首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship of hillslope erosion rates and sediment yield is often poorly defined because of short periods of measurement and inherent spatial and temporal variability in erosion processes. In landscapes containing hillslopes crenulated by alternating topographic noses and hollows, estimates of local hillslope erosion rates averaged over long time periods can be obtained by analysing colluvial deposits in the hollows. Hollows act as local traps for a portion of the colluvium transported down hillslopes, and erosion rates can be calculated using the age and size of the deposits and the size of the contributing source area. Analysis of colluvial deposits in nine Oregon Coast Range hollows has yielded average colluvial transport rates into the hollows of about 35cm3cm?1yr?1 and average bedrock lowering rates of about 0.07 mm yr?1 for the last 4000 to 15000 yr. These rates are consistent with maximum bedrock exfoliation rates of about 0.09 mm yr?1 calculated from six of the hollows, supporting the interpretation that exfoliation rates limit erosion rates on these slopes. Sediment yield measurements from nine Coast Range streams provide similar basin-wide denudation rates of between 0.05 and 0.08mm yr?1, suggesting an approximate steady-state between sediment production on hillslopes and sediment yield. In addition, modern sediment yields are similar in basins varying in size from 1 to 1500 km2, suggesting that erosion rates are spatially uniform and providing additional evidence for an approximate equilibrium in the landscape.  相似文献   

2.
Decoupling the impacts of climate and tectonics on hillslope erosion rates is a challenging problem. Hillslope erosion rates are well known to respond to changes in hillslope boundary conditions (e.g. channel incision rates) through their dependence on soil thickness, and precipitation is an important control on soil formation. Surprisingly though, compilations of hillslope denudation rates suggest little precipitation sensitivity. To isolate the effects of precipitation and boundary condition, we measured rates of soil production from bedrock and described soils on hillslopes along a semi‐arid to hyperarid precipitation gradient in northern Chile. In each climate zone, hillslopes with contrasting boundary conditions (actively incising channels versus non‐eroding landforms) were studied. Channel incision rates, which ultimately drive hillslope erosion, varied with precipitation rather than tectonic setting throughout the study area. These precipitation‐dependent incision rates are mirrored on the hillslopes, where erosion shifts from relatively fast and biologically‐driven to extremely slow and salt‐driven as precipitation decreases. Contrary to studies in humid regions, bedrock erosion rates increase with precipitation following a power law, from ~1 m Ma?1 in the hyperarid region to ~40 m Ma?1 in the semi‐arid region. The effect of boundary condition on soil thickness was observed in all climate zones (thicker soils on hillslopes with stable boundaries compared to hillslopes bounded by active channels), but the difference in bedrock erosion rates between the hillslopes within a climate region (slower erosion rates on hillslopes with stable boundaries) decreased as precipitation decreased. The biotic‐abiotic threshold also marks the precipitation rate below which bedrock erosion rates are no longer a function of soil thickness. Our work shows that hillslope processes become sensitive to precipitation as life disappears and the ability of the landscape to respond to tectonics decreases. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Relationships between riverbed morphology, concavity, rock type and rock uplift rate are examined to independently unravel the contribution of along-strike variations in lithology and rates of vertical deformation to the topographic relief of the Oregon coastal mountains. Lithologic control on river profile form is reflected by convexities and knickpoints in a number of longitudinal profiles and by general trends of concavity as a function of lithology. Volcanic and sedimentary rocks are the principal rock types underlying the northern Oregon Coast Ranges (between 46°30′ and 45°N) where mixed bedrock–alluvial channels dominate. Average concavity, θ, is 0·57 in this region. In the alluviated central Oregon Coast Ranges (between 45° and 44°N) values of concavity are, on average, the highest (θ = 0·82). South of 44°N, however, bedrock channels are common and θ = 0·73. Mixed bedrock–alluvial channels characterize rivers in the Klamath Mountains (from 43°N south; θ = 0·64). Rock uplift rates of ≥0·5 mm a−1, mixed bedrock–alluvial channels, and concavities of 0·53–0·70 occur within the northernmost Coast Ranges and Klamath Mountains. For rivers flowing over volcanic rocks θ = 0·53, and θ = 0·72 for reaches crossing