首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Abstract— The lunar soil characterization consortium, a group of lunar‐sample and remote‐sensing scientists, has undertaken the extensive task of characterization of the finest fractions of lunar soils, with respect to their mineralogical and chemical makeup. These compositional data form the basis for integration and modeling with the reflectance spectra of these same soil fractions. This endeavor is aimed at deciphering the effects of space weathering of soils on airless bodies with quantification of the links between remotely sensed reflectance spectra and composition. A beneficial byproduct is an understanding of the complexities involved in the formation of lunar soil. Several significant findings have been documented in the study of the <45 μm size fractions of selected Apollo 17 mare soils. As grain size decreases, the abundance of agglutinitic glass increases, as does the plagioclase, whereas the other minerals decrease. The composition of the agglutinitic glass is relatively constant for all size fractions, being more feldspathic than any of the bulk compositions; notably, TiO2 is substantially depleted in the agglutinitic glass. However, as grain size decreases, the bulk composition of each size fraction continuously changes, becoming more Al‐rich and Fe‐poor, and approaches the composition of the agglutinitic glasses. Between the smallest grain sizes (10–20 and < 10 μm), the IS/FeO values (amount of total iron present as nanophase Fe0) increase by greater than 100% (>2x), whereas the abundance of agglutinitic glass increases by only 10–15%. This is evidence for a large contribution from surface‐correlated nanophase Fe0 to the IS/FeO values, particularly in the <10 μm size fraction. The surface nanophase Fe0 is present largely as vapor‐deposited patinas on the surfaces of almost every particle of the mature soils, and to a lesser degree for the immature soils (Keller et al., 1999a). It is reasoned that the vapor‐deposited patinas may have far greater effects upon reflectance spectra of mare soils than the agglutinitic Fe0.  相似文献   

2.
Abstract— We report results of our investigation of the relationship between values of Is/FeO (relative concentration of nanophase Fe0 divided by total FeO content), glass abundance, total Fe content, and degree of digestion of <20 μm clasts for 22 individual agglutinates (250–1000 μm) from the mature Apollo 16 soil 61181 (Is/FeO = 82 units in the <250 μm fraction). Agglutinates are important products of space weathering on the Moon, and they influence spectral observations at visible and near-IR wavelengths. Values of Is/FeO for individual agglutinates (250–1000 μm) within this single soil span a range from 3 to 262 units which is larger than the range observed for all Apollo 16 bulk soils (~0 to 110 units). No correlation was observed between Is/FeO and glass abundance and FeO concentrations for either agglutinitic glass or whole agglutinate particles under investigation. Our results suggest that the variation in Is/FeO for agglutinates from a single soil may be in part a consequence of natural mixing processes on the Moon that produce highly-variable environments (with respect to surface exposure) for agglutinate formation and in part to variable kinetics of reactions in an agglutinate melt, which are influenced by a variety of factors including melt composition, temperature, impactor velocity, and quench rate. We cannot exclude but do not see evidence for other processes including addition of exotic agglutinates, micrometeoritic bombardment into compositionally-diverse microtargets, recycling of agglutinates, preferential melting of very fine soil particles, and production of nanophase Fe0 in amorphous rims of very fine irradiated lunar grains contributing to the observed variation of Is/FeO.  相似文献   

3.
The distribution of minerals on the lunar surface is information which could contribute to studying lunar origin and evolution. In this paper, the distribution of clinopyroxene, orthopyroxene, olivine, ilmenite, and plagioclase on the lunar surface has been mapped based on Hapke radiative transfer model and linear unmixing of spectra with Clementine UVVIS/NIR data. The results have been validated on the basis of minerals modal abundance data of the Apollo samples, and problems in the minerals abundance mapping have been analyzed. The validation based on analysis data of Apollo samples indicates that plagioclase mapped in this paper represents the total abundance of plagioclase and agglutinitic glass. The minerals mapping results show that the lunar surface is mainly composed of pyroxene, plagioclase, agglutinitic glass, and ilmenite. Basalt in the lunar mare is mainly composed of clinopyroxene and ilmenite, and lunar highland is mainly composed of plagioclase and agglutinitic glass. Orthopyroxene is mainly distributed on the north of Mare Imbrium, on the south of Maria and Aitken Basin. According to our results, there is probably no large area of olivine distribution on the lunar surface which is different from earlier published results. Therefore, emphasis should be put on the olivine distribution in the minerals mapping using hyperspectral data such as M3 of Chandrayaan-1 and IIM of ChangE-1.  相似文献   

