首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

More than 40 years of re-vegetation using mainly xerophytic shrubs Artemisia ordosica Krasch. and Caragana korshinskii Kom. at Shapotou Desert Experimental Research Station near Lanzhou, China has resulted in established dwarf-shrub and herbaceous cover on sand dunes. Precipitation, as the sole source of water replenishment in the semiarid area, plays a pertinent role in sustaining the desert ecosystem. A field study was conducted to (a) measure interception loss on shrub canopies during individual rainfall events, (b) determine the canopy storage capacity of individual plants, and (c) explore the relationship between interception and rainfall parameters. The total rainfall and its respective partitions as throughfall were determined and the interception losses in the studied ecosystem were quantified. Interception loss was shown to differ among the xerophyte taxa studied. During the growing seasons, the average shrub community interception loss is 6.9% and 11.7% of the simultaneous overall precipitation, for A. ordosica and C. korshinskii, respectively. Taking into account the observed rainfall conditions and vegetation cover characteristics, it was concluded that the interception loss was 2.7% of the total annual precipitation verified in the period for the A. ordosica community with an average cover of 30%, canopy projection area of 0.8 m2 and canopy storage capacity of 0.75 mm. In contrast, interception loss for the C. korshinskii community was 3.8% with an average cover of 46%, canopy projection area of 3.8 m2 and canopy storage capacity of 0.71 mm. For individual plants of both shrubs, the proportion of interception loss to gross rainfall decreased notably as the rainfall intensity increased between 0 and 2 mm h?1, while it tended to remain constant at about 0.1–0.2 for A. ordosica and 0.1–0.3 for C. korshinskii when the rainfall intensity was >2 mm h?1.  相似文献   

2.
Abstract

Abstract The aim of this study was to estimate the uncertainties in the streamflow simulated by a rainfall–runoff model. Two sources of uncertainties in hydrological modelling were considered: the uncertainties in model parameters and those in model structure. The uncertainties were calculated by Bayesian statistics, and the Metropolis-Hastings algorithm was used to simulate the posterior parameter distribution. The parameter uncertainty calculated by the Metropolis-Hastings algorithm was compared to maximum likelihood estimates which assume that both the parameters and model residuals are normally distributed. The study was performed using the model WASMOD on 25 basins in central Sweden. Confidence intervals in the simulated discharge due to the parameter uncertainty and the total uncertainty were calculated. The results indicate that (a) the Metropolis-Hastings algorithm and the maximum likelihood method give almost identical estimates concerning the parameter uncertainty, and (b) the uncertainties in the simulated streamflow due to the parameter uncertainty are less important than uncertainties originating from other sources for this simple model with fewer parameters.  相似文献   

3.
Abstract

A method was developed for allocating an area likely to be shared by a raingauge station. Average areal precipitation was found by weighting the rainfall at the gauging station in terms of the product of distances enclosing it or radiating from it. The method was applied to two real and two hypothetical basins and the results were compared with those obtained by existing techniques.  相似文献   

4.
《水文科学杂志》2013,58(1):266-277
Abstract

The White Cordillera (northern Peru), with a glacial surface of 631 km2, is the largest glacierized mountain range in the Tropics. Due to the lack of physical data from most of its sub-basins, it is difficult to build a physical model to estimate the water resource flowing from the glaciers at the present time and a fortiori for the future. The most recent GCM simulations indicate a significant increase in the temperature and an accelerated shrinking of the glaciers. Consequently, we sought a model that would be based on the data available within instrumented sub-basins. A theoretical/conceptual water model makes it possible to quantify the local glacier contribution, which could then be applied to the other non-instrumented sub-basins. A total of 43.6% of Parón Lake's instrumented sub-basin area (47.4 km2) corresponds to glacial surfaces. Within this sub-basin, a smaller watershed (8.8 km2), called Artesón, with 72.9% glacierized area, has been accurately observed over a 5-year hydrological period (September 2000–August 2005). This information allowed us to calibrate the model over the Artesón sub-basin. The parameters obtained were applied to the entire Parón basin using the same modelling approach.  相似文献   

5.
Abstract

Abstract Water resources in dryland areas are often provided by numerous surface reservoirs. As a basis for securing future water supply, the dynamics of reservoir systems need to be simulated for large river basins, accounting for environmental change and an increasing water demand. For the State of Ceará in semiarid Northeast Brazil, with several thousands of reservoirs, a simple deterministic water balance model is presented. Within a cascade-type approach, the reservoirs are grouped into six classes according to storage capacity, rules for flow routing between reservoirs of different size are defined, and water withdrawal and return flow due to human water use is accounted for. While large uncertainties in model applications exist, particularly in terms of reservoir operation rules, model validation against observed reservoir storage volumes shows that the approach is a reasonable simplification to assess surface water availability in large river basins. The results demonstrate the large impact of reservoir storage on downstream flow and stress the need for a coupled simulation of runoff generation, network redistribution and water use.  相似文献   