sedimentary rocks. Whereas channel type and concavity generally co-vary with lithology along much of the range, rivers between 44·5° and 43°N do not follow these trends. Concavities are generally greater than 0·70, alluvial channels are common, and river profiles lack knickpoints between 44·5° and 44°N, despite the fact that lithology is arguably invariant. Moreover, rock uplift rates in this region vary from low, ≤0·5 mm a−1, to subsidence (<0 mm a−1). These observations are consistent with models of transient river response to a decrease in uplift rate. Conversely, the rivers between 44° and 43°N have similar concavities and flow on the same mapped bedrock unit as the central region, but have bedrock channels and irregular longitudinal profiles, suggesting the river profiles reflect a transient response to an increase in uplift rate. If changes in rock uplift rate explain the differences in river profile form and morphology, it is unlikely that rock uplift and erosion are in steady state in the Oregon coastal mountains. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
The incision rate and steepness of bedrock channels depend on water discharge, uplift rate, substrate lithology, sediment flux, and bedload size. However, the relative role of these factors and the sensitivity of channel steepness to rapid (>1 mm yr−1) uplift rates remain unclear. We conducted field and topographic analyses of fluvial bedrock channels with varying channel bed lithology and sediment source rock along the Coastal Range in eastern Taiwan, where uplift rates vary from 1.8 to 11.8 mm yr−1 and precipitation is relatively consistent (1.5–2.7 m yr−1), to evaluate the controls on bedrock channel steepness. We find that channel steepness is independent of rock uplift rate and annual precipitation but increases monotonically with sediment size and substrate strength. Furthermore, in reaches with uniform substrate lithology (mudstone and flysch), channel steepness systematically varies with sediment source rock but not with channel width. When applied to our data, a mechanistic incision model (saltation-abrasion model) suggests that the steepness of Coastal Range channels is set primarily by coarse-sediment supply. We also observe that larger particles are mainly composed of resistant lithologies derived from volcanic rocks and conglomerates. This result implies that hillslope bedrock properties in the source area exert a dominant control on the steepness of proximal channels through coarse-sediment production in this setting. We propose that channel steepness may be insensitive to uplift rate and flow discharge in fast-uplifting landscapes where incision processes are set by coarse sediment size and supply. Models assuming a proportionality between incision rate and basal shear stress (stream power) may not fully capture controls on fluvial channel profiles in landslide-dominated landscapes. Processes other than channel steepening, such as enhanced bedload impacts and debris-flow scour, may be required to balance rock uplift and incision in these transport-limited systems.  相似文献   

5.
Cataclysmic releases from the glacially dammed Lake Missoula, producing exceptionally large floods, have resulted in significant erosional processes occurring over relatively short time spans. Erosional landforms produced by the cataclysmic Missoula floods appear to follow a temporal sequence in many areas of eastern Washington State. This study has focused on the sequence observed between Celilo and the John Day River, where the erosional features can be physically quantified in terms of stream power and geomorphic work. The step-backwater calculations in conjunction with the geologic evidence of maximum flow stages, indicate a peak discharge for the largest Missoula flood of 10 × 106m3s−1. The analysis of local flow hydraulics and its spatial variation were obtained calculating the hydrodynamic variables within the different segments of a cross-section. The nature and patterns of erosional features left by the floods are controlled by the local hydraulic variations. Therefore, the association of local hydraulic parameters with erosional and depositional flood features was critical in understanding landform development and geomorphic processes. The critical stream power required to initiate erosion varied for the different landforms of the erosional sequence, ranging from 500 W m−2 for the streamlined hills, up to 4500 W m−2 to initiate processes producing inner channels. Erosion is possible only during catastrophic floods exceeding those thresholds of stream power below which no work is expended in erosion. In fact, despite the multiple outbursts which occurred during the late Pleistocene, only a few of them had the required magnitude to overcome the threshold conditions and accomplish significant geomorphic work. © 1997 by John Wiley & Sons, Ltd.  相似文献   

6.