4.
It is essential that accurate modal (i.e., volume) percentages of the various mineral and glass phases in lunar soils be used for addressing and resolving the effects of space weathering upon reflectance spectra, as well as for their calibration such data are also required for evaluating the resource potential of lunar minerals for use at a lunar base. However, these data are largely lacking. Particle-counting information for lunar soils, originally obtained to study formational processes, does not provide these necessary data, including the percentages of minerals locked in multi-phase lithic fragments and fused-soil particles, such as agglutinates. We have developed a technique for modal analyses, sensu stricto, of lunar soils, using digital imaging of X-ray maps obtained with an energy-dispersive spectrometer mounted on an electron microprobe. A suite of nine soils (90 to 150 micrometers size fraction) from the Apollo 11, 12, 15, and 17 mare sites was used for this study. This is the first collection of such modal data on soils from all Apollo mare sites. The abundances of free-mineral fragments in the mare soils are greater for immature and submature soils than for mature soils, largely because of the formation of agglutinitic glass as maturity progresses. In considerations of resource utilization at a lunar base, the best lunar soils to use for mineral beneficiation (i.e., most free-mineral fragments) have maturities near the immature/submature boundary (Is/FeO approximately or = 30), not the mature soils with their complications due to extensive agglutination. The particle data obtained from the nine mare soils confirm the generalizations for lunar soils predicted by L.A. Taylor and D.S. McKay (1992, Lunar Planet Sci. Conf. 23rd, pp. 1411-1412 [Abstract]).  相似文献   

5.
Abstract— The fine fraction of lunar soils (<45 μm) dominates the optical properties of the bulk soil. Definite trends can be seen in optical properties of size separates with decreasing particle size: diminished spectral contrast and a steeper continuum slope. These trends are related to space weathering processes and their affects on different size fractions. The finest fraction (defined here as the <10 μm fraction) appears to be enriched in weathering products relative to the larger size fractions, as would be expected for surface correlated processes. This <10 μm fraction tends to exhibit very little spectral contrast, often with no distinguishable ferrous iron absorption bands. Additionally, the finest fractions of highland soils are observed to have very different spectral properties than the equivalent fraction of mare soils when compared with larger size fractions. The spectra of the finest fraction of feldspathic soils flatten at longer wavelengths, whereas those of the finest fraction of basaltic soils continue to increase in a steep, almost linear fashion. This compositional distinction is due to differences in the total amount of nanophase iron that accumulates in space weathering products. Such ground‐truth information derived from the <10 μm fraction of lunar soils provides valuable insight into optical properties to be expected in other space weathering environments such as the asteroids and Mercury.  相似文献   