6.
Abstract

Abstract An annual water balance model of Lake Victoria is derived for the period 1925–2000. Regression techniques are used to derive annual inputs to the water balance, based on lake rainfall data, measured and derived inflows and estimated evaporation during the historical period. This approach acknowledges that runoff is a nonlinear function of lake rainfall. A longer inflow series is produced here which is representative of the whole inflow to the lake, rather than just from individual tributaries. The results show a good simulation of annual lake levels and outflows and capture the high lake level in 1997–1998. Climate change scenarios, from a recent global climate model experiment, are applied to the lake rainfall inflow series and evaporation data to estimate future water balances of the lake. The scenarios produce a potential fall in lake levels by the 2030s horizon, and a rise by the 2080s horizon. A discussion of the application of climate change data to this complex hydrological system is presented.  相似文献   

7.
Abstract

Abstract Routine estimates of daily incoming solar radiation from the GOES-8 satellite were compared to locally measured values in Florida. Longwave radiation estimates corrected using GOES-derived cloud amount and cloud top temperature products improved net radiation estimates as compared to a clear sky longwave approach. The Penman-Monteith, Turc, Hargreaves and Makkink models were applied using GOES-derived estimates of solar radiation and net radiation to predict daily evapotranspiration and were compared to evapotranspiration measured with an eddy-correlation system in an emergent wetland experimental site in north-central Florida under unstressed conditions. While the Penman-Monteith model provided the best estimates of evapotranspiration (R 2 = 0.92), the empirical Makkink method demonstrated nearly comparable agreement (R 2 = 0.90) using only the GOES solar radiation and measured temperature. The results show that it is possible to generate spatially distributed daily potential evapotranspiration estimates using GOES-derived solar radiation and net radiation with limited additional surface measurements.  相似文献   

8.
ABSTRACT

From a series of 83 daily heat balances for the lake la Godivelle (France), daily estimates of the rate of heating S (or variation in the heat content) of the lake are analysed by the methods of Edinger et al. (1968), Keijman (1974) for equilibrium temperature. This enables the calculation procedure and the formulation of the exchange coefficient K, and the equilibrium temperature Te, to be distinguished which give the best estimate of the rate of heating. In addition the data are used to describe the daily and seasonal behaviour of K and Te for the summer and autumn stratification phases of the lake.  相似文献   

9.
《水文科学杂志》2013,58(5):961-973
Abstract

A study was carried out to investigate the use of the chloride profile method in conjunction with the water balance method to estimate the annual groundwater recharge in both natural and irrigation sites in Luanjing Irrigation Area, Inner Mongolia. Groundwater recharge from precipitation, estimated by the chloride profile method, is less than 0.1 mm year?1 which accounts for just 0.06% of the long-term average annual rainfall, indicating that rainfall presently plays a minor role in the groundwater recharge. It appears that recharge events only occurred after heavy rain or sustained rainfall events. In the cropped area, the chloride profile method indicated that the average annual recharge is 268 mm year?1 with an infiltration rate of 32.5%, which is reasonably consistent with the 33.1% obtained by the water balance method in 2007. The study shows that about one third of that water is discharged back to the groundwater.  相似文献   

10.
Abstract

Abstract A study was made to develop a model that can be used to predict the steady-state stream depletion rates caused by a continuous pumping well located in a water table aquifer. The effects of nonlinear variation of evaporation with the depth to water table on steady-state stream depletion rate were investigated using model results. Dimensional analysis was used to determine the relationship between the scaled steady-state stream depletion, the scaled pumping distance, the scaled hydraulic conductivity, and the scaled initial depth to the water table. A dimensionless graph was developed for a wide range of these parameters. Analysis of this graph showed that the steady-state stream depletion rate decreases as the pumping distance between the well and the stream increases. The dimensionless graph also showed that steady-state stream depletion rates strongly depended on the initial position of the water table. Analysis indicated that, as the saturated conductivity increased, the effect of the initial position of the water table on the magnitude of stream depletion rate was more influential. Analysis also showed that, as the value of saturated conductivity decreased, the relative error produced by the assumption that at steady state all the pumped water is captured from the evaporation, also decreased.  相似文献   

