model (J2000g), originally developed for the Mediterranean, to the hyperarid region of the Western Dead Sea catchment, where runoff data and meteorological records are sparsely available. The challenge is to simulate the water budget, where the localized nature of extreme rainstorms together with sparse runoff data results in few observed runoff and recharge events. To overcome the scarcity of climate input data, we enhance the database with mean monthly rainfall data. The rainfall data of 2 satellites are shown to be unsuitable to fill the missing rainfall data due to underrepresentation of the steep hydrological gradient and temporal resolution. Hydrological models need to be calibrated against measured values; hence, the absence of adequate data can be problematic. Therefore, our calibration approach is based on a nested strategy of diverse observations. We calculate a direct surface runoff of the Western Dead Sea surface area (1,801 km2) of 3.4 mm/a and an average recharge (36.7 mm/a) for the 3,816 km2 subsurface drainage basin of the Cretaceous aquifer system.  相似文献   

17.
Abstract

Flood frequency estimation is crucial in both engineering practice and hydrological research. Regional analysis of flood peak discharges is used for more accurate estimates of flood quantiles in ungauged or poorly gauged catchments. This is based on the identification of homogeneous zones, where the probability distribution of annual maximum peak flows is invariant, except for a scale factor represented by an index flood. The numerous applications of this method have highlighted obtaining accurate estimates of index flood as a critical step, especially in ungauged or poorly gauged sections, where direct estimation by sample mean of annual flood series (AFS) is not possible, or inaccurate. Therein indirect methods have to be used. Most indirect methods are based upon empirical relationships that link index flood to hydrological, climatological and morphological catchment characteristics, developed by means of multi-regression analysis, or simplified lumped representation of rainfall–runoff processes. The limits of these approaches are increasingly evident as the size and spatial variability of the catchment increases. In these cases, the use of a spatially-distributed, physically-based hydrological model, and time continuous simulation of discharge can improve estimation of the index flood. This work presents an application of the FEST-WB model for the reconstruction of 29 years of hourly streamflows for an Alpine snow-fed catchment in northern Italy, to be used for index flood estimation. To extend the length of the simulated discharge time series, meteorological forcings given by daily precipitation and temperature at ground automatic weather stations are disaggregated hourly, and then fed to FEST-WB. The accuracy of the method in estimating index flood depending upon length of the simulated series is discussed, and suggestions for use of the methodology provided.
Editor D. Koutsoyiannis  相似文献   

18.
Although the effectiveness of best management practices (BMPs) in reducing urban flooding is widely recognized, the improved sustainability achieved by implementing BMPs in upstream suburban areas, reducing downstream urban floods, is still debated. This study introduces a new definition of urban drainage system (UDS) sustainability, focusing on BMP usage to enhance system performance after adaptation to climate change. Three types of hydraulic reliability index (HRI) plus robustness and improvability indices were used to quantify the potential enhanced sustainability of the system in a changing climate, together with a climate change adaptability index (CCAI). The sustainability of UDS for the safe conveyance of storm-water runoff was investigated under different land-use scenarios: No BMP, BMP in urban areas, and BMP inside and upstream of urban areas, considering climate change impacts. Rainfall–runoff simulation alongside drainage network modelling was conducted using a storm-water management model (US EPA SWMM) to determine the inundation areas for both base-line and future climatic conditions. A new method for disaggregating daily rainfall to hourly, proposed to provide a finer resolution of input rainfall to SWMM, was applied to a semi-urbanized catchment whose upstream runoff from mountainous areas may contribute to the storm-water runoff in downstream urban parts. Our findings confirm an increase in the number of inundation points and reduction in sustainability indices of UDS due to climate change. The results present an increase in UDS reliability from 4% to 16% and improvements in other sustainability indicators using BMPs in upstream suburban areas compared to implementing them in urban areas.  相似文献   

19.
River discharges vary strongly through time and space, and quantifying this variability is fundamental to understanding and modelling river processes. The river basin is increasingly being used as the unit for natural resource planning and management; to facilitate this, basin‐scale models of material supply and transport are being developed. For many basin‐scale planning activities, detailed rainfall‐runoff modelling is neither necessary nor tractable, and models that capture spatial patterns of material supply and transport averaged over decades are sufficient. Nevertheless, the data to describe the spatial variability of river discharge across large basins for use in such models are often limited, and hence models to predict river discharge at the basin scale are required. We describe models for predicting mean annual flow and a non‐dimensional measure of daily flow variability for every river reach within a drainage network. The models use sparse river gauging data, modelled grid surfaces of mean annual rainfall and mean annual potential evapotranspiration, and a network accumulation algorithm. We demonstrate the parameterization and application of the models using data for the Murrumbidgee basin, in southeast Australia, and describe the use of these predictions in modelling sediment transport through the river network. The regionalizations described contain less uncertainty, and are more sensitive to observed spatial variations in runoff, than regionalizations based on catchment area and rainfall alone. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Precipitation time series with high temporal resolution are desired for hydrological modelling and flood studies. Yet the choice of an appropriate resolution is not straightforward because the use of too high a temporal resolution increases the data requirements, computational costs and, presumably, associated uncertainty, while performance improvement may be indiscernible. In this study, the effect of averaging hourly precipitation on model performance and associated uncertainty is investigated using two data sources: station network precipitation (SNP) and radar-based precipitation (RBP). From these datasets, time series of different temporal resolutions were generated, and runoff was simulated for 13 pre-alpine catchments with a bucket-type model. Our results revealed that different temporal resolutions were required for an acceptable model performance depending on the catchment size and data source. These were 1–12 h for small (16–59 km2), 3-21 h for medium (60–200 km2), and 24 h for large (200–939 km2) catchments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号