6.
We find the lunar darkening process could be due neither to simple addition of impact-melted glass nor to addition of devitrified glass to crushed lunar rock. There is evidence that lunar soil grains have thin, very light-absorbing coatings that mask absorption bands, seen in the reflection spectra of freshly crushed lunar rock, in the same manner as they are masked in the spectra of lunar soils. We believe the processes that produce these coatings are (1) deposition of atoms sputtered from lunar soil grains by solar wind particles and (2) deposition of vapor species vaporized from lunar soil grains by micrometeorite impacts. Coatings produced in laboratory simulations of these processes owe their strong light-absorbing properties in large part to the presence of abundant metallic Fe grains smaller than 100 Å in diameter. Another process, which depends on implantation of solar wind protons in lunar soil grains and their later mobilization during micrometeorite impacts to produce metallic Fe in the impact glass, also seems reasonable but has not yet been demonstrated experimentally. As a result of impact vaporization the Moon would preferentially lose minor amounts of light elements, principally monatomic oxygen, and this would result in oxygen depletion in the vapor condensate. This type of fraction would be more extreme on airless bodies with lower escape velocities. Sputtering occurs at higher effective temperatures and this would cause loss of all common rock-forming elements in approximately equal amounts. There would be some bias in this process toward retention of very heavy trace elements— a characteristic that has been observed in the lunar soil. This bias would be less important for smaller airless bodies. We describe an apparent new type of fractionation that occurs during deposition of sputtered atoms. This fractionation favors retention of higher mass atoms over lower mass atoms, and appears to be a linear function of mass. This may explain observed isotopic fractionations in lunar soil, in which the heavier isotope always appears to be enriched relative to the lighter one. This “first bounce fractionation” process should operate on all airless bodies. Na and K apparently do not conform to this fractionation process and have a much greater tendency to escape. This may help explain the presence of high Na concentrations around Io.  相似文献   

7.
Abstract– As part of the MEMIN research program this project is focused on shock deformation experimentally generated in dry, porous Seeberger sandstone in the low shock pressure range from 5 to 12.5 GPa. Special attention is paid to the influence of porosity on progressive shock metamorphism. Shock recovery experiments were carried out with a high‐explosive set‐up that generates a planar shock wave, and using the shock impedance method. Cylinders of sandstone of average grain size of 0.17 mm and porosity of about 19 vol%, and containing some 96 wt% SiO2, were shock deformed. Shock effects induced with increasing shock pressure include: (1) Already at 5 GPa the entire pore space is closed; quartz grains show undulatory extinction. On average, 134 fractures per mm are observed. Dark vesicular melt (glass) of the composition of the montmorillonitic phyllosilicate component of this sandstone occurs at an average amount of 1.6 vol%. (2) At 7.5 GPa, quartz grains show weak but prominent mosaicism and the number of fractures increases to 171 per millimeter. Two additional kinds of melt, both based on phyllosilicate precursor, could be observed: a light colored, vesicular melt and a melt containing large iron particles. The total amount of melt (all types) increased in this experiment to 2.4 vol%. Raman spectroscopy confirmed the presence of shock‐deformed quartz grains near the surface. (3) At 10 and 12.5 GPa, quartz grains also show weak but prominent mosaicism, the number of fractures per mm has reached a plateau value of approximately 200, and the total amount of the different melt types has increased to 4.8 vol%. Diaplectic quartz glass could be observed locally near the impacted surface. In addition, local shock effects, most likely caused by multiple shock wave reflections at sandstone‐container interfaces, occur throughout the sample cylinders and include locally enhanced formation of PDF, as well as shear zones associated with cataclastic microbreccia, diaplectic quartz glass, and SiO2 melt. Overall findings from these first experiments have demonstrated that characteristic shock effects diagnostic for the confirmation of impact structures and suitable for shock pressure calibration are rare. So far, they are restricted to the limited formation of PDF and diaplectic quartz glass at shock pressures of 10 GPa and above.  相似文献   