11.
《水文科学杂志》2013,58(3):596-605
Abstract

The potential effect of climatic change on the flow of the Upper Changjiang (or Yangtze River) above the Three Gorges, China, was simulated with the SLURP hydrological model, using ERA40 data from 1961–1990 to simulate the baseline streamflow, and employing scenario temperature and precipitation changes depicted by two global climate models: the Hadley Centre and the Canadian climate model (CCCma) for both the B2 scenario (moderate emission of greenhouse gases) and the A2 scenario (more intense emission), for the 2021–2050 and 2071–2100 time horizons. In general, temperature and precipitation changes are more pronounced for the latter than for the former period. Winter low flows will not change but summer high flow may be augmented by increased precipitation. By mid-century, temperature increase will reduce streamflow according to CCCma, but not so under the Hadley Centre scenario. By the end of the century, precipitation will be great enough to overcome the influence of warming to raise discharge from most parts of the basin. The Min and the Jinsha rivers warrant much attention, the former because of its large flow contribution and the latter because of its sensitivity to climate forcing.  相似文献   

12.
Abstract

Abstract The exploitation of an alluvial aquifer (2 × 106 m3) has been developed since 1998 in the Valley of Forquilha (Quixeramobim, State of Ceará). For this purpose, 165 wells were drilled along the 23 km of the valley that supplies 500 families and their farms. Monthly monitoring of piezometric and electrical conductivity (2000–2003) show seasonal variations in the water volume (35%) and in the mean value of the conductivity (800–1200 µS cm-1). A conceptual hydrogeological model was developed. Analysis of the data and simulations highlight that the recharge of the aquifer is mainly due to infiltration from the river in the rainy season, which is of the order of 1% of the rain over the catchment area (195 km2). The abstractions increase the recharge between 30 and 60%. The model makes it possible to propose scenarios of sustainable exploitation of the water resource in the catchment. For the period between 1970 and 1988, other simulations show that it would have been possible to maintain irrigated cultures on 75 ha for 80% of the time. During the remaining 20%, the water level is too low, and farmers would have to reduce the irrigated area.  相似文献   

13.
Abstract

Abstract Time series analyses are applied to characterize the transient flow regimes of the Nam La cavern conduit, northwest Vietnam. The conduit transforms the input signal to an output signal, and the degree of transformation provides information on the nature of the flow system. The input for the analysis is net precipitation and the flow hydrograph at the cave entrance, while the output series is the flow hydrograph at the resurgence. Cross-correlation and cross-spectrum analysis are used to investigate the stationarity and linearity of the input–output transformation of the system, resulting in hydrodynamic properties such as system memory, response time, and mean delay between input and output. It is shown that during high flow periods, the flow in the conduit is pressurized. Consequently, the linear input–output assumption holds only for low flows. To highlight the hydrodynamics of the cavern conduit for the high flow periods, wavelet spectrum and wavelet cross-spectrum analyses are applied.  相似文献   

14.
《水文科学杂志》2013,58(1):183-197
Abstract

Abstract Correct estimation of the sediment volume carried by a river is important with respect to pollution, channel navigability, reservoir filling, hydroelectric equipment longevity, fish habitat, river aesthetics and scientific interests. However, conventional sediment rating curves are not able to provide sufficiently accurate results. In this study, models incorporating fuzzy logic are developed as a superior alternative to the sediment rating curve technique for determining the daily suspended sediment concentration for a given river cross-section. This study provides forecasting benchmarks for sediment concentration prediction in the form of a numerical and graphical comparison between fuzzy and rating curve models. Benchmarking was based on a five-year period of continuous streamflow and sediment concentration data from the Quebrada Blanca Station operated by the United States Geological Survey (USGS). Nine different fuzzy models were developed to estimate sediment concentration from streamflow. Each fuzzy model has a different number of membership functions. The parameters of the membership functions were found using a differential evolution algorithm. The benchmark results showed that the fuzzy models were able to produce much better results than rating curve models for the same data inputs.  相似文献   

15.
Abstract

Abstract Base flows make up the flows of most rivers in Zimbabwe during the dry season. Prediction of base flows from basin characteristics is necessary for water resources planning of ungauged basins. Linear regression and artificial neural networks were used to predict the base flow index (BFI) from basin characteristics for 52 basins in Zimbabwe. Base flow index was positively related to mean annual precipitation (r = 0.71), basin slope (r = 0.76), and drainage density (r = 0.29), and negatively related to mean annual evapotranspiration (r = –0.74), and proportion of a basin with grasslands and wooded grasslands (r = –0.53). Differences in lithology did not significantly affect BFI. Linear regression and artificial neural networks were both suitable for predicting BFI values. The predicted BFI was used in turn to derive flow duration curves of the 52 basins and with R 2 being 0.89–0.99.  相似文献   