We report erosion rates and processes, determined from in situ‐produced beryllium‐10 (10Be) and aluminum‐26 (26Al), across a soil‐mantled landscape of Arnhem Land, northern Australia. Soil production rates peak under a soil thickness of about 35 cm and we observe no soil thicknesses between exposed bedrock and this thickness. These results thus quantify a well‐defined ‘humped’ soil‐production function, in contrast to functions reported for other landscapes. We compare this function to a previously reported exponential decline of soil production rates with increasing soil thickness across the passive margin exposed in the Bega Valley, south‐eastern Australia, and found remarkable similarities in rates. The critical difference in this work was that the Arnhem Land landscapes were either bedrock or mantled with soils greater than about 35 cm deep, with peak soil production rates of about 20 m/Ma under 35–40 cm of soil, thus supporting previous theory and modeling results for a humped soil production function. We also show how coupling point‐specific with catchment‐averaged erosion rate measurements lead to a better understanding of landscape denudation. Specifically, we report a nested sampling scheme where we quantify average erosion rates from the first‐order, upland catchments to the main, sixth‐order channel of Tin Camp Creek. The low (~5 m/Ma) rates from the main channel sediments reflect contributions from the slowly eroding stony highlands, while the channels draining our study area reflect local soil production rates (~10 m/Ma off the rocky ridge; ~20 m/Ma from the soil mantled regions). Quantifying such rates and processes help determine spatial variations of soil thickness as well as helping to predict the sustainability of the Earth's soil resource under different erosional regimes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Structural settings and lithological characteristics are traditionally assumed to influence the development of erosional landforms, such as gully networks and rock couloirs, in steep mountain rock basins. The structural control of erosion of two small alpine catchments of distinctive rock types is evaluated by comparing the correspondences between the orientations of their gullies and rock couloirs with (1) the sliding orientations of potential slope failures mechanisms, and (2) the orientation of the maximum joint frequency, this latter being considered as the direction exploited primarily by erosion and mass wasting processes. These characteristic orientations can be interpreted as structural weaknesses contributing to the initiation and propagation of erosion. The morphostructural analysis was performed using digital elevation models and field observations. The catchment comprised of magmatic intrusive rocks shows a clear structural control, mostly expressed through potential wedges failure. Such joint configurations have a particular geometry that encourages the development of gullies in hard rock, e.g. through enhanced gravitational and hydrological erosional processes. In the catchment underlain by sedimentary rocks, penetrative joints that act as structural weaknesses seem to be exploited by gullies and rock couloirs. However, the lithological setting and bedding configuration prominently control the development of erosional landforms, and influence not only the local pattern of geomorphic features, but the general morphology of the catchment. The orientations of the maximum joint frequency are clearly associated with the gully network, suggesting that its development is governed by anisotropy in rock strength. These two catchments are typical of bedrock‐dominated basins prone to intense processes of debris supply. This study suggests a quantitative approach for describing the relationship between bedrock jointing and geomorphic features geometry. Incorporation of bedrock structure can be relevant when studying processes governing the transfer of clastic material, for the assessment of sediment yields and in landforms evolution models. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Knickpoints in bedrock streams are often interpreted as transient features generated by a change in boundary conditions. It is typically assumed that knickpoints propagate upstream with constant vertical velocities, though this relies on a stream being in erosional steady state (erosion rate equals rock uplift rate) prior to the knickpoint's formation. Recent modeling and field studies suggest that along-stream contrasts in rock erodibility perturb streams from erosional steady state. To evaluate how contrasts in rock erodibility might impact knickpoint interpretations, we test parameter space (rock erodibility, rock contact dip angle, change in rock uplift rate) in a one-dimensional (1D) bedrock stream model that has variable rock erodibility and produces a knickpoint with a sudden change in rock uplift rate. Upstream of a rock contact, the vertical velocity of a knickpoint generated by a change in rock uplift rate is strongly correlated with how the rock contact has previously perturbed erosion rates. These knickpoints increase vertical velocity upon propagating upstream of a hard over soft contact and decrease vertical velocity upon propagating upstream of a soft over hard contact. However, interactions with other transient perturbations produced by rock contacts make for nuances in knickpoint behavior. Rock contacts also influence the geometry of knickpoints, which can become particularly difficult to identify upstream of soft over hard rock contacts. Using our simulations, we demonstrate how a contact's along-stream horizontal migration rate and cross-contact change in rock strength control how much an upstream reach is perturbed from erosional steady state. When simulations include multiple contacts, the knickpoint is particularly prone to colliding with other transient perturbations and can even disappear altogether if rock contact dips are sufficiently shallow. Caution should be taken when analyzing stream profiles in areas with significant changes in rock strength, especially when rock contact dip angles are near the stream's slope.  相似文献   

9.
