首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Extracting high-quality building footprints is a basic requirement in multiple sectors of town planning, disaster management, 3D visualization, etc. In the current study, we compare three different techniques for acquiring building footprints using (i) LiDAR, (ii) object-oriented classification (OOC) applied on high-resolution aerial photographs and (iii) digital surface models generated from interpolated LiDAR point cloud data. The three outputs were compared with a digitized sample of building polygons quantitatively by computing the errors of commission and omission, and qualitatively using statistical operations. These findings showed that building footprints derived from OOC gave highest regression and correlation values with least commission error. The R2 and R values (0.86 and 0.92, respectively) imply that the footprint areas derived by OOC matched more closely with the actual area of buildings, while a low commission error of 24.7% represented a higher number of footprints as correctly classified.  相似文献   

2.
The automated cloud cover assessment (ACCA) algorithm has provided automated estimates of cloud cover for the Landsat ETM+ mission since 2001. However, due to the lack of a band around 1.375 μm, cloud edges and transparent clouds such as cirrus cannot be detected. Use of Landsat ETM+ imagery for terrestrial land analysis is further hampered by the relatively long revisit period due to a nadir only viewing sensor. In this study, the ACCA threshold parameters were altered to minimise omission errors in the cloud masks. Object-based analysis was used to reduce the commission errors from the extended cloud filters. The method resulted in the removal of optically thin cirrus cloud and cloud edges which are often missed by other methods in sub-tropical areas. Although not fully automated, the principles of the method developed here provide an opportunity for using otherwise sub-optimal or completely unusable Landsat ETM+ imagery for operational applications. Where specific images are required for particular research goals the method can be used to remove cloud and transparent cloud helping to reduce bias in subsequent land cover classifications.  相似文献   

3.
This paper examines the influence that certain omission and commission errors can have on the gravity field models estimated from the initial release of data (RL01) from the Gravity Recovery And Recovery Experiment (GRACE) satellite mission. The effects of omission errors were analyzed by limiting the degree and order to which the GPS and K-band range-rate (KBR) measurement partials were extended in the solution process. The commission error studies focused on the impact of an imperfect mean reference gravity field model on the solution. Combinations of both of these error sources were also explored. The nature of these errors makes them difficult to distinguish from the true gravity signal, so the exploration of these error sources was performed using simulations; however, comparisons to real-data solutions are provided. The results show how each of the specific error sources investigated influences the gravity field solution. The simulations also show how all of the errors examined can be sufficiently mitigated through the appropriate choice of processing parameters.  相似文献   

4.
The European Space Agency (ESA) is currently implementing the BIOMASS mission as 7th Earth Explorer satellite. BIOMASS will provide for the first time global forest aboveground biomass estimates based on P-band synthetic aperture radar (SAR) imagery. This paper addresses an often overlooked element of the data processing chain required to ensure reliable and accurate forest biomass estimates: accurate identification of forest areas ahead of the inversion of radar data into forest biomass estimates.The use of the P-band data from BIOMASS itself for the classification into forest and non-forest land cover types is assessed in this paper. For airborne data in tropical, hemi-boreal and boreal forests we demonstrate that classification accuracies from 90 up to 97% can be achieved using radar backscatter and phase information. However, spaceborne data will have a lower resolution and higher noise level compared to airborne data and a higher probability of mixed pixels containing multiple land cover types. Therefore, airborne data was reduced to 50 m, 100 m and 200 m resolution. The analysis revealed that about 50–60% of the area within the resolution level must be covered by forest to classify a pixel with higher probability as forest compared to non-forest. This results in forest omission and commission leading to similar forest area estimation over all resolutions. However, the forest omission resulted in a biased underestimated biomass, which was not equaled by the forest commission. The results underline the necessity of a highly accurate pre-classification of SAR data for an accurate unbiased aboveground biomass estimation.  相似文献   

5.
系统评估了中国地区航天飞机雷达地形测绘任务(Shuttle Radar Topography Mision,SRTM)3″高程误差的分布及其与地形和地表覆盖因素的关系。通过单因子分析法,使用从50多万个样本点中提取的地表特征属性确定误差的变化规律。结果显示:SRTM高程误差与不同地形和地表覆盖类型关系密切;坡度增大误差由正变负,误差绝对值增大;正误差集中在偏北坡向,负误差集中在西南坡向;误差随植被覆盖增加而增大;冰川、沙漠、湿地区域误差整体为负,城镇建筑区的误差整体为正;坡度作为主导因素,同时影响其他因素对高程误差的作用。数据在某些区域存在明显高程异常,在平坦地区存在条带现象。整体上SRTM高程误差在中国地区呈现复杂的变化规律。  相似文献   

