首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Large historical earthquakes in Italy define a prominent gap in the Pollino region of the southern Apennines. Geomorphic and palaeoseismological investigations in this region show that the Castrovillari fault (CF) is a major seismogenic source that could potentially fill the southern part of this gap. The surface expression of the CF is a complex, 10–13 km long set of prominent scarps. Trenches across one scarp indicate that at least four surface-faulting earthquakes have occurred along the CF since Late Pleistocene time, each producing at least 1 m of vertical displacement. The length of the fault and the slip per event suggest M =6.5-7.0 for the palaeoearthquakes. Preliminary radiocarbon dating coupled with historical considerations imply that the most recent of these earthquakes occurred between 380 BC and 1200 AD, and probably soon after 760 AD; no evidence for this event has been found in the historical record. We estimate a minimum recurrence interval of 1170 years and a vertical slip rate of 0.2-0.5 mm yr-1 for the CF, which indicates that the seismic behaviour of this fault is comparable to other major seismogenic faults of the central-southern Apennines. The lack of mention or the mislocation of the most recent event in the historical seismic memory of the Pollino region clearly shows that even in Italy, which has one of the longest historical records of seismicity, a seismic hazard assessment based solely on the historical record may not be completely reliable, and shows that geological investigations are critical for filling possible information gaps.  相似文献   

2.
We present geological and morphological data, combined with an analysis of seismic reflection lines across the Ionian offshore zone and information on historical earthquakes, in order to yield new constraints on active faulting in southeastern Sicily. This region, one of the most seismically active of the Mediterranean, is affected by WNW–ESE regional extension producing normal faulting of the southern edge of the Siculo–Calabrian rift zone. Our data describe two systems of Quaternary normal faults, characterized by different ages and related to distinct tectonic processes. The older NW–SE-trending normal fault segments developed up to ≈400  kyr ago and, striking perpendicular to the main front of the Maghrebian thrust belt, bound the small basins occurring along the eastern coast of the Hyblean Plateau. The younger fault system is represented by prominent NNW–SSE-trending normal fault segments and extends along the Ionian offshore zone following the NE–SW-trending Avola and Rosolini–Ispica normal faults. These faults are characterized by vertical slip rates of 0.7–3.3  mm  yr −1 and might be associated with the large seismic events of January 1693. We suggest that the main shock of the January 1693 earthquakes ( M ~ 7) could be related to a 45  km long normal fault with a right-lateral component of motion. A long-term net slip rate of about 3.7  mm  yr −1 is calculated, and a recurrence interval of about 550 ± 50  yr is proposed for large events similar to that of January 1693.  相似文献   

3.
3-D images of P velocity and P - to S -velocity ratio have been produced for the upper crust of the Friuli area (northeastern Italy) using local earthquake tomography. The data consist of 2565 P and 930 S arrival times of high quality. The best-fitting V P and V P / V S 1-D models were computed before the 3-D inversion. V P was measured on two rock samples representative of the investigated upper layers of the Friuli crust. The tomographic V P model was used for modelling the gravity anomalies, by converting the velocity values into densities along three vertical cross-sections. The computed gravity anomalies were optimized with respect to the observed gravity anomalies. The crust investigated is characterized by sharp lateral and deep V P and V P / V S anomalies that are associated with the complex geological structure. High V P / V S values are associated with highly fractured zones related to the main faulting pattern. The relocated seismicity is generally associated with sharp variations in the V P / V S anomalies. The V P images show a high-velocity body below 6 km depth in the central part of the Friuli area, marked also by strong V P / V S heterogeneities, and this is interpreted as a tectonic wedge. Comparison with the distribution of earthquakes supports the hypothesis that the tectonic wedge controls most of the seismicity and can be considered to be the main seismogenic zone in the Friuli area.  相似文献   