Quantifying glacial erosion contributes to our understanding of landscape evolution and topographic relief production in high altitude and high latitude areas. Combining in situ 10Be and 26Al analysis of bedrock, boulder, and river sand samples, geomorphological mapping, and field investigations, we examine glacial erosion patterns of former ice caps in the Shaluli Shan of the southeastern Tibetan Plateau. The general landform pattern shows a zonal pattern of landscape modification produced by ice caps of up to 4000 km2 during pre-LGM (Last Glacial Maximum) glaciations, while the dating results and landforms on the plateau surface imply that the LGM ice cap further modified the scoured terrain into different zones. Modeled glacial erosion depth of 0–0.38 m per 100 ka bedrock sample located close to the western margin of the LGM ice cap, indicates limited erosion prior to LGM and Late Glacial moraine deposition. A strong erosion zone exists proximal to the LGM ice cap marginal zone, indicated by modeled glacial erosion depth >2.23 m per 100 ka from bedrock samples. Modeled glacial erosion depths of 0–1.77 m per 100 ka from samples collected along the edge of a central upland, confirm the presence of a zone of intermediate erosion in-between the central upland and the strong erosion zone. Significant nuclide inheritance in river sand samples from basins on the scoured plateau surface also indicate restricted glacial erosion during the last glaciation. Our study, for the first time, shows clear evidence for preservation of glacial landforms formed during previous glaciations under non-erosive ice on the Tibetan Plateau. As patterns of glacial erosion intensity are largely driven by the basal thermal regime, our results confirm earlier inferences from geomorphology for a concentric basal thermal pattern for the Haizishan ice cap during the LGM. © 2018 John Wiley & Sons, Ltd.  相似文献   

10.
To reveal river channel steepness patterns and variance in settings with significant variation in rock uplift rate, rock erodibility and moving water divides, we present a series of graphical methods to interpret channel profiles. To complement Cartesian χ plots, longitudinal profiles and mapping methods, we introduce a new method based on a radial coordinate system. We map each basin onto polar coordinates in which the radial dimension is χ and the azimuthal coordinate, ?, is calculated with an increment (Δ?) scaled to the distance to neighboring channel heads. The elevation is contoured on this mapping. Average channel steepness is estimated by fitting a conical surface to the elevation. The graph simplifies the comparison of χ and elevation between channels that share a divide, and helps identify spatial changes in drainage area and patterns of erodibility. We apply this approach to derive the uplift pattern in the eastern and southern Central Range of Taiwan, where the high tectonic convergence and uplift rates combined with sub‐tropical climate and frequent typhoons results in high exhumation rate, and well‐developed, detachment‐limited river networks. Additionally, the tectonic activity leads to drainage basin reorganization. We identify examples of divide migration, discrete river capture as well as anomalous steepness that we attribute to local variability in rock erodibility. Estimated basin‐average steepness values show the highest and a near constant value from Hsinwulu basin to Liwu basin in the center of the Island. To the north and south of this region, the values gradually decrease. These estimates show good correlation with the topography of the Central Range and erosion rates derived from in situ 10Be concentrations in river‐borne quartz. We conclude that the basin steepness reflects systematic differences in rock uplift rate and erosion rate. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Erosion rates are key to quantifying the timescales over which different topographic and geomorphic domains develop in mountain landscapes. Geomorphic and terrestrial cosmogenic nuclide (TCN) methods were used to determine erosion rates of the arid, tectonically quiescent Ladakh Range, northern India. Five different geomorphic domains are identified and erosion rates are determined for three of the domains using TCN 10Be concentrations. Along the range divide between 5600 and 5700 m above sea level (asl), bedrock tors in the periglacial domain are eroding at 5.0 ± 0.5 to 13.1 ± 1.2 meters per million years (m/m.y.)