6.
康顺  陈军  彭舒 《测绘学报》2019,48(6):767-779
地表覆盖与更新是地理国情监测、环境变化评估、生态系统保护等不可或缺的基础地理信息。遥感制图技术已成为地表覆盖信息提取的重要手段,但因地物光谱、纹理及时相等特征复杂性,地表覆盖更新数据往往存在错分、漏分,从而导致地表覆盖时空目标不一致。现有地表覆盖更新数据不一致性探测主要以人工检查为主、部分自动化为辅的方式,生产实践中需要大量的作业人员与时间,缺乏行之有效的不一致性自动化探测工具。本文研究分析了栅格地表覆盖更新数据不一致性检查面临的挑战,提出了基于复合逻辑量词的栅格空间拓扑关系计算方法、基于置信区间的更新期地表覆盖错分目标初判规则构建,以及利用空间约束多重匹配的更新期错分目标后验判断,形成了“关系-规则-判断”的地表覆盖时空目标不一致性探测体系。试验以山东临朐、垦利GlobeLand30数据为研究对象,经与统计一致性检核方法对比分析、参照真实地表影像数据,实现了地表覆盖时空目标不一致性探测与有效性检验,验证了探测方法可行性。  相似文献   

7.
Each year thousands of ha of forest land are affected by forest fires in Southern European countries such as Spain. Burned area maps are a valuable instrument for designing prevention and recovery policies. Remote sensing has increasingly become the most widely used tool for this purpose on regional and global scales, where a large variety of techniques and data has been applied. This paper proposes a semiautomatic method for burned area mapping on a regional scale in Mediterranean areas (the Iberian Peninsula has been used as a study case). A Multi-layer Perceptron Network (MLPN) has been designed and applied to MODIS/Terra Surface Reflectance Daily L2G Global 500m SIN Grid multitemporal composite monthly images. The compositing criterion was based on maximum surface temperature. The research covered a six year period (2001–2006) from June to September, when most of the forest fires occur. The resulting burned area maps have been validated using official fire perimeters and compared with MODIS Collection 5 Burned Area Product (MCD45A1). The MLPN shown as an effective method, with a commission error of 29.1%, in the classification of the burned areas, while the omission error was of 14.9%. The results were compared with the MCD45A1 product, which had a slightly higher commission error (30.2%) and a considerably higher omission error (26.2%), indicating a high underestimation of the burned area.  相似文献   

8.
Inland water bodies are globally threatened by environmental degradation and climate change. On the other hand, new water bodies can be designed during landscape restoration (e.g. after coal mining). Effective management of new water resources requires continuous monitoring; in situ surveys are, however, extremely time-demanding. Remote sensing has been widely used for identifying water bodies. However, the use of optical imagery is constrained by accuracy problems related to the difficulty in distinguishing water features from other surfaces with low albedo, such as tree shadows. This is especially true when mapping water bodies of different sizes. To address these problems, we evaluated the potential of integrating hyperspectral data with LiDAR (hereinafter “integrative approach”). The study area consisted of several spoil heaps containing heterogeneous water bodies with a high variability of shape and size. We utilized object-based classification (Support Vector Machine) based on: (i) hyperspectral data; (ii) LiDAR variables; (iii) integration of both datasets. Besides, we classified hyperspectral data using pixel-based approaches (K-mean, spectral angle mapper). Individual approaches (hyperspectral data, LiDAR data and integrative approach) resulted in 2–22.4 % underestimation of the water surface area (i.e, omission error) and 0.4–1.5 % overestimation (i.e., commission error).The integrative approach yielded an improved discrimination of open water surface compared to other approaches (omission error of 2 % and commission error of 0.4 %). We also evaluated the success of detecting individual ponds; the integrative approach was the only one capable of detecting the water bodies with both omission and commission errors below 10 %. Finally, the assessment of misclassification reasons showed a successful elimination of shadows in the integrative approach. Our findings demonstrate that the integration of hyperspectral and LiDAR data can greatly improve the identification of small water bodies and can be applied in practice to support mapping of restoration process.  相似文献   