4.
In a tectonically active setting large earthquakes are always threats; however, they may also be useful in elucidating the subsurface geology. Instrumentally recorded seismicity is, therefore, widely utilized to extend our knowledge into the deeper crust, especially where basement is involved. It is because the earthquakes are triggered by underground stress changes that usually corresponding to the framework of geological structures. Hidden faults, therefore, can be recognized and their extension as well as orientation can be estimated. Both above are of relevance for assessment on seismic hazard of a region, since the active faults are supposed to be re-activated and cause large earthquakes. In this study, we analysed the 1999 October 22 earthquake sequence that occurred in southwestern Taiwan. Two major seismicity clusters were identified with spatial distribution between depths of 10 and 16 km. One cluster is nearly vertical and striking 032°, corresponding to the strike-slip Meishan fault (MSF) that generated the 1906 surface rupture. Another cluster strikes 190° and dips 64° to the west, which is interpreted as west-vergent reverse fault, in contrast to previous expectation of east vergence. Our analysis of the focal solutions of all the larger earthquakes in the 1999 sequence with the 3-D distribution of all the earthquakes over the period 1990–2004 allows us reinterpret the structural framework and suggest previously unreognized seismogenic sources in this area. We accordingly suggest: (1) multiple detachment faults are present in southwestern Taiwan coastal plain and (2) additional seismogenic sources consist of tear faults and backthrust faults in addition to sources associated with west-vergent fold-and-thrust belt.  相似文献   

5.
A seismic-array study of the continental crust and upper mantle in the Ivrea-Yerbano and Strona-Ceneri zones (northwestern Italy) is presented. A short-period network is used to define crustal P - and S -wave velocity models from earthquakes. The analysis of the seismic-refraction profile LOND of the CROP-ECORS project provided independent information and control on the array-data interpretation.
Apparent-velocity measurements from both local and regional earthquakes, and time-term analysis are used to estimate the velocity in the lower crust and in the upper mantle. The geometry of the upper-lower crust and Moho boundaries is determined from the station delay times.
We have obtained a three-layer crustal seismic model. The P -wave velocity in the upper crust, lower crust and upper mantle is 6.1±0.2 km s−1, 6.5±0.3 km s−1 and 7.8±0.3 km s−1 respectively. Pronounced low-velocity zones in the upper and lower crust are not observed. A clear change in the velocity structure between the upper and lower crust is documented, constraining the petrological interpretation of the Ivrea-type reflective lower continental crust derived from small-scale petrophysical data. Moreover, we found a V P/ V S ratio of 1.69±0.04 for the upper crust and 1.82±0.08 for the lower crust and upper mantle. This is consistent with the structural and petrophysical differences between a compositionally uniform and seismically transparent upper crust and a layered and reflective lower crust. The thickness of the lower crust ranges from about 8 km in front of the Ivrea body (ARVO, Arvonio station) in the northern part of the array to a maximum of about 15 km in the southern part of the array. The lower crust reaches a minimum depth of 5 km below the PROV (Provola) station.  相似文献   

6.
Scaling relationships between seismic moment, rupture length, and rupture width have been examined. For this purpose, the data from several previous studies have been merged into a database containing more than 550 events. For large earthquakes, a dependence of scaling on faulting mechanism has been found. Whereas small and large dip-slip earthquakes scale in the same way, the self-similarity of earthquakes breaks down for large strike-slip events. Furthermore, no significant differences in scaling could be found between normal and reverse earthquakes and between earthquakes from different regions. Since the thickness of the seismogenic layer limits fault widths, most strike-slip earthquakes are limited to rupture widths of between 15 and 30 km while the rupture length is not limited. The aspect ratio of dip-slip earthquakes is similar for all earthquake sizes. Hence, the limitation in rupture width seems to control the maximum possible rupture length for these events. The different behaviour of strike-slip and dip-slip earthquakes can be explained by rupture dynamics and geological fault growth. If faults are segmented, with the thickness of the seismogenic layer controlling the length of each segment, strike-slip earthquakes might rupture connected segments more easily than dip-slip events, and thus could produce longer ruptures than dip-slip events of the same width  相似文献   

7.
The Ethiopian side of central Afar was struck in August 1989 by the largest seismic sequence (three 6.1 ≤ M s ≤ 6.3 events, 15 with M s or m b ≥ 5.0) since that of Serdo in 1969. Using the Djibouti seismological network, we relocated 297 of the events of that sequence. As most of the large events took place outside the network, we assessed the accuracy and stability of earthquake relocations by using three different velocity models and two relocation codes to try to relate individual shocks to distinct faults and surface breaks. A majority of the events apparently occurred underneath the floor of the Dôbi graben, an area about 45  km long and 15  km wide, rupturing boundary and inner floor faults, in agreement with the surface cracks and scarps that we mapped in the area. The relocation shows that the principal events propagated about 50  km northwestwards along the graben in the first 40  hr. A day and a half after the beginning of the sequence, smaller events ( M ≤ 4) started to propagate more than 55  km eastwards, towards Asal Lake. Using two three-component stations installed near the Ethiopian border, we could determine reliable depths for 21 events. The depths are compatible with a seismogenic crust about 14  km thick in the Dôbi and Hanle graben area. Although the Dôbi sequence ruptured about 50  km of the fault array extending from Serdo to Asal, where the regional stress was released by earthquakes in 1969 and 1978, respectively, a seismic gap about 50  km long still subsists along the northern part of the Gaggade region (Der'êla half-graben).  相似文献   

