首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
J. M. Mugo  T. C. Sharma 《水文研究》1999,13(17):2931-2939
This paper highlights the use of a conceptual method for separating runoff components in daily hydrographs, contrary to the traditionally used graphical method of separation. In the conceptual method, the components, viz. surface flow, interflow and baseflow, are regarded as high, medium and low frequency signals and their separation is done using the principle of a recursive digital filter commonly used in signal analysis and processing. It requires estimates of the direct runoff (βd) and surface runoff (βs) filter parameters which are obtained by a least‐squares procedure involving baseflow and interflow indices based on graphical and recursive digital filter estimation techniques. The method thus circumvents the subjective element associated with the graphical procedure of hydrograph separation, in which case the eye approximation and/or one's skill at plotting is the prime basis for the whole analysis. The analysis based on three forest catchments in Kimakia, Kenya, East Africa, revealed that βd=Kb and βs=Ki , where Kb and Ki are the baseflow and interflow recession constants. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
Where they are present in catchments, peatlands are a dominant source of dissolved organic matter (DOM) to surrounding waterways due, in part, to high production rates. Despite the preponderance of peatlands in northern latitudes and expected peatland vulnerability to climate change, little is known about peatland DOM degradation relative to a more comprehensive understanding of degradation when DOM is sourced from upland-dominated catchments. We compared DOM biodegradability of various sources of stream water in two catchments having peatlands (22%–33% of the area) surrounded by upland forests (70%–90% of the area, either deciduous or coniferous). We measured total organic carbon (TOC), and biodegradable dissolved organic carbon concentrations; bacterial respiration rates; streamflow; and upland runoff during and after snowmelt (March to June, 2009–2011). We also explored if DOM in upland runoff stimulated biodegradation of peatland-derived DOM (i.e., a priming effect), and if forest cover type affected DOM biodegradability. As expected, the peatlands were the largest sources of both water (72%–80%) and TOC (92%–96%) to the streams although more area in each catchment was in uplands (70%–90%). Several results were unexpected, yet revealing: (1) DOM from peatlands sometimes had the same biodegradability as DOM from uplands, (2) upland sources of DOM had negligible effects on biodegradability in the peatland and downstream, and (3) upland deciduous cover did not yield more degradable DOM than conifer cover. The most pronounced effect of upland runoff was dilution of downstream TOC concentrations when there was upland runoff. Overall, the effects of upland DOM may have been negligible due to the overriding effect of the large amount of biodegradable DOM that originated in bogs. This research highlights that peatland-sourced DOM has important effects on downstream DOM biodegradability even in catchments where upland area is substantially larger than peatland area.  相似文献   

4.
A comparative modelling of two catchments of similar sizes in Taiwan and England is described. In the study, despite its success in many Taiwanese catchments, including the Yan‐Shui Creek catchment in this study, the distributed model GBDM was initially found unsuitable when applied to the Brue catchment in South West England. However, the simulations are much better after revising the infiltration capacity. Further exploration reveals several interesting findings. (1) The infiltration computation based on soil characteristics and classifications is unreliable in the model. Other factors, such as climate, farming practice and vegetation cover, could have a much more significant impact. (2) The application of the GBDM far away from its ‘home country’ unveils a possible weakness of such a model for being ‘underfitting’. The fact that an ‘adjustment factor’ added in the model could improve both its calibration and validation may indicate that there is a room to improve the GBDM structure for catchments outside Taiwan. (3) The study illustrates the difficulty in creating a universal distributed model that could suit all possible hydrological environments, under the constraint of model parameter parsimony to minimize the ‘equifinality’ problem. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Abstract

A novel approach is presented for combining spatial and temporal detail from newly available TRMM-based data sets to derive hourly rainfall intensities at 1-km spatial resolution for hydrological modelling applications. Time series of rainfall intensities derived from 3-hourly 0.25° TRMM 3B42 data are merged with a 1-km gridded rainfall climatology based on TRMM 2B31 data to account for the sub-grid spatial distribution of rainfall intensities within coarse-scale 0.25° grid cells. The method is implemented for two dryland catchments in Tunisia and Senegal, and validated against gauge data. The outcomes of the validation show that the spatially disaggregated and intensity corrected TRMM time series more closely approximate ground-based measurements than non-corrected data. The method introduced here enables the generation of rainfall intensity time series with realistic temporal and spatial detail for dynamic modelling of runoff and infiltration processes that are especially important to water resource management in arid regions.