., principally by frost shattering. At lower elevation in the unglaciated domain, erosion rates for tributary catchments vary between 0.8 ± 0.1 and 2.0 ± 0.3 m/m.y. Bedrock along interfluvial ridge crests between 3900 and 5100 m asl that separate these tributary catchments yield erosion rates <0.7 ± 0.1 m/m.y. and the dominant form of bedrock erosion is chemical weathering and grusification. Erosion rates are fastest where glaciers conditioned hillslopes above 5100 m asl by over‐steepening slopes and glacial debris is being evacuated by the fluvial network. For range divide tors, the long‐term duration of the erosion rate is considered to be 40–120 ky. By evaluating measured 10Be concentrations in tors along a model 10Be production curve, an average of ~24 cm is lost instantaneously every ~40 ky. Small (<4 km2) unglaciated tributary catchments and their interfluve bedrock have received very little precipitation since ~300 ka and the long‐term duration of their erosion rates is 300–750 ky and >850 ky, respectively. These results highlight the persistence of very slow erosion in different geomorphic domains across the southwestern slope of the Ladakh Range, which on the scale of the orogen records spatial changes in the locus of deformation and the development of an orogenic rain shadow north of the Greater Himalaya. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The hydrology and contrasting erosional responses of two snowmelt events on arable farmland in Fife, Scotland, are compared. Snowmelt-generated runoff in January 1993 caused widespread soil erosion across eastern Scotland. Gullying was exemplified by three sites in Fife, where thaw of a drifted snowpack was augmented by rainfall to produce a larger erosive response than meteorological data alone would have predicted. Up to 127 m3 of soil was lost from individual gullies in fields sown to winter cereals. In February 1996 snowfall of comparable depth again covered the field area, but a more uniform snowpack, slower thaw, greater crop cover and lower rainfall during the thaw phase combined to lessen the impact of erosion. These case studies demonstrate the complexity of the erosion/runoff relationship for rain on snow events, in which erosional severity depends not just on snow depth but on snow distribution, thaw rate and the amount and timing of rainfall during the thaw phase. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
Many glacial deposits in the Quartermain Mountains, Antarctica present two apparent contradictions regarding the degradation of unconsolidated deposits. The glacial deposits are up to millions of years old, yet they have maintained their meter‐scale morphology despite the fact that bedrock and regolith erosion rates in the Quartermain Mountains have been measured at 0·1–4·0 m Ma?1. Additionally, ground ice persists in some Miocene‐aged soils in the Quartermain Mountains even though modeled and measured sublimation rates of ice in Antarctic soils suggest that without any recharge mechanisms ground ice should sublimate in the upper few meters of soil on the order of 103 to 105 years. This paper presents results from using the concentration of cosmogenic nuclides beryllium‐10 (10Be) and aluminum‐26 (26Al) in bulk sediment samples from depth profiles of three glacial deposits in the Quartermain Mountains. The measured nuclide concentrations are lower than expected for the known ages of the deposits, erosion alone does not always explain these concentrations, and deflation of the tills by the sublimation of ice coupled with erosion of the overlying till can explain some of the nuclide concentration profiles. The degradation rates that best match the data range 0·7–12 m Ma?1 for sublimation of ice with initial debris concentrations ranging 12–45% and erosion of the overlying till at rates of 0·4–1·2 m Ma?1. Overturning of the tills by cryoturbation, vertical mixing, or soil creep is not indicated by the cosmogenic nuclide profiles, and degradation appears to be limited to within a few centimeters of the surface. Erosion of these tills without vertical mixing may partially explain how some glacial deposits in the Quartermain Mountains maintain their morphology and contain ground ice close to the surface for millions of years. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Debris flows are one of the most important processes which influence the morphology of channels and valley floors in the Oregon Coast Range. Debris flows that initiate in bedrock hollows at heads of first-order basins erode the long-accumulated sediment and organic debris from the floors of headwater, first- and second-order channels. This material is deposited on valley floors in the form of fans, levees, and terraces. In channels, deposits of debris flows control the distribution of boulders. The stochastic nature of sediment supply to alluvial channels by debris flows promotes cycling between channel aggradation which results in a gravel-bed morphology, and channel degradation which results in a mixed bedrock- and boulder-bed morphology. Temporal and spatial variability of channel-bed morphology is expected in other landscapes where debris flows are an important process.  相似文献   

15.