8.
Source history of the 1905 great Mongolian earthquakes (Tsetserleg, Bolnay)   总被引:1,自引:0,他引:1  
Two great Mongolian earthquakes, Tsetserleg and Bolnay, occurred on 1905 July 9 and 23. We determined the source history of these events using body waveform inversion. The Tsetserleg rupture (azimuth N60°) correspond to a N60° oriented branch of the long EW oriented Bolnay fault.
Historical seismograms recorded by Wiechert instruments are digitized and corrected for the geometrical deformation due to the recording system. We use predictive filters to recover the signals lost at the minute marks.
The total rupture length for the Tsetserleg earthquake may reach up to 190 km, in order to explain the width of the recorded body waves. This implies adding 60 km to the previously mapped fault. The rupture propagation is mainly eastward. It starts at the southwest of the central subsegment, showing a left lateral strike-slip with a reverse component. The total duration of the modelled source function is 65 s. The seismic moment deduced from the inversion is 1021 N m, giving a magnitude   M w = 8  .
The nucleation of the Bolnay earthquake was at the intersection between the main fault (375 km left lateral strike-slip) and the Teregtiin fault (N160°, 80 km long right lateral strike-slip with a vertical component near the main fault). The rupture was bilateral along the main fault: 100 km to the west and 275 km to east. It also propagated 80 km to the southeast along the Teregtiin fault. The source duration was 115 s. The moment magnitude Mw varies between 8.3 and 8.5.
The nucleation and rupture depths remain uncertain. We tested three cases: (1) nucleation and rupture depth limited to the seismogenic zone; (2) nucleation in the seismogenic zone and rupture propagation going to the base of the crust and (3) nucleation within the crust–upper mantle interface and rupture propagation within the upper mantle.  相似文献   

9.
A hypothesis for the seismogenesis of a double seismic zone   总被引:1,自引:0,他引:1  
The seismogenesis of a double seismic zone, in particular the lower layer of a double seismic zone, has not been adequately explained in the literature. On the basis of seismic data and geothermal structures along three well-studied cross-sections in the Kuril-Kamchatka and Japan subduction zones, we investigate the temperature/pressure conditions associated with seismogenic structures of the double seismic zones. the corresponding T/P loci seem to suggest that earthquakes observed in the lower layer and in the lower part (below approximately 130 ± 20 km) of the top layer of a double seismic zone were caused by metastable phase transition-a mechanism similar to that responsible for deep-focus earthquakes only at lower temperature/pressure conditions. Under this hypothesis, the wedge-shaped configuration of a double seismic zone is interpreted to represent the loci of the kinetic boundary of the phase transition. According to theoretical/experimental studies and the constraints imposed by our observations, a likely candidate for such a phase transition is the metastable Al-rich enstatite decomposing into the assemblage of Al-poor enstatite plus garnet. Earthquakes in the upper part of the top layer were most probably due to conventional mechanisms such as dehydration of subducted materials and/or facies change from basalt to eclogite. That the top layer involves more than one seismogenic mechanism is also implied by the distinct behaviour of seismicity in the vicinity of 130 ± 20 km. Because the presence of deviatoric stress is critical to the reaction rate of a metastable phase transition, it is inferred that single seismic zones are also caused by the same mechanisms, except that the implicit layer of a supposed double seismic zone is missing, due to the insufficient amount of appropriate metastable minerals or to the lack of appropriate deviatoric stresses in the source region.  相似文献   

10.
Seismic hazard maps of central-southern Africa where hazard has been expressed in terms of peak ground acceleration for an annual probability in excess of 10-1 show relatively high values that distinguish the seismic hazard potential of the Deka fault zone, the mid-Zambezi basin-Luangwa rift and western central Mozambique. In areas such as central-southern Africa where little is known about the geology of the region and the fault systems have not been fully mapped, seismic hazard potential may be estimated from seismicity and broad-scale fault features. For this region, such potential is based on earthquake magnitude Ms ≥ 6. Events of such magnitude have recently occurred in the mid-Zambezi basin, southern Zimbabwe and western-central Mozambique. This paper follows the conventional probabilistic hazard analysis procedure, defining seismic source zones from seismicity based on instrumental records from a cataloque that spans a period of 83 years. Geological and geomorphological features in the region are described on the mesoscale and are correlated with the seismicity as broad fault zones. The scarcity of strong-motion accelerogram data necessitated the formulation of attenuation values based on random vibration theory (RVT).  相似文献   