9.
地表覆盖的高效变化检测在地理国情监测中具有重要意义。本文针对当前地表覆盖检测人工目视解译方法效率低,以及软件自动解译错检率、漏检率较高的特点和现状,提出了一种基于联合特征的地表覆盖类型自动变化检测方法。该方法通过对比7种不同的特征联合方案,确立了联合灰度共生矩阵、灰度直方图、光谱统计特征、对象特征的最优组合形式,并设计支持向量机高维度分类器进行分类。试验结果表明,在浙江省复杂地表覆盖分布情况下,基于分辨率优于1 m的国产高分卫星影像,该方法对房屋建筑区、建筑工地等人工构筑物类型变化检测的正确率达到85%以上,对耕地、草地等植被类型也能取得较好的检测效果。  相似文献   

10.
This research examines uncertainty in MODerate resolution Imaging Spectroradiometer (MODIS) observations, and demonstrates the direct influence of geometric distortions resulting from the standard practice of geolocating swath observations. MODIS observations vary dependent on the ground sample distance, which varies dependent on the view zenith angle that changes with every orbit. MODIS Level 2G (L2G) land products are generated by applying a geolocation algorithm that resamples the variable observation geometries to a consistent grid of fixed pixel size and location, a process which itself introduces variability associated with the changing observational footprint. For this study, broadband albedo was simulated for five validation sites, representing five distinct land cover types, exhibiting quantifiable variability, with additional seasonal variability exhibited in some sites. All site simulations exhibit compounded uncertainty attributable to the geometric distortion sufficient to influence climate models (i.e. ranges from 0.01 to 0.045 albedo). These results indicate there is a minimum level of uncertainty associated with the variable geometry that should be factored into L2G-based products, particularly for nominal 250?m band data. Aggregating the data to coarser resolutions and smoothing the data through average resampling can mitigate the uncertainty.  相似文献   

11.
MODIS土地覆盖分类的尺度不确定性研究   总被引:2,自引:0,他引:2  
以空间异质性较强的枯水期鄱阳湖为研究区,以搭载于同一卫星平台、具有同一观测时间和较高空间分辨率的ASTER数据为参照,分析研究了MODIS数据在土地覆盖分类中由空间尺度带来的不确定性。首先基于MODIS三角权重函数,建立了从ASTER到MODIS的尺度转换方法;然后对不同空间分辨率的数据进行土地覆盖分类,并基于误差矩阵和线性模型分析了MODIS土地覆盖分类结果的误差来源。结果表明,空间分辨率和光谱分辨率与成像方式这两类因素对MODIS与ASTER分类结果差异的贡献比例约为(6.6—11.2):2;MODIS像元尺度对研究区水体的分类不确定性影响较低,而对森林的不确定性影响可达63%。由此可见,在基于MODIS数据的土地覆盖分类研究中,空间尺度所产生的不确定性是比较显著的。这些研究结果对于土地覆盖分类及变化检测、尺度效应和景观生态学不确定性研究,有积极的参考意义。  相似文献   

12.
针对传统基于遥感影像的地表覆盖分类方法普遍存在的生产周期长、成本高、自动化程度低等问题,提出了一种完全利用兴趣点(point of interest,POI)数据进行地表覆盖自动化分类的方法。首先应用潜在狄利克雷分布主题计算模型,从POI数据的文本信息中挖掘出与地表覆盖类型相关的主题类型和分布概率;然后基于POI文本的主题分布,运用支持向量机分类算法构建地表覆盖分类模型;最后以遥感影像地表覆盖分类结果为依据,采用随机抽样的方式对所提方法进行验证。结果表明,该方法能够较好地区分人造地表和非人造地表,且整体分类精度超过80%,可作为传统遥感影像分类的辅助手段,满足地表覆盖快速分类的制图需求。  相似文献   

13.
Penman–Monteith (PM) theory has been successfully applied to calculate land surface evapotranspiration (ET) for regional and global scales. However, soil surface resistance, related to soil moisture, is always difficult to determine over a large region, especially in arid or semiarid areas. In this study, we developed an ET estimation algorithm by incorporating soil moisture control, a soil moisture index (SMI) derived from the surface temperature and vegetation index space. We denoted this ET algorithm as the PM-SMI. The PM-SMI algorithm was compared with several other algorithms that calculated soil evaporation using relative humidity, and validated with Bowen ratio measurements at seven sites in the Southern Great Plain (SGP) that were covered by grassland and cropland with low vegetation cover, as well as at three eddy covariance sites from AmeriFlux covered by forest with high vegetation cover. The results show that in comparison with the other methods examined, the PM-SMI algorithm significantly improved the daily ET estimates at SGP sites with a root mean square error (RMSE) of 0.91 mm/d, bias of 0.33 mm/d, and R2 of 0.77. For three forest sites, the PM-SMI ET estimates are closer to the ET measurements during the non-growing season when compared with the other three algorithms. At all the 10 validation sites, the PM-SMI algorithm performed the best. PM-SMI 8-day ET estimates were also compared with MODIS 8-day ET products (MOD16A2), and the latter showed negligible bias at SGP sites. In contrast, most of the PM-SMI 8-day ET estimates are around the 1:1 line.  相似文献   