The ~900 km long Darling Scarp in Western Australia is one of the most prominent linear topographic features on Earth. Despite the presence of over‐steepened reaches in all westerly flowing streams crossing the scarp, and significant seismic activity within 100 km of the scarp, there is no historical seismicity and no reported evidence for Quaternary tectonic displacements on the underlying Darling Fault. Consequently, it is unclear whether the scarp is a rapidly evolving landform responding to recent tectonic and/or climatic forcing or a more slowly evolving landform. In order to quantify late Quaternary rates of erosion and scarp relief processes, we obtained measurements of the cosmic‐ray produced nuclide beryllium‐10 (10Be) from outcropping bedrock surfaces along the scarp summit and face, in valley floors, and at stream knickpoints. Erosion rates of bedrock outcrops along the scarp summit surface range from 0·5 to 4·0 m Myr?1. These are in the same range as erosion rates of 2·1 to 3·6 m Myr?1 on the scarp face and similar to river incision rates of 2·6 to 11·0 m Myr?1 from valley floor bedrock straths, indicating that the Darling Scarp is a slowly eroding ‘steady state’ landform, without any significant contemporary relief production over the last several 100 kyr and possibly several million years. Knickpoint retreat rates determined from 10Be concentrations at the bases of two knickpoints on small streams incised into the scarp are 36 and 46 m Myr?1. If these erosion rates were sustained over longer timescales, then associated knickpoints may have initiated in the mid‐Tertiary to early Neogene, consistent with early‐mid Tertiary marginal uplift. Ongoing maintenance of stream disequilibrium longitudinal profiles is consistent with slow, regional base level lowering associated with recently proposed continental‐scale tilting, as opposed to differential uplift along discrete faults. Cosmogenic 10Be analysis provides a useful tool for interpreting the palaeoseismic history of intraplate near‐fault landforms over 105 to 106 years. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Inner gorges often result from the propagation of erosional waves related to glacial/interglacial climate shifts. However, only few studies have quantified the modern erosional response to this glacial conditioning. Here, we report in situ 10Be data from the 64 km2 Entlen catchment (Swiss Alps). This basin hosts a 7 km long central inner gorge with two tributaries that are >100 m‐deeply incised into thick glacial till and bedrock. The 10Be concentrations measured at the downstream end of the gorge yield a catchment‐wide erosion rate of 0.42 ± 0.04 mm yr‐1, while erosion rates are consistently lower upstream of the inner gorge, ranging from 0.14 ± 0.01 mm yr‐1 to 0.23 ± 0.02 mm yr‐1. However, 10Be‐based sediment budget calculations yield rates of ~1.3 mm yr‐1 for the inner gorge of the trunk stream. Likewise, in the two incised tributary reaches, erosion rates are ~2.0 mm yr‐1 and ~1.9 mm yr‐1. Moreover, at the erosional front of the gorge, we measured bedrock incision rates ranging from ~2.5 mm yr‐1 to ~3.8 mm yr‐1. These rates, however, are too low to infer a post‐glacial age (15–20 ka) for the gorge initiation. This would require erosion rates that are between 2 and 6 times higher than present‐day estimates. However, the downcutting into unconsolidated glacial till favored high erosion rates through knickzone propagation immediately after the retreat of the LGM glaciers, and subsequent hillslope relaxation led to a progressive decrease in erosion rates. This hypothesis of a two‐ to sixfold decrease in erosion rates does not conflict with the 10Be‐based erosion rate budgets, because the modern erosional time scale recorded by 10Be cover the past 2–3 ka only. These results point to the acceleration of Holocene erosion in response to the glacial overprint of the landscape. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Changes in land use are common in Mediterranean areas and are reported as having produced changes in the intensity of soil erosion. Dehesas are rangelands with a disperse tree cover, widespread in the south-western part of the Iberian Peninsula and similar ecosystems are also common in other areas with a Mediterranean climate. The aim of the present study is to analyse temporal and spatial variations of soil erosion rates estimated along three hillsides, located in two farms (Buitrera and Parapuños) in southwest Spain. To understand the temporal variation, soil erosion rates were studied in light of land use-management changes that took place during the last few centuries. Results indicate very low erosion rates prior to the 18th century in both farms. In Buitrera, a first increase of soil loss rates was identified during the period 1831-1897, amounting to 7.4 t ha-1 y-1. A further increase took place during the 20th century, reaching a mean erosion rate of 29.1 t ha-1 y-1. In Parapuños, data points to a significant increase from 1881 onwards, with an estimated mean erosion rate of 18.5 t ha-1 y-1. Those increases were presumably connected with an intensification of land use, such as cultivation and excessive livestock populations. Regarding spatial variation, the bare surface and the erosive power of run-off along the hillsides accounts for 76% of the soil erosion rates dispersion. At a local scale, the variability of erosion rates could not be explained, because of (i) uncertainty related to the micromorphology of the past soil surface and (ii) the role of tillage erosion in the past. However, the results obtained offer valuable data on the temporal and spatial variation of erosion rates in dehesas at the hillslope scale and a similar approach could be used for other rangelands with a disperse tree cover. © 2019 John Wiley & Sons, Ltd.  相似文献   

18.