8.
Abstract— Impact-induced comminution of planetary surfaces is pervasive throughout the solar system and occurs on submillimeter to global scales, resulting in comminution products that range from fine-grained surface soils, to massive, polymict ejecta deposits, to collisionally fragmented objects. Within this wide range of comminution products, we define regoliths in a narrow sense as materials that were processed by repetitive impacts to dimensional scales comparable to or smaller than that of component minerals of the progenitor rock(s). In this paper, we summarize a wide variety of impact experiments and other observations that were primarily intended to understand the evolution of regoliths on lunar basalt flows, and we discuss some of their implications for asteroidal surfaces. Cratering experiments in both rock and noncohesive materials, combined with photogeologic observations of the lunar surface, demonstrate that craters <500 m in diameter contribute most to the excavation of local bedrock for subsequent processing by micrometeorites. The overall excavation rate and, thus, growth rate of the debris layer decreases with time, because the increasingly thicker fragmental layer will prevent progressively larger projectiles from reaching bedrock. Typical growth rates for a 5 m thick lunar soil layer are initially (~≥3 Ga ago) a few mm/Ma and slowed to <1 mm/Ma at present. The coarse-grained crater ejecta are efficiently comminuted by collisional fragmentation processes, and the mean residence time of a 1 kg rock is typically 10 Ma. The actual comminution of either lithic or monomineralic detritus is highly mineral specific, with feldspar and mesostasis comminuting preferentially over pyroxene and olivine, thus resulting in mechanically fractionated fines, especially at grain sizes <20 μm. Such fractionated fines also participate preferentially in the shock melting of lunar soils, thus giving rise to “agglutinate” melts. As a consequence, agglutinate melts are systematically enriched in feldspar components relative to the bulk composition of their respective host soil(s). Compositionally homogeneous, impact derived glass beads in lunar soils seem to result from micrometeorite impacts on rock surfaces, reflecting lithic regolith components and associated mineral mixtures. Cumulatively, experimental and observational evidence from lunar mare soils suggests that regoliths derive substantially from the comminution of local bedrock; the addition of foreign, exotic components is not necessary to explain the modal and chemical compositions of diverse grain size fractions from typical lunar soils. Regoliths on asteroids are qualitatively different from those of the Moon. The modest impact velocities in the asteroid belt, some 5 km s?1, are barely sufficient to produce impact melts. Also, substantially more crater mass is being displaced on low-gravity asteroids compared to the Moon; collisional processing of surface boulders should therefore be more prominent in producing comminuted asteroid surfaces. These processes combine into asteroidal surface deposits that have suffered modest levels of shock metamorphism compared to the Moon. Impact melting does not seem to be a significant process under these conditions. However, the role of cometary particles encountering asteroid surfaces at presumably higher velocities has not been addressed in the past. Unfortunately, the asteroidal surface processes that seemingly modify the spectral properties of ordinary chondrites to match telescopically obtained spectra of S-type asteroids remain poorly understood at present, despite the extensive experimental and theoretical insights summarized in this report and our fairly mature understanding of lunar surface processes and regolith evolution.  相似文献   

9.
A large number of shock recovery experiments that address the ease of impact melt formation as a function of peak shock pressure lead to the conclusion that impacts at 5 km/sec into fragmental, porous surfaces will produce agglutinate-type glasses; no shock melts are produced at these velocities in dense silicate target rocks. While agglutinitic glasses dominate lunar surface soils, they are virtually absent in gas-rich, brecciated meteorites. This apparent paucity—if not complete lack—of agglutinate-type glasses is also inferred from remote IR-reflectance spectroscopy. The need to identify mechanisms that inhibit agglutinate formation on asteroidal sufaces was recognized previously and was predominantly attributed to lower projectile velocities and different gravitational environments.We will argue in this paper that additional mechanisms may be required. Specifically we propose that spall processes at a target's free surface play a major role in asteroidal surface evolution. At 5 km/sec collision velocity, a target (RT) to projectile (RP radius ratio of RTRP ≈ 100 delineates the boundary between an “infinite half-space” and a “finite”-sized target. In the first case, collisional energy is expended in a pure cratering regime; in the latter, additional displacement of target material in the form of spallation products occurs. The spall volume may exceed the crater volume by an order of magnitude. Therefore fragmental impact deposits on small planetary bodies may be entirely controlled by spall products, rather than crater ejecta. Because tensile failure occurs at <0.2 GPa stress, spall velocities are measured in meters per second (contrary to crater ejecta) and therefore spallation products are efficiently retained even in low gravitational environments. Spall products are also more coarse grained than crater ejecta; they are also highly biased toward petrographically “unshocked” (<0.2 GPa) rocks.Thus asteroidal surface deposits should be more coarse grained and less shocked than lunar ones—consistent with meteorite evidence and remote-sensing observations. Because spall volume exceeds crater ejecta volume, the total growth rate of asteroidal surface deposits is accelerated, leading to relatively short surface residence times of individual meteorite components, another significant difference between lunar and asteroidal surface materials.  相似文献   