Editor D. Koutsoyiannis

Citation Tarnavsky, E., Mulligan, M. and Husak, G., 2012. Spatial disaggregation and intensity correction of TRMM-based rainfall time series for hydrological applications in dryland catchments. Hydrological Sciences Journal, 57 (2), 248–264.  相似文献   

6.
Abstract

The SWAT model was tested to simulate the streamflow of two small Mediterranean catchments (the Vène and the Pallas) in southern France. Model calibration and prediction uncertainty were assessed simultaneously by using three different techniques (SUFI-2, GLUE and ParaSol). Initially, a sensitivity analysis was conducted using the LH-OAT method. Subsequent sensitive parameter calibration and SWAT prediction uncertainty were analysed by considering, firstly, deterministic discharge data (assuming no uncertainty in discharge data) and secondly, uncertainty in discharge data through the development of a methodology that accounts explicitly for error in the rating curve (the stage?discharge relationship). To efficiently compare the different uncertainty methods and the effect of the uncertainty of the rating curve on model prediction uncertainty, common criteria were set for the likelihood function, the threshold value and the number of simulations. The results show that model prediction uncertainty is not only case-study specific, but also depends on the selected uncertainty analysis technique. It was also found that the 95% model prediction uncertainty interval is wider and more successful at encompassing the observations when uncertainty in the discharge data is considered explicitly. The latter source of uncertainty adds additional uncertainty to the total model prediction uncertainty.
Editor D. Koutsoyiannis; Associate editor D. Gerten

Citation Sellami, H., La Jeunesse, I., Benabdallah, S., and Vanclooster, M., 2013. Parameter and rating curve uncertainty propagation analysis of the SWAT model for two small Mediterranean watersheds. Hydrological Sciences Journal, 58 (8), 1635?1657.  相似文献   

7.
《水文科学杂志》2013,58(4):765-780
Abstract

The Central Kenya Rift contains small soda lakes such as Nakuru, Elmenteita and Bogoria, freshwater Lake Naivasha, and the partly (spatially) freshwater Lake Baringo. The hydrology of this area is controlled mainly by climate, tectonically controlled morphological and volcanic barriers, faults, and local water-table variations. Much of the area relies on groundwater for human and industrial use, though there are widespread quality issues particularly in relation to fluoride. Despite the huge demand for the resource, little is known about the highly complex groundwater systems; lacking monitoring data, an assessment is developed on the basis of regional geological, hydrogeological and hydrochemical analyses. Significant hydrological changes have taken place in the region over the last 10 000 years as a result of global, regional and local changes, but the impacts on groundwater resources are still largely unknown. The IPCC projects a 10–15% increase of rainfall in the area, but it may not necessarily result in a proportional increase in groundwater recharge. High groundwater recharge periods appear to be anchored on a decadal cycle.  相似文献   

8.
Estimating the hydrological regime of ungauged catchments in the Himalayan region is challenging due to a lack of sufficient monitoring stations. In this paper, the spatial transferability of the model parameters of the process‐oriented J2000 hydrological model was investigated in 2 glaciated subcatchments of the Koshi river basin in eastern Nepal. The catchments have a high degree of similarity with respect to their static landscape features. The model was first calibrated (1986–1991) and validated (1992–1997) in the Dudh Koshi subcatchment. The calibrated and validated model parameters were then transferred to the nearby Tamor catchment (2001–2009). Sensitivity and uncertainty analyses were carried out for both subcatchments to discover the sensitivity range of the parameters in the two catchments. The model represented the overall hydrograph well in both subcatchments, including baseflow, rising and falling limbs; however, the peak flows were underestimated. The efficiency results according to both Nash–Sutcliffe (ENS) and the coefficient of determination (r2) were above 0.84 in both catchments (1986–1997 in Dudh Koshi and 2001–2009 in Tamor). The ranking of the parameters in respect to their sensitivity matched well for both catchments while taking ENS and log Nash–Sutcliffe (LNS) efficiencies into account. However, there were some differences in sensitivity to ENS and LNS for moderately and less‐sensitive parameters, although the majority (13 out of 16 for ENS and 16 out of 16 for LNS) had a sensitivity response in a similar range. The generalized uncertainty likelihood estimation results suggest that the parameter uncertainty are most of the time within the range and the ensemble mean matches very good (ENS: 0.84) with observed discharge. The results indicate that transfer of the J2000 parameters to a neighbouring catchment in the Himalayan region with similar physiographic landscape characteristics is viable. This indicates the possibility of applying a calibrated process‐based J2000 model to other ungauged catchments in the Himalayan region, which could provide important insights into the hydrological system dynamics and provide much needed information to support water resources planning and management.  相似文献   