Soil formation results from opposite processes of bedrock weathering and erosion, whose balance may be altered by natural events and human activities, resulting in reduced soil depth and function. The impacts of vegetation on soil production and erosion and the feedbacks between soil formation and vegetation growth are only beginning to be explored quantitatively. Since plants require suitable soil environments, disturbed soil states may support less vegetation, leading to a downward spiral of increased erosion and decline in ecosystem function. We explore these feedbacks with a minimal model of the soil–plant system described by two coupled nonlinear differential equations, which include key feedbacks, such as plant‐driven soil production and erosion inhibition. We show that sufficiently strong positive plant–soil feedback can lead to a ‘humped’ soil production function, a necessary condition for soil depth bistability when erosion is assumed to vary monotonically with vegetation biomass. In bistable plant–soil systems, the sustainable soil condition engineered by plants is only accessible above a threshold vegetation biomass and occurs in environments where the high potential rate of erosion exerts a strong control on soil production and erosion. Vegetation removal for agriculture reduces the stabilizing effect of vegetation and lowers the system resilience, thereby increasing the likelihood of transition to a degraded soil state. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Landform evolution models are powerful tools for determining long-term erosional stability and denudation rates spanning geological timescales. SIBERIA, CAESAR and CHILD are examples of these model. The newly developed State Space Soil Production and Assessment Model (SSSPAM) coupled soilscape-landform evolution model has the ability to assess overall erosion rates of catchment scale landforms either using short-term precipitation events, variable precipitation or time-averaged precipitation (annual average). In addition, SSSPAM has the capability of developing the subsurface soil profile through weathering and armouring. In SSSPAM, physical processes of pedogenesis such as erosion and armouring, diffusion, sediment deposition and weathering are modelled using a state space matrix approach. In this article we simulate the short-term evolution (100 years) of a proposed post-mining landform using both SIBERIA and SSSPAM and compare the erosion and sediment output results. For the short-term simulations SSSPAM's armouring capability was disabled. The models were then used to simulate the evolution of the catchment for 10,000 years. Results demonstrate that the short-term SSSPAM simulation results compare well with the results from the established landform evolution model SIBERIA. The long-term armouring disabled SSSPAM simulations produces simulated erosion rates comparable with SIBERIA simulations both of which are similar to upper limit of field measured denudation rates. The SSSPAM simulation using armouring demonstrated that armouring reduced the erosion rate of the catchment by a factor of 4 which is comparable with the lower limit of field measured denudation rates. This observation emphasizes the importance of armouring in long-term evolution of landforms. Soil profile cross-sections developed from the same results show that SSSPAM can also reproduce subsurface soil evolution and stratification and spatial variability of soil profile characteristics typically observed in the field.  相似文献   

20.
We present observations and analysis of gully headcut erosion, which differ from previous headcut studies in both spatial and temporal detail. Using ten terrestrial laser scanning (TLS) surveys conducted over a period of 3 years, we mapped headcut erosion with centimeter‐scale detail on a sub‐annual basis. Erosional change is observed through point cloud differencing, which expands on previous studies of headcut retreat rate by revealing the evolution of the headcut morphology. Headcut retreat observations are combined with hydrological measurements to explore the controlling factors of erosional retreat. We find that (i) mass failure due to wetting, (ii) saturation weakening of shale bedrock in plunge pools, and (iii) direct wash over the headcut face all appear to contribute to headcut retreat; however, mass failure via wetting appears to be the dominant process. Soil moisture was monitored near the study headcut at 0.4 m depth, and time‐lapse photos show that soil wetting tends to be concentrated along the headcut apex after rainfall and snowmelt runoff events. We find that moisture concentration at the headcut apex leads to more rapid erosion at that location than along the headcut sidewalls, resulting in a semi‐ellipsoidal plan view morphology that is maintained as the headcut migrates up‐valley. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号