14.
面向遥感影像智能分类的海量样本数据采集方法   总被引:1,自引:0,他引:1  
程滔  吴芸  郑新燕  杨刚  白驹 《测绘通报》2019,(10):56-60
以地理国情监测高分辨率遥感影像及高精度地表覆盖分类产品为数据源,提出了一种面向遥感影像智能分类、基于位置匹配技术的全国尺度海量样本数据采集方法。根据数据源特征,研究了县域采集数量权重设置、坐标投影转换、栅格灰度重采样、无效样本数据过滤、地表覆盖分类码映射、样本数据命名标识、特定地表覆盖类型样本数据采集等关键技术,构建了位置匹配的遥感影像数据与分类标签数据组成的样本数据对,开发了样本数据自动采集软件。利用该方法,以县级行政区划为单元,实现了全国尺度海量样本数据采集。选取其中5个县域的成果,评估了方法的实用性及运算性能。研究表明:该方法提升了生产全国尺度海量样本数据的计算响应速度;采集的样本数据能够满足遥感影像智能分类对样本源高质量、大规模的需求,提升了遥感影像分类与预测的准确度。  相似文献   

15.
基于时间序列统计特性的森林变化监测   总被引:1,自引:0,他引:1  
森林动态变化分析对揭示生态系统环境变化及植被恢复和布局重建等具有重要意义,时间序列的遥感数据为森林监测提供了基础数据。本文根据森林植被的统计学特性,在暗目标法的基础上,利用归一化植被指数NDVI实现森林样本自动选择;并融合NDVI构建了新的综合森林特征指数(Integrated Forest Z-Score,IFZ);以时间序列的IFZ分析森林动态信息,实现森林变化动态监测。以三峡大坝及周边区域森林为研究区,利用2001年至2012年每年生长季节(5月—10月)的Landsat TM影像检验本文算法。基于2002年、2006年和2010年三期7月—9月的Quick Bird影像的精度分析结果发现:研究区森林变化检测的总体精度可达96.53%,Kappa系数为0.9512。在添加NDVI指数后构建的IFZ提高了总体监测精度。其中,毁林类别的检测精度提高显著,漏检率和误检率分别为2.74%和3.64%;干扰后重建的森林类别的检测精度有一定提高,其漏检率和误检率分别为10.79%和10.51%。研究结果表明,改进暗目标法能提高森林样本的选样效率,添加NDVI的IFZ能提高森林动态变化的识别度。此外,本算法不仅能定性识别森林变化,而且能定量提供森林干扰发生时间和干扰强度。  相似文献   

16.
Large area tree maps, important for environmental monitoring and natural resource management, are often based on medium resolution satellite imagery. These data have difficulty in detecting trees in fragmented woodlands, and have significant omission errors in modified agricultural areas. High resolution imagery can better detect these trees, however, as most high resolution imagery is not normalised it is difficult to automate a tree classification method over large areas. The method developed here used an existing medium resolution map derived from either Landsat or SPOT5 satellite imagery to guide the classification of the high resolution imagery. It selected a spatially-variable threshold on the green band, calculated based on the spatially-variable percentage of trees in the existing map of tree cover. The green band proved more consistent at classifying trees across different images than several common band combinations. The method was tested on 0.5 m resolution imagery from airborne digital sensor (ADS) imagery across New South Wales (NSW), Australia using both Landsat and SPOT5 derived tree maps to guide the threshold selection. Accuracy was assessed across 6 large image mosaics revealing a more accurate result when the more accurate tree map from SPOT5 imagery was used. The resulting maps achieved an overall accuracy with 95% confidence intervals of 93% (90–95%), while the overall accuracy of the previous SPOT5 tree map was 87% (86–89%). The method reduced omission errors by mapping more scattered trees, although it did increase commission errors caused by dark pixels from water, building shadows, topographic shadows, and some soils and crops. The method allows trees to be automatically mapped at 5 m resolution from high resolution imagery, provided a medium resolution tree map already exists.  相似文献   