9.
A geomorphological instantaneous unit hydrograph (GIUH) rainfall‐runoff model was applied in a 31 km2 montane catchment in Scotland. Modelling was based on flow path length distributions derived from a digital terrain model (DTM). The model was applied in two ways; a single landscape unit response based on the DTM alone, and a two‐landscape unit response, which incorporated the distribution of saturated areas derived from field‐validated geographic information system (GIS) analysis based on a DTM and soil maps. This was to test the hypothesis that incorporation of process‐information would enhance the model performance. The model was applied with limited multiple event calibration to produce parameter sets which could be applied to a spectrum of events with contrasting characteristics and antecedent conditions. Gran alkalinity was used as a tracer to provide an additional objective measure for assessing model performance. The models captured the hydrological response dynamics of the catchment reasonably well. In general, the single landscape unit approach produced the best individual model performance statistics, though the two‐landscape unit approach provided a range of models, which bracketed the storm hydrograph response more realistically. There was a tendency to over‐predict the rising limb of the hydrograph, underestimate large storm event peaks and anticipate the hydrograph recession too rapidly. Most of these limitations could be explained by the simplistic assumptions embedded within the GIUH approach. The modelling also gave feasible predictions of stream water chemistry, though these could not be used as a basis for model rejection. Nevertheless, the study suggested that the approach has potential for prediction of hydrological response in ungauged montane headwater basins. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents an application of a long-term, large catchment-scale, water balance model developed to predict the effects of forest clearing in the south-west of Western Australia. The conceptual model simulates the basic daily water balance fluxes in forested catchments before and after clearing. The large catchment is divided into a number of sub-catchments (1–5 km2 in area), which are taken as the fundamental building blocks of the large catchment model. The responses of the individual subcatchments to rainfall and pan evaporation are conceptualized in terms of three inter-dependent subsurface stores A, B and F, which are considered to represent the moisture states of the subcatchments. Details of the subcatchment-scale water balance model have been presented earlier in Part 1 of this series of papers. The response of any subcatchment is a function of its local moisture state, as measured by the local values of the stores. The variations of the initial values of the stores among the subcatchments are described in the large catchment model through simple, linear equations involving a number of similarity indices representing topography, mean annual rainfall and level of forest clearing. The model is applied to the Conjurunup catchment, a medium-sized (39·6 km2) catchment in the south-west of Western Australia. The catchment has been heterogeneously (in space and time) cleared for bauxite mining and subsequently rehabilitated. For this application, the catchment is divided into 11 subcatchments. The model parameters are estimated by calibration, by comparing observed and predicted runoff values, over a 18 year period, for the large catchment and two of the subcatchments. Excellent fits are obtained.  相似文献   

11.
A long-term salt balance model is coupled with the small catchment water balance model presented in Part 1 of this series of papers. The salt balance model was designed as a simple robust, conceptually based model of the fundamental salt fluxes and stores in forested and cleared catchments. The model has four interdependent stores representing salt storage in the unsaturated zone, the deep permanent saturated groundwater system, the near-stream perched groundwater system and in a ‘salt bulge’ just above the permanent water-table. The model has performed well in simulations carried out on Salmon and Wights, two small experimental catchments in south-west Western Australia. When applied to Wights catchment the salt balance model was able to predict the stream salinities prior to clearing of native forests, and the increased salinities after the clearing.  相似文献   