10.
Abstract— LaPaz Icefield (LAP) 02205, 02226, and 02224 are paired stones of a crystalline basaltic lunar meteorite with a low‐Ti (3.21–3.43% TiO2) low‐Al (9.93–10.45% Al2O3), and low‐K (0.11–0.12% K2O) composition. They consist mainly of zoned pyroxene and plagioclase grains, with minor ilmenite, spinel, and mesostasis regions. Large, possibly xenocrystic, forsteritic olivine grains (<3% by mode) contain small trapped multiphase melt inclusions. Accessory mineral and mesostasis composition shows that the samples have experienced residual melt crystallization with silica oversaturation and late‐stage liquid immiscibility. Our section of LAP 02224 has a vesicular fusion crust, implying that it was at one time located sufficiently close to the lunar surface environment to have accumulated solar‐wind‐implanted gases. The stones have a comparable major element composition and petrography to low‐Ti, low‐Al basalts collected at the Apollos 12 and 15 landing sites. However, the LAP stones also have an enriched REE bulk composition and are more ferroan (Mg numbers in the range of 31 to 35) than similar Apollo samples, suggesting that they represent members of a previously unsampled fractionated mare basalt suite that crystallized from a relatively evolved lunar melt.  相似文献   

11.
Abstract— 40Ar‐39Ar analyses of a total of 26 samples from eight shock‐darkened impact melt breccias of H‐chondrite affinity (Gao‐Guenie, LAP 02240, LAP 03922, LAP 031125, LAP 031173, LAP 031308, NWA 2058, and Ourique) are reported. These appear to record impacts ranging in time from 303 ± 56 Ma (Gao‐Guenie) to 4360 ± 120 Ma (Ourique) ago. Three record impacts 300–400 Ma ago, while two others record impacts 3900–4000 Ma ago. Combining these with other impact ages from H chondrites in the literature, it appears that H chondrites record impacts in the first 100 Ma of solar system history, during the era of the “lunar cataclysm” and shortly thereafter (3500–4000 Ma ago), one or more impacts ?300 Ma ago, and perhaps an impact ?500 Ma ago (near the time of the L chondrite parent body disruption). Records of impacts on the H chondrite parent body are rare or absent between the era of planetary accretion and the “lunar cataclysm” (4400‐4050 Ma), during the long stretch between heavy bombardment and recent breakup events (3500‐1000 Ma), or at the time of final breakup into meteorite‐sized bodies (<50 Ma).  相似文献   

12.
Nanophase iron (np-Fe0) particles produced by space weathering have been widely observed in lunar soil. Current research suggests that np-Fe0 could have important effects on the chemical, optical and magnetic properties of the lunar soil. To investigate the relationship between np-Fe0 and these properties of lunar soil, simulation of the production process of np-Fe0 by space weathering is necessary because of the scarcity of lunar samples for research purposes. New methods using microwave heating and magnetron sputtering techniques to simulate np-Fe0 production both in the glass phase and on the grain surfaces, respectively, are investigated in this study. Both the formation and occurrence of np-Fe0 are taken into account in the experiment. The X-ray Diffraction (XRD) spectra show that metallic iron has formed in the glass phase produced by microwave heating of ilmenite. Using scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the size of np-Fe0 particles produced in a microwave heating experiment, which is held for 8 min at 1300 °C, is determined to be about 100–500 nm. Compared to the glass of lunar sample 10084, the major composition of the glass matrix is formed by microwave heating compares favorably. In magnetron sputtering experiment the size of np-Fe0 particles is about 20–30 nm, and appears on the grain surfaces. The characteristics of np-Fe0 produced in the simulations are consistent with those of lunar samples documented in the literature.  相似文献   