17.
In the past researchers have suggested hard classification approaches for pure pixel remote sensing data and to handle mixed pixels soft classification approaches have been studied for land cover mapping. In this research work, while selecting fuzzy c-means (FCM) as a base soft classifier entropy parameter has been added. For this research work Resourcesat-1 (IRS-P6) datasets from AWIFS, LISSIII and LISS-IV sensors of same date have been used. AWIFS and LISS-III datasets have been used for classification and LISS-III and LISS-IV data were used for reference data generation, respectively. Soft classified outputs from entropy based FCM classifiers for AWIFS and LISS-III datasets have been evaluated using sub-pixel confusion uncertainty matrix (SCM). It has been observed that output from FCM classifier has higher classification accuracy with higher uncertainty but entropy-based classifier with optimum value of regularizing parameter generates classified output with minimum uncertainty.  相似文献   

18.
Tissot's Indicatrix and regular grids have been used for assessing map projection accuracies. Despite their broad applicability for accuracy assessment, they have limitations in quantifying resampling errors caused by map projections. This is due to the structural uncertainty with regard to the placement and pattern of grids. It is also difficult to calculate the absolute amount of resampling error in each projection. As an alternative to traditional testing methods, the use of random points was investigated. Specifically, random point generation, resampling with spherical block search algorithms, resampling accuracy with a perfect grid, and resampling accuracy with eight projections were investigated and are discussed here. Eight global referencing methods were tested: the equal-area cylindrical, sinusoidal, Mollweide, Eckert IV, Hammer-Aitoff, interrupted Goode homolosine, integerized sinusoidal projections, and the equal area global gridding with a fixed latitudinal metric distance. The resampling accuracy with a perfect grid is about 75 percent. Results showed the sinusoidal and the integerized sinusoidal projections and equal-area global gridding to achieve the highest accuracies.  相似文献   

19.
The mixed pixel problem affects the extraction of land cover information from remotely sensed images. Super-resolution mapping (SRM) can produce land cover maps with a finer spatial resolution than the remotely sensed images, and reduce the mixed pixel problem to some extent. Traditional SRMs solely adopt a single coarse-resolution image as input. Uncertainty always exists in resultant fine-resolution land cover maps, due to the lack of information about detailed land cover spatial patterns. The development of remote sensing technology has enabled the storage of a great amount of fine spatial resolution remotely sensed images. These data can provide fine-resolution land cover spatial information and are promising in reducing the SRM uncertainty. This paper presents a spatial–temporal Hopfield neural network (STHNN) based SRM, by employing both a current coarse-resolution image and a previous fine-resolution land cover map as input. STHNN considers the spatial information, as well as the temporal information of sub-pixel pairs by distinguishing the unchanged, decreased and increased land cover fractions in each coarse-resolution pixel, and uses different rules in labeling these sub-pixels. The proposed STHNN method was tested using synthetic images with different class fraction errors and real Landsat images, by comparing with pixel-based classification method and several popular SRM methods including pixel-swapping algorithm, Hopfield neural network based method and sub-pixel land cover change mapping method. Results show that STHNN outperforms pixel-based classification method, pixel-swapping algorithm and Hopfield neural network based model in most cases. The weight parameters of different STHNN spatial constraints, temporal constraints and fraction constraint have important functions in the STHNN performance. The heterogeneity degree of the previous map and the fraction images errors affect the STHNN accuracy, and can be served as guidances of selecting the optimal STHNN weight parameters.  相似文献   

20.
Aggregation method is seriously impacted by the landscape characteristics, which has been emphasized due to proportional errors. This research proposed an uncertainty weighted majority rule-based aggregation method (UWMRB) to upscale the cropland/non-cropland map. The Cropland Data Layer for 2016 at 30m resolution, with its corresponding confidence level data, were collected to conduct the experiment using UWMRB and majority rule-based aggregation method. Proportional errors of crop/non-crop were used to assess the accuracy of the two methods. Ordinal logistic regression was used to obtain the probability of an error occurring to predict the uncertainty of both methods. The results show that UWMRB can achieve the lower proportional errors with lower uncertainty. Also, it can reduce the influence of complexity and fragmentation of landscape on aggregation performance. Additionally, the examination of UWMRB provides an important view of application of uncertainty information for upscaling land cover maps in an efficient way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号