12.
13.
A long-term water balance model has been developed to predict the hydrological effects of land-use change (especially forest clearing) in small experimental catchments in the south-west of Western Australia. This small catchment model has been used as the building block for the development of a large catchment-scale model, and has also formed the basis for a coupled water and salt balance model, developed to predict the changes in stream salinity resulting from land-use and climate change. The application of the coupled salt and water balance model to predict stream salinities in two small experimental catchments, and the application of the large catchment-scale model to predict changes in water yield in a medium-sized catchment that is being mined for bauxite, are presented in Parts 2 and 3, respectively, of this series of papers. The small catchment model has been designed as a simple, robust, conceptually based model of the basic daily water balance fluxes in forested catchments. The responses of the catchment to rainfall and pan evaporation are conceptualized in terms of three interdependent subsurface stores A, B and F. Store A depicts a near-stream perched aquifer system; B represents a deeper, permanent groundwater system; and F is an intermediate, unsaturated infiltration store. The responses of these stores are characterized by a set of constitutive relations which involves a number of conceptual parameters. These parameters are estimated by calibration by comparing observed and predicted runoff. The model has performed very well in simulations carried out on Salmon and Wights, two small experimental catchments in the Collie River basin in south-west Western Australia. The results from the application of the model to these small catchments are presented in this paper.  相似文献   

14.
A rainstorm that caused a severe flash flood on the piedmont plain at the toe positions of two alluvial fans located to the west of the Organ Mountains in Dona Ana County, New Mexico, USA, is analysed. The space–time distributions of rainfall are evaluated from the Next Generation Weather Radar (NEXRAD) and overland flow is modelled as kinematic wave. The spatial distribution of rainfall shows a topographic control. The greatest rainfall depth, duration, and intensity occurred at the higher elevation mountain slopes and decreased with decreasing elevation from the alluvial fans to the piedmont plain. The alluvial fan–piedmont plain system is modelled by coupling divergent and rectangular overland flow planes. Explicit finite difference approximations, hybridized with the analytical method of characteristics, are made to the kinematic wave equations to account for the spatial and temporal distribution of the rainfall and variable boundary conditions. Simulation results indicate that sheet‐flow floodwater elevations rise (1) in a nonlinear fashion from the apex to toe positions of the alluvial fans, and (2) near linearly from the toe positions of the alluvial fans onto the piedmont plains with the formation of kinematic shocks near the middle to the upstream end of the plane at times between the initiation of the rainstorm and the time of concentration of the plane. Thus, the maximum flooding occurs at the middle or upstream sections of the piedmont plains regardless of the pattern of space–time variability of rainfall. These results are in agreement with observed geomorphologic features suggesting that piedmont plains are naturally flood‐prone areas. This case study demonstrates that flood hazards on piedmont plains can exceed those on alluvial fans. The models presented in this study suggest that the flood hazard zones on coupled alluvial fan–piedmont plain landforms should be delineated transverse to the flow directions, as opposed to the flood hazard zones with boundaries in the longitudinal direction of the axis of an alluvial fan. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
The Alps are often referred to as the ‘water tower of Europe’. In Switzerland, many branches of the economy, especially the hydropower industry, are closely linked to and dependent on the availability of water. Assessing the impact of climate change on streamflow runoff is, thus, of great interest. Major efforts have already been made in this respect, but the analyses often focus on individual catchments and are difficult to intercompare. In this article, we analysed nine high‐alpine catchments spread over the Swiss Alps, selected for their relevance to a wide range of morphological characteristics. Runoff projections were carried out until the end of the current century by applying the Glacier Evolution Runoff Model (GERM) and climate scenarios generated in the framework of the ENSEMBLES project. We focused on assessing the uncertainty induced by the unknown climate evolution and provided general, statistically based statements, which should be useful as a ‘rule of thumb’ for analyses addressing questions related to water management. Catchments with a high degree of glacierization will undergo the largest changes. General statements about absolute variations in discharge are unreliable, but an overall pattern, with an initial phase of increased annual discharge, followed by a phase with decreasing discharge, is recognizable for all catchments with a significant degree of glacierization. In these catchments, a transition from glacial and glacio‐nival regime types to nival will occur. The timing of maximal annual runoff is projected to occur before 2050 in all basins. The time of year with maximal daily discharges is expected to occur earlier at a rate of 4·4 ± 1·7 days per decade. Compared to its present level, the contribution of snow‐ and icemelt to annual discharge is projected to drop by 15 to 25% until the year 2100. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
17.
The impacts of historical land cover changes witnessed between 1973 and 2000 on the hydrologic response of the Nyando River Basin were investigated. The land cover changes were obtained through consistent classifications of selected Landsat satellite images. Their effects on runoff peak discharges and volumes were subsequently assessed using selected hydrologic models for runoff generation and routing available within the HEC‐HMS. Physically based parameters of the models were estimated from the land cover change maps together with a digital elevation model and soil datasets of the basin. Observed storm events for the simulation were selected and their interpolated spatial distributions obtained using the univariate ordinary Kriging procedure. The simulated flows from the 14 sub‐catchments were routed downstream afterwards to obtain the accrued effects in the entire river basin. Model results obtained generally revealed significant and varying increases in the runoff peak discharges and volumes within the basin. In the upstream sub‐catchments with higher rates of deforestation, increases between 30 and 47% were observed in the peak discharge. In the entire basin, however, the flood peak discharges and volumes increased by at least 16 and 10% respectively during the entire study period. The study successfully outlined the hydrological consequences of the eminent land cover changes and hence the need for sustainable land use and catchment management strategies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Two Precambrian Shield zero‐order catchments were monitored from January 2003 to July 2004 to characterize their hydrological and biogeochemical characteristics prior to a forest management experiment. Hydrometric observations were used to examine temporal trends in hillslope‐wetland connectivity and the hillslope runoff processes that control wetland event response. The hillslope groundwater flux from the longer transect (E1) was continuous throughout the study period. Groundwater fluxes from a shorter and steeper hillslope (E0) were intermittent during the study period. Large depression storage elements (termed micro‐basins) located on the upper hillslope of the E1 catchment appeared to be at least partly responsible for the observed rapid wetland runoff responses. These micro‐basins were hydrologically connected to a downslope wetland by a subsurface channel of glacial cobbles that functioned as a macropore channel during episodic runoff events. The runoff response from the hilltop micro‐basins is controlled by antecedent water table position and water is quickly piped to the wetland fringe through the cobble channel during high water table conditions. During periods of low water table position, seepage along the bedrock–soil interface from the hilltop micro‐basin and other hillslopes maintained hillslope–wetland connectivity. The micro‐basins create a dynamic variable source‐area runoff system where the contributing area expands downslope during episodic runoff events. The micro‐basins occupied 30% of the E1 catchment and are a common feature on the Precambrian Shield. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
ABSTRACT