13.
About half of the lunar meteorites in our collections are feldspathic breccias. Acquiring geochronologic information from these breccias is challenging due to their low radioactive-element contents and their often polymict nature. We used high-spatial-resolution (5 μm) NanoSIMS (nanoscale secondary ion mass spectrometry) U-Pb dating technique to date micro-zircons in the lunar feldspathic meteorites Dhofar 1528 and Dhofar 1627. Three NanoSIMS dating spots of two zircon grains from Dhofar 1528 show a discordia with an upper intercept at 4354 ± 76 Ma and a lower intercept at 332 ± 1407 Ma (2σ, MSWD = 0.01, p = 0.91). Three spots of two zircon grains in Dhofar 1627 define a discordia with an upper intercept at 3948 ± 30 Ma and a lower intercept at 691 ± 831 Ma (2σ, MSWD = 0.40, p = 0.53). Both samples likely experienced shock metamorphism caused by impacts. Based on the clastic nature, lack of recrystallization and the consistent U-Pb and Pb-Pb dates of the zircons in Dhofar 1528, the U-Pb date of 4354 Ma is interpreted as the crystallization age of its Mg-suite igneous precursor. Some of the Dhofar 1627 zircons show poikilitic texture, a crystallization from the matrix impact melt, so the U-Pb date of 3948 Ma corresponds to an impact event, likely the Imbrium basin-forming event. These data are the first radiometric ages for these two meteorites and demonstrate that in situ (high spatial resolution) U-Pb dating has potential for extracting geochronological information about igneous activities and impact events from lunar feldspathic and polymict breccias.  相似文献   

14.
We present results of FIB–TEM studies of 12 Stardust analog Al foil craters which were created by firing refractory Si and Ti carbide and nitride grains into Al foils at 6.05 km s?1 with a light‐gas gun to simulate capture of cometary grains by the Stardust mission. These foils were prepared primarily to understand the low presolar grain abundances (both SiC and silicates) measured by SIMS in Stardust Al foil samples. Our results demonstrate the intact survival of submicron SiC, TiC, TiN, and less‐refractory Si3N4 grains. In small (<2 μm) craters that are formed by single grain impacts, the entire impacting crystalline grain is often preserved intact with minimal modification. While they also survive in crystalline form, grains at the bottom of larger craters (>5 μm) are typically fragmented and are somewhat flattened in the direction of impact due to partial melting and/or plastic deformation. The low presolar grain abundance estimates derived from SIMS measurements of large craters (mostly >50 μm) likely result from greater modification of these impactors (i.e., melting and isotopic dilution), due to higher peak temperatures/pressures in these crater impacts. The better survivability of grains in smaller craters suggests that more accurate presolar grain estimates may be achievable through measurement of such craters. It also suggests small craters can provide a complementary method of study of the Wild 2 fine fraction, especially for refractory CAI‐like minerals.  相似文献   

15.
Abstract— A series of 59 impacts in the laboratory reduced a coherent 460 g piece of the L6 ordinary chondrite ALH 85017 to a coarse‐grained “regolith.” We then subjected the 125–250 μm fines from this sample to reverberation shock stresses of 14.5–67 GPa in order to delineate the melting behavior of porous, unconsolidated, chondritic asteroid surfaces during meteorite impact. The initial pore space (40–50%) was completely closed at 14.5 GPa and a dense aggregate of interlocking grains resulted. Grain‐boundary melting commenced at <27 GPa and ?50% of the total charge was molten at 67 GPa; this stress corresponds to typical asteroid impacts at ?5 km/sec. Melting of the entire sample most likely mandates >80 GPa, which is associated with impact velocities >8 km/sec. The Fe‐Ni and troilite clasts of the original meteorite melted with particular ease, forming immiscible melts that are finely disseminated throughout the silicate glass. These metal droplets are highly variable in size, extending to <100 nm and most likely to superparamagnetic domains; such opaques are also observed in the natural melt veins of ordinary chondrites. It follows that melting and dissemination of pre‐existing, Fe‐rich phases may substantially affect the optical properties of asteroidal surfaces. It seems unnecessary to invoke reduction of Fe2+ (or Fe3+) by sputtering or impact‐processes—in analogy to the lunar surface—to produce “space weathering” effects on S‐type asteroids. We note that HED meteorites contain ample FeO (comparable to that in lunar basalts) for reduction processes to take place, yet their probable parent object(s), Vesta and its collisional fragments, display substantially unweathered surfaces. Howardites, eucrites, and diogenites (HEDs), however, contain little native metal (typically <0.5%), in contrast to ordinary chondrites (commonly 10–15%) and their S‐type parent objects. These considerations suggest that the modal content of native metal and sulfides is more important for space weathering on asteroids than total FeO.  相似文献   