16.
Abstract

Abstract A hydrological simulation model was developed for conjunctive representation of surface and groundwater processes. It comprises a conceptual soil moisture accounting module, based on an enhanced version of the Thornthwaite model for the soil moisture reservoir, a Darcian multi-cell groundwater flow module and a module for partitioning water abstractions among water resources. The resulting integrated scheme is highly flexible in the choice of time (i.e. monthly to daily) and space scales (catchment scale, aquifer scale). Model calibration involved successive phases of manual and automatic sessions. For the latter, an innovative optimization method called evolutionary annealing-simplex algorithm is devised. The objective function involves weighted goodness-of-fit criteria for multiple variables with different observation periods, as well as penalty terms for restricting unrealistic water storage trends and deviations from observed intermittency of spring flows. Checks of the unmeasured catchment responses through manually changing parameter bounds guided choosing final parameter sets. The model is applied to the particularly complex Boeoticos Kephisos basin, Greece, where it accurately reproduced the main basin response, i.e. the runoff at its outlet, and also other important components. Emphasis is put on the principle of parsimony which resulted in a computationally effective modelling. This is crucial since the model is to be integrated within a stochastic simulation framework.  相似文献   

17.
Abstract

Abstract Land development often results in adverse environmental impact for surface and subsurface water systems. For areas close to the coast, land changes may also result in seawater intrusion into coastal aquifers. Due to this, it is important to evaluate potential adverse effects in advance of any land development. For evaluation purposes a combined groundwater recharge model is proposed with a quasi three-dimensional unconfined groundwater flow equation. The catchment water balance for a planned new campus area of Kyushu University in southern Japan, was selected as a case study to test the model approach. Since most of the study area is covered with forest, the proposed groundwater recharge model considers rainfall interception by forest canopy. The results show that simulated groundwater and surface runoff agree well with observations. It is also shown that actual evapotranspiration, including rainfall interception by forest canopy, is well represented in the proposed simulation model. Several hydrological components such as direct surface runoff rate, groundwater spring flow rate to a ground depression, trans-basin groundwater flow etc., were also investigated.  相似文献   

18.
Abstract

Abstract This work applies a fuzzy decision method to compare the performance of the grey model with that of the phase-space model, in forecasting rainfall one to three hours ahead. Four indices and two statistical tests are used to evaluate objectively the performance of the forecasting models. However, a trade-off must be made in choosing a suitable model because various indices may lead to different judgements. Therefore, a fuzzy decision model was applied to solve this problem and to make the optimum decision. The results of fuzzy decision making demonstrate that the grey model outperforms the phase-space model for forecasting one hour ahead, but the phase-space model performs better for forecasting two or three hours ahead.  相似文献   

19.
《水文科学杂志》2013,58(5):949-960
Abstract

A geographical information system (GIS) was used for the integration of hydrological data acquired using remote sensing and geoelectrical techniques to understand the groundwater condition of Bakhar watershed, Mirazpur District, UP, India. Indian remote sensing IRS-1D, LISS—III data were used to prepare a geomorphological and lineament map of the Bakhar watershed. Vertical electrical sounding (VES) was carried out in different geomorphic units, and ranges of electrical resistivity values were assigned to the different formations by calibrating electrical resistivity with borehole data. Based on these, a subsurface resistivity map and an aquifer thickness map were prepared. Several layers were superimposed using GIS techniques. Each theme was assigned a weight, depending on its influence on groundwater recharge. Each class or unit in the map was assigned a knowledge-based rank from one to four, depending on its significance in storage and transmittance of groundwater, and these were then multiplied by the layer weighting to produce a score. Based on these scores, the watershed was categorized into different groundwater potential zones. The results indicate that the eastern and northern parts of the study area have very good groundwater potential to meet the demands of water for irrigation and domestic purposes, whereas the southern region has poor groundwater potential zones. Such integrated analysis has not been attempted so far in this region for hydrogeological investigation.  相似文献   

20.
Abstract

Abstract A flood forecasting system is a crucial component in flood mitigation. For certain important large-scale reservoirs, cooperation and communication among federal, state, and local stakeholders are required when heavy flood events are encountered. The Web-based environment is emerging as a very important development and delivery platform for real-time flood forecasting systems. In this paper, the findings of a case study are presented of the development of a Web-based flood forecasting system for reservoirs using Java 2 platform Enterprise Edition (J2EE). J2EE of Sun Microsystems is chosen as the development solution for the Web-based flood forecasting system, Weblogic 6.0 of BEA as the container provider, and JBuilder 7.0 of Borland as the development tool. One of the key objectives in this project is to establish a collaborative platform for flood forecasting via Web technology in order to render hydrological models and data available to stakeholders and experts involved and thus offer an efficient medium for transferring and sharing information, knowledge and experiences among them. Compared with general Web-based query systems and traditional flood forecasting systems, the Web-based flood forecasting system is more focused on the on-line analysis of model-based forecasting of floods and provides opportunities for improving the transfer of information and knowledge from the hydrological scientists and managers to decision makers. Finally, a prototype system is used to demonstrate the system application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号