Hydrological modelling has undergone constant growth with the increase in information processing capabilities. Hydrological models have traditionally been used to study the effects of climate change on management and land-use changes and for water resources planning, among other purposes. The aim of this study was to determine and analyse the advantages of the HBV and HYMOD models, which are commonly used in hydrology on daily and monthly time scales. A regional sensitivity analysis was used to compare the processes that take on greater importance at different time scales in the two models. As a result, it was found that quick precipitation–runoff processes prove to be better represented in the HBV model, while slow, time-aggregated processes are better represented by the HYMOD model. This study confirms that both models are adequate for rain-dominated basins, such as those of the study area. Additionally, the HBV model proved to be more robust in comparison to HYMOD.  相似文献   

20.
The processes of hillslope runoff and erosion are typically represented at coarse spatial resolution in catchment‐scale models due to computational limitations. Such representation typically fails to incorporate the important effects of topographic heterogeneity on runoff generation, overland flow, and soil erosion. These limitations currently undermine the application of distributed catchment models to understand the importance of thresholds and connectivity on hillslope and catchment‐scale runoff and erosion, particularly in semi‐arid environments. This paper presents a method for incorporating high‐resolution topographic data to improve sub‐grid scale parameterization of hillslope overland flow and erosion models. Results derived from simulations conducted using a kinematic wave overland flow model at 0.5 m spatial resolution are used to parameterize the depth–discharge relationship in the overland flow model when applied at 16 m resolution. The high‐resolution simulations are also used to derive a more realistic parameterization of excess flow shear stress for use in the 16 m resolution erosion model. Incorporating the sub‐grid scale parameterization in the coarse‐resolution model (16 m) leads to improved predictions of overland flow and erosion when evaluated using results derived from high‐resolution (0.5 m) model simulations. The improvement in performance is observed for a range of event magnitudes and is most notable for erosion estimates due to the non‐linear dependency between the rates of erosion and overland flow. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号