11.
Summary. Based on accurately located 23 very shallow earthquakes ( h = 1–14 km) in northern and central Greece by portable networks of seismic stations and by the joint epicentre method, the travel times of the Pn -waves from the foci of these earthquakes to the sites of 54 permanent stations in the Balkan region have been determined. The travel times of Pn -waves in the central and eastern part of the area (eastern Greece, south-eastern Yugoslavia, the Aegean Sea, Bulgaria, southern Romania, western Turkey) fit a straight line very well with the Pn velocity equal to 7.9 ± 0.1 km s-1. On the contrary, the travel times of Pn -waves to stations in the western part of the area (Albania, western Greece) do not fit this curve because the Pn -waves travelling to these stations are delayed by more than 1 s due to the thicker crust under the Dinarides–Hellenides mountain range. Time delays for Pn -waves have been calculated for each permanent station in the Balkan area with respect to the mean travel-time curve of these waves in the central and eastern part of the area. Corrections of the travel times for these delays contribute very much to the improvement of the accuracy in the location of the shallow earthquakes in the Aegean and surrounding area.  相似文献   

12.
Summary . The great Etorofu earthquake of 1958 November 6 is characterized by a relatively small aftershock area (70 × 150 km2) and an extremely large felt area. The felt area is more extensive than those of any other large earthquakes which have occurred in the southern Kurile to northern Japan arc since the beginning of this century. The mechanism is a pure thrust fault typical of most great earthquakes in island arcs. A body wave magnitude of m b = 8.2 is obtained at periods around 6 s using more than 40 observations, although an m b value of only 7.6–7.7 would be expected empirically from the observed surface wave magnitude of M s= 8.1–8.2. Both an unusually large felt area and a high m b indicate a dominance of high-frequency components in the seismic waves. A seismic moment of M o= 4.4 × 1028 dyne cm is determined from long-period surface waves from which a high stress drop of Δσ = 78 bar is obtained using a relatively small aftershock area. Historic data indicate an anomalously long time interval between the 1958 event and any earlier great earthquake from the same source region. The observed high stress drop can be interpreted as a consequence of this long intervening period through which strain built up. The dominance of the high-frequency seismic waves can then be interpreted as a result of this high stress drop. Stress drops, seismic wave spectra and recurrence intervals of great earthquakes are in this way closely related to each other. The 1958 event may represent a high strength extreme of stochastic fluctuation of fracture strength relevant to great earthquakes.  相似文献   

13.
Summary. A long seismic refraction profile was carried out between southern Israel and Cyprus. The seismic energy was generated by 33 sea shots each of 0.8 t explosives and was recorded by land stations in Israel and Cyprus and by ocean bottom seismographs deployed along the profile.
The results showed that the continental crust of southern Israel thins towards the Mediterranean underneath a northward thickening sedimentary cover. Cyprus is underlain by a 35 km thick continental crust thinning south-wards and extending to Mt Eratosthenes. Between Mt Eratosthenes and the Israel continental shelf the crystalline crust is composed of high velocity (6.5 km s-1)material and is about 8 km thick. It is covered by 12–14 km of sediments and may represent a fossil oceanic crust.  相似文献   

14.
Assessing seismic hazard in continental interiors is difficult because these regions are characterized by low strain rates and may be struck by infrequent destructive earthquakes. In this paper, we provide an example showing that interpretations of seismic cross sections combined with other kinds of studies such as analysis of microseismicity allow the whole seismogenic source area to be imaged in this type of region. The Middle Durance Fault (MDF) is an 80-km-long fault system located southeastern France that has a moderate but regular seismicity and some palaeoseismic evidence for larger events. It behaves as an oblique ramp with a left-lateral-reverse fault slip and has a low strain rate. MDF is one of the rare slow active fault system monitored by a dedicated dense velocimetric short period network. This study showed a fault system segmented in map and cross section views which consists of staircase basement faults topped by listric faults ramping off Triassic evaporitic beds. Seismic sections allowed the construction of a 3-D structural model used for accurate location of microseismicity. Southern part of MDF is mainly active in the sedimentary cover. In its northern part and in Alpine foreland, seismicity deeper than 8 km was also recorded meaning active faults within the crust cannot be excluded. Seismogenic potential of MDF was roughly assessed. Resulting source sizes and estimated slip rates imply that the magnitude upper limit ranges from 6.0 to 6.5 with a return period of a few thousand years. The present study shows that the coupling between 3-D fault geometry imaging and accurate location of microseismicity provides a robust approach to analyse active fault sources and consequently a more refined seismic hazard assessment.  相似文献   