16.
Preliminary shock experiments at approximately 50 and 250 kb have been carried out with lunar soil and with a dispersion of iron in quartz. The lunar soils acquire remanent magnetization in the Earth's field of order of magnitude 10?3 G cm3 g?1. The remanence exhibited considerable stability against AF demagnetization. Remanence appears to be acquired both during the passage of the shock wave through the material and during post shock cool-down. The higher shock range gave rise to an increase in magnetic viscosity and in the saturation magnetization of the soil, which is most readily explained as due to the generation of fine grained iron.  相似文献   

17.
Abstract— Studies of lunar meteorite Dhofar 026, and comparison to Apollo sample 15418, indicate that Dhofar 026 is a strongly shocked granulitic breccia (or a fragmental breccia consisting almost entirely of granulitic breccia clasts) that experienced considerable post‐shock heating, probably as a result of diffusion of heat into the rock from an external, hotter source. The shock converted plagioclase to maskelynite, indicating that the shock pressure was between 30 and 45 GPa. The post‐shock heating raised the rock's temperature to about 1200 °C; as a result, the maskelynite devitrified, and extensive partial melting took place. The melting was concentrated in pyroxene‐rich areas; all pyroxene melted. As the rock cooled, the partial melts crystallized with fine‐grained, subophitic‐poikilitic textures. Sample 15418 is a strongly shocked granulitic breccia that had a similar history, but evidence for this history is better preserved than in Dhofar 026. The fact that Dhofar 026 was previously interpreted as an impact melt breccia underscores the importance of detailed petrographic study in interpretation of lunar rocks that have complex textures. The name “impact melt” has, in past studies, been applied only to rocks in which the melt fraction formed by shock‐induced total fusion. Recently, however, this name has also been applied to rocks containing melt formed by heating of the rocks by conductive heat transfer, assuming that impact is the ultimate source of the heat. We urge that the name “impact melt” be restricted to rocks in which the bulk of the melt formed by shock‐induced fusion to avoid confusion engendered by applying the same name to rocks melted by different processes.  相似文献   

18.
Abstract— The lunar meteorite Dhofar 081, found as a single fragment of 174 g in the Dhofar region of Oman, is a shocked feldspathic fragmental highland breccia dominated by anorthosite‐rich lithic and mineral clasts embedded into a fine‐grained mostly shock melted clastic matrix. Major mineral phases in the bulk rock are Ca‐rich plagioclase (An96.5–99.5), pyroxene (FS21.9–46.2Wo3.0–41.4), and olivine (Fa29.3–47.8); accessory phases include Fe‐Ni metal, ilmenite, and Ti‐Cr‐rich spinel. Dhofar 081 contains subordinate crystalline fragments of large anorthosites, intersertal impact‐melt rocks, microporphyritic impact‐melt breccias, dark fine‐grained impact‐melt breccias, large cataclastic feldspars, and irregularly shaped brown glass clasts. Mafic components are rare and no genuine regolith components were found in the sections studied. Minerals in Dhofar 081 show homogeneously distributed shock features: intergranular recrystallization, strong fracturing and mosaicism in feldspar as well as a high density of mostly irregular fractures in pyroxene and olivine. Localized impact melting caused by one or several impacts led to a strong lithification. Based on these effects an equilibration shock pressure of about 15–20 GPa is estimated for the strongest shock event in Dhofar 081. Devitrification of the “glassy” material in the rock indicates thermal annealing after shock melting suggesting that the 15–20 GPa shock event predated the ejection event. According to the concentrations of implanted solar noble gases Dhofar 081 represents a polymict clastic breccia deposit with possibly a minor regolith component. A similar noble gas record of Dhofar 081 and MacAlpine Hills 88104/05 suggests the possibility of a source crater pairing of both meteorites. As indicated by noble gas measurements pairing of Dhofar 081 with the other lunar meteorites found in Oman, Dhofar 025 and Dhofar 026, is unlikely.  相似文献   

