首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
《水文科学杂志》2013,58(2):466-478
Abstract

The soil salinity distribution and solute transport properties of three different soil types were investigated and compared within a project area in northeastern Egypt. For this purpose, dye tracer experiments and salinity sampling were carried out. The resulting salinity maps showed that the soil salinity in the cultivated western site of the project area is 8–10 times higher than that in the cultivated eastern site. However, the cultivated soil displayed significantly lower salinity with higher uniformity as compared to the uncultivated soil. The preferential flow phenomenon was less apparent in the cultivated soil. This is mainly due to tillage which disrupts the structure of the soil so that deep cracks are no longer connected to the soil surface. This reduces the risk for groundwater contamination through preferential flow. The study showed that careful and continuous monitoring of the salinity status is needed now and in the future.  相似文献   

2.
《水文科学杂志》2013,58(5):909-917
Abstract

The possibility of simulating flooding in the Huong River basin, Vietnam, was examined using quantitative precipitation forecasts at regional and global scales. Raingauge and satellite products were used for observed rainfall. To make maximum use of the spatial heterogeneity of the different types of rainfall data, a distributed hydrological model was set up to represent the hydrological processes. In this way, streamflow simulated using the rainfall data was compared with that observed in situ. The forecast on a global scale showed better performance during normal flow peak simulations than during extreme events. In contrast, it was found that during an extreme flood peak, the use of regional forecasts and satellite data gives results that are in close agreement with results using raingauge data. Using the simulated overflow volumes recorded at the control point downstream, inundation areas were then estimated using topographic characteristics. This study is the first step in developing a future efficient early warning system and evacuation strategy.  相似文献   

3.
《水文科学杂志》2013,58(5):872-885
Abstract

The “optimal” model complexity is defined as the minimum watershed model structure required for realistic representation of runoff processes. This paper examines the effects of model complexity at different time scales, daily and hourly. Two watershed models with different levels of complexity were constructed and their capability to simulate runoff from a watershed was evaluated. Both models were tested on the same watershed using identical meteorological input, thereby assuring that any difference between model outputs is due only to their model structure. It is demonstrated that, at a daily time scale, a simple model gives good results. For the mountain situation, in which snowmelt is a dominant influence, the nonlinearity of the runoff processes is moderate, and therefore a simple model works well. The model produced good results over a period of 28 years of continuous simulation. However, this simpler model was inadequate when tested on an hourly time scale due to greater nonlinear effects, especially when modelling high-intensity rainfall events. Therefore, the hourly simulation benefited from the more complex model structure. These model results show that optimal watershed model complexity depends on temporal resolution, namely the simulation period and the computational time step. It was shown that certain process representations and model parameters that appeared unimportant during the long-term simulation had significant effects on the short-term extreme event model simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号