15.
Rayleigh wave phase velocity maps in southern Africa are obtained at periods from 6 to 40 s using seismic ambient noise tomography applied to data from the Southern Africa Seismic Experiment (SASE) deployed between 1997 and 1999. These phase velocity maps are combined with those from 45 to 143 s period which were determined previously using a two-plane-wave method by Li & Burke. In the period range of overlap (25–40 s), the ambient noise and two-plane-wave methods yield similar phase velocity maps. Dispersion curves from 6 to 143 s period were used to estimate the 3-D shear wave structure of the crust and uppermost mantle on an 1°× 1° grid beneath southern Africa to a depth of about 100 km. Average shear wave velocity in the crust is found to vary from 3.6 km s–1 at 0–10 km depths to 3.86 km s–1 from 20 to 40 km, and velocity anomalies in these layers correlate with known tectonic features. Shear wave velocity in the lower crust is on average low in the Kaapvaal and Zimbabwe cratons and higher in the surrounding Proterozoic terranes, such as the Limpopo and the Namaqua-Natal belts, which suggests that the lower crust underlying the Archean cratons is probably less mafic than beneath the Proterozoic terranes. Crustal thickness estimates agree well with a previous receiver function study of Nair et al. . Archean crust is relatively thin and light and underlain by a fast uppermost mantle, whereas the Proterozoic crust is thick and dense with a slower underlying mantle. These observations are consistent with the southern African Archean cratons having been formed by the accretion of island arcs with the convective removal of the dense lower crust, if the foundering process became less vigorous in arc environments during the Proterozoic.  相似文献   

16.
We combine Global Positioning System (GPS) measurements with forward modelling of viscoelastic relaxation and after-slip to study the post-seismic deformation of the 1997 Umbria-Marche (Central Apennines) moderate shallow earthquake sequence. Campaign GPS measurements spanning the time period 1999–2003 are depicting a clear post-seismic deformation signal. Our results favour a normal faulting rupture model where most of the slip is located in the lower part of the seismogenic upper crust, consistent with the rupture models obtained from the inversion of strong motion data. The preferred rheological model, obtained from viscoelastic relaxation modelling, consists of an elastic upper crust, underlain by a transition zone with a viscosity of 1018 Pa s, while the rheology of deeper layers is not relevant for the observed time-span. Shallow fault creep and after-slip at the base of the seismogenic upper crust are the first order processes behind the observed post-seismic deformation. The deep after-slip, below the fault zone at about 8 km depth, acting as a basal shear through localized time-dependent deformation, identifies a rheological discontinuity decoupling the seismogenic upper crust from the low-viscosity transition zone.  相似文献   

17.
We report source parameters for eight earthquakes in East Africa obtained using a number of techniques, including (1) inversion of long-period P and SH waves for moment tensors and source-time functions, (2) forward modelling of first-motion polarities and P and pP amplitudes on short-period seismograms, and (3) determination of pP-P and sP-P differential traveltimes from short-period records. The foci of these earthquakes lie between depths of 24 and 34 km in Archean and Proterozoic lithosphere, and all but one fault-plane solution indicates normal faulting (primarily E-W extension), consistent with the regional stress regime in East Africa. Because many of these earthquakes occurred in areas where the crust may have been thinned by rifting, it is difficult to ascertain whether or not their foci lie within the lower crust or upper mantle. Some of them, however, occurred away from rift structures in Proterozoic crust that is possibly 35–40 km thick or thicker, and thus they probably nucleated within the lower crust. Strength profile calculations suggest that in order to account for seismogenic (i.e. brittle) behaviour at sufficient depths to explain lower crustal earthquakes in East Africa, the lower crust must not only be composed of mafic lithologies, as suggested by previous investigators, but also that significantly more heat (∼100 per cent) must come from the upper crust than predicted by the crustal heat source distribution obtained from a 1-D interpretation of the linear relationship between heat flow and heat production observed in Proterozoic terrains within eastern and southern Africa. Precambrian mafic dike swarms throughout East Africa provide evidence for magmatic events which could have delivered large amounts of mafic material to the lower crust over a very broad area, thus explaining why the lower crust in East Africa might be mafic away from the volcanogenic rift valleys.  相似文献   