19.
We report new nitrogen and argon isotope and abundance results for single breccia clasts and agglutinates from four different sections of the Luna 24 drill core in order to re-evaluate the provenance of N trapped in lunar regolith, and to place limits on the flux of planetary material to the Moon’s surface. Single Luna 24 grains with 40Ar/36Ar ratios <1 show δ15N values between ?54.5‰ and +123.3‰ relative to terrestrial atmosphere. Thus, low-antiquity lunar soils record both positive and negative δ15N signatures, and the secular increase of the δ15N value previously postulated by Kerridge (Kerridge, J.F. [1975]. Science 188(4184), 162–164. doi:10.1126/science.188.4184.162) is no longer apparent when the Luna and Apollo data are combined. Instead, the N isotope signatures, corrected for cosmogenic 15N, are consistent with binary mixing between isotopically light solar wind (SW) N and a planetary N component with a δ15N value of +100‰ to +160‰. The lower δ15N values of Luna 24 grains compared to Apollo samples reflect a higher relative proportion of solar N, resulting from the higher SW fluence in the region of Mare Crisium compared to the central near side of the Moon. Carbonaceous chondrite-like micro-impactors match well the required isotope characteristics of the non-solar N component trapped in low-antiquity lunar regolith. In contrast, a possible cometary contribution to the non-solar N flux is constrained to be ?3–13%. Based on the mixing ratio of SW to planetary N obtained for recently exposed lunar soils, we estimate the flux of micro-impactors to be (2.2–5.7) × 103 tons yr?1 at the surface of the Moon. Our estimate for Luna 24 agrees well with that for young Apollo regolith, indicating that the supply of planetary material does not depend on lunar location. Thus, the continuous influx of water-bearing cosmic dust may have represented an important source of water for the lunar surface over the past ~1 Ga, provided that water removal rates (i.e., by meteorite impacts, photodissociation, and sputtering) do not exceed accumulation rates.  相似文献   

20.
During impact events, zircons develop a wide range of shock metamorphic features that depend on the pressure and temperature conditions experienced by the zircon. These conditions vary with original distance from impact center and whether the zircon grains are incorporated into ejecta or remain within the target crust. We have employed the range of shock metamorphic features preserved in >4 Ga lunar zircons separated from Apollo 14 and 15 breccias and soils in order to gain insights into the impact shock histories of these areas of the Moon. We report microstructural characteristics of 31 zircons analyzed using electron beam methods including electron backscatter pattern (EBSP) and diffraction (EBSD). The major results of this survey are as follows. (1) The abundance of curviplanar features hosting secondary impact melt inclusions suggests that most of the zircons have experienced shock pressures between 3 and 20 GPa; (2) the scarcity of recrystallization or decomposition textures and the absence of the high‐pressure polymorph, reidite, suggests that few grains have been shocked to over 40 GPa or heated above 1000 °C in ejecta settings; (3) one grain exhibits narrow, arc‐shaped bands of twinned zircon, which map out as spherical shells, and represent a novel shock microstructure. Overall, most of the Apollo 14 and 15 zircons exhibit shock features similar to those of terrestrial zircon grains originating from continental crust below large (~200 km) impact craters (e.g., Vredefort impact basin), suggesting derivation from central uplifts or uplifted rims of large basins or craters on the Moon and not high‐temperature and ‐pressure ejecta deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号