18.
An analysis of the Zihuatanejo, Mexico, earthquake of 1994 December 10 ( M = 6.6), based on teleseismic and near-source data, shows that it was a normal-faulting, intermediate-depth ( H = 50 ± 5 km) event. It was located about 30 km inland, within the subducted Cocos plate. The preferred fault plane has an azimuth of 130°, a dip of 79° and a rake of −86°. The rupture consisted of two subevents which were separated in time by about 2 s, with the second subevent occurring downdip of the first. The measured stress drop was relatively high, requiring a Δσ of about a kilobar to explain the high-frequency level of the near-source spectra. A rough estimate of the thickness of the seismogenic part of the oceanic lithosphere below Zihuatanejo, based on the depth and the rupture extent of this event, is 40 km.
This event and the Oaxaca earthquake of 1931 January 15 ( M = 7.8) are the two significant normal-faulting, intermediate-depth shocks whose epicentres are closest to the coast. Both of these earthquakes were preceded by several large to great shallow, low-angle thrust earthquakes, occurring updip. The observations in other subduction zones show just the opposite: normal-faulting events precede, not succeed, updip, thrust shocks. Indeed, the thrust events, soon after their occurrence, are expected to cause compression in the slab, thus inhibiting the occurrence of normal-faulting events. To explain the occurrence of the Zihuatanejo earthquake, we note that the Cocos plate, after an initial shallow-angle subduction, unbends and becomes subhorizontal. In the region of the unbending, the bottom of the slab is in horizontal extension. We speculate that the large updip seismic slip during shallow, low-angle thrust events increases the buckling of the slab, resulting in an incremental tensional stress at the bottom of the slab and causing normal-faulting earthquakes. This explanation may also hold for the 1931 Oaxaca event.  相似文献   

19.
This work is a study of the upper-mantle seismic structure beneath the central part of the Eurasian continent, including the northern Mongolia, Altai and Sayan orogenic areas and the Baikal rift zone. Seismic velocity models are reconstructed using the inverse teleseismic scheme. This scheme uses information from earthquakes located within the study area recorded by the Worldwide Network. The seismic anomaly structure is obtained for different volumes in the study area that partially overlap one another. Special attention has been paid to the reliability of the results: several noise and resolution comparisons are made.
The main results are as follows. (1) A cell structure of anomalies is observed beneath the Altai–Sayan region: positive, cold anomalies correspond to regions of recent orogenesis, negative anomalies are located beneath the depression of the Great Lakes in Mongolia and Hubsugul Lake. (2) A large negative anomaly is observed beneath the Hangai dome in Mongolia. (3) Strong velocity variations are obtained in a zone around Baikal Lake. A large negative anomaly is traced beneath the southern margin of the Siberian craton down to a depth of 700 km. Contrasting positive anomalies (4–5 per cent) are observed at a depth of 100–300 km beneath the Baikal rift. Our geodynamical interpretation of the velocity structure obtained beneath central Asia involves the existence of two processes in the mantle: thermal convection with regular cells, and a narrow plume beneath the southern border of the Siberian plate.  相似文献   

20.
Seismic velocity structure of the San Francisco Bay region crust is derived using measurements of finite-frequency traveltimes. A total of 57 801 relative traveltimes are measured by cross-correlation over the frequency range 0.5–1.5 Hz. From these are derived 4862 'summary' traveltimes, which are used to derive 3-D P -wave velocity structure over a 341 × 140 km2 area from the surface to 25 km depth. The seismic tomography is based on sensitivity kernels calculated on a spherically symmetric reference model. Robust elements of the derived P -wave velocity structure are: a pronounced velocity contrast across the San Andreas fault in the south Bay region (west side faster); a moderate velocity contrast across the Hayward fault (west side faster); moderately low velocity crust around the Quien Sabe volcanic field and the Sacramento River delta; very low velocity crust around Lake Berryessa. These features are generally explicable with surface rock types being extrapolated to depth ∼10 km in the upper crust. Generally high mid-lower crust velocity and high inferred Poisson's ratio suggest a mafic lower crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号