首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A numerical model (sediment trap efficiency for small ponds—STEP) is developed to simulate sediment deposition in small ponds (i.e. <1 ha) and to calculate the sediment trap efficiency (STE). The algorithms are kept simple to allow the model to simulate larger time periods (i.e. several years). Eight runs with an experimental pond were executed to test the model. The STEP model produces reasonable predictions of STE as well as the shape and magnitude of the effluent sediment concentration graph. The model efficiency of STEP for the prediction of STE equals 0·38 and the root mean square error equals 4·7%. Similar models, such as DEPOSITS and CSTRS, were inefficient in predicting the experimental results. The STEP model was used to simulate the long‐term (33 years) STE of small retention ponds in central Belgium using 10‐min rainfall data. For a typical pond (1000 m2) with a catchment area of 25 ha, annual STE can vary from 58 to 100%, with a long‐term STE of only 68%. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
Glacier recessions caused by climate change may uncover pro‐glacial lakes that form important sedimentation basins regulating the downstream sediment delivery. The impact of modern pro‐glacial lakes on fluvial sediment transport from three different Norwegian glaciers: Nigardsbreen, Engabreen and Tunsbergdalsbreen, and their long‐term development has been studied. All of these lakes developed in modern times in overdeepened bedrock basins. The recession of Nigardsbreen uncovered a 1.8 km long and on average 15 m deep pro‐glacial lake basin during 1937 to 1968. Since then the glacier front has been situated entirely on land, and the sediment input and output of the lake has been measured. The suspended sediment transport into and out of the lake averaged 11 730 t yr?1 and 2340 t yr?1 respectively. Thus, 20% remained in suspension at the outlet. The measured mean annual bedload supplied to the lake was 11 800 t yr?1, giving a total transport of 23 530 t yr?1 which corresponds to a specific sediment yield of 561 t km?2 yr?1. A 1.9 km long and up to 90 m deep pro‐glacial lake basin downstream from Engabreen glacier was uncovered during 1890 to 1944. The average suspended sediment load delivered from the glacier during the years 1970–1981 amounted to 12 375 t yr?1and the transport out of the lake was 2021 t yr?1, giving an average of 16% remaining in suspension. The mean annual bedload was 8000 t yr?1, thus the total transport was 20 375 t yr?1, giving a specific sediment yield of 566 t km?2 yr?1. For Tunsbergdalsbreen glacier, measurements in the early 1970s indicated that the suspended sediment transport was on average 44 000 t yr?1. From 1987 to 1993 the recession of the glacier uncovered a small pro‐glacial lake, 0.3 km long and around 9 m deep. Downstream from this, the suspended sediment load measured in 2009 was 28 000 t yr?1, indicating that as much as 64% remained in suspension. Flow velocity, grain size of sediment, and morphology of the lake are important factors controlling the sedimentation rate in the pro‐glacial lakes. A survey of the sub‐glacial morphology of Tunsbergdalsbreen revealed that there are several overdeepened basins beneath the glacier. The largest is 4 km long and 100 m deep. When the glacier melts back they will become lakes and act as sedimentation basins. Despite an expected increase in sediment yield from the glacier, little sediment will pass these lakes and downstream sediment delivery will be reduced markedly. Beneath Nigardsbreen there was only a small depression that may form a lake and the sediment delivery will not be significantly affected. © 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

3.
A sediment budget for an upland catchment–reservoir system at Burnhope Reservoir, North Pennines, UK has been developed. This provides a framework for quantifying historic and contemporary sediment yields and drainage basin response to disturbance from climate change and human activities in the recent past. Bathymetric survey, core sampling, 137Cs dating and aerial photographs have been used to assess sediment accumulation in the reservoir. The average reservoir sedimentation rate is 1·24 cm yr?1 (annual sediment yield 33·3 t km?2 yr?1 ± 10%, trap efficiency 92%). Mean annual reservoir sedimentation over the 67 year period has been estimated at 592 t ± 10%. Inputs of suspended sediment from direct catchwater streams account for 54% of sediment supply to the budget (best estimate yield of 318 t yr?1 ± 129%), while those from actively eroding reservoir shorelines contribute 328 t yr?1 ± 92%. Sediment yield estimates from stream monitoring and reservoir sedimentation are an order of magnitude lower than those reported from South Pennine reservoirs of comparable drainage basin area. Analysis of historical rainfall series for the catchment shows fluctuations in winter and summer rainfall patterns over the past 62 years. From 1976 to 1998 there has been a diverging trend between winter and summer rainfall, with a large increase in winter and a gradual decrease in summer totals. Periods of maximum variation occur during the summer drought events of the late 1970s, early 1980s and mid‐1990s. Analysis of the particle size of core sediments highlights abrupt increases in sand‐sized particles in the top 20 cm of the core. Based on the 137Cs chronology, these layers were deposited from the late 1970s onwards and relate to these diverging rainfall records and rapidly fluctuating reservoir levels. This provides evidence of potential sediment reworking within the reservoir by rapid water‐level rise after drought. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Sediment yield can be a sensitive indicator of catchment dynamics and environmental change. For a glacierized catchment in the High Arctic, we compiled and analyzed diverse sediment transfer data, spanning a wide range of temporal scales, to quantify catchment yields and explore landscape response to past and ongoing hydroclimatic variability. The dataset integrates rates of lake sedimentation from correlated varve records and repeated annual and seasonal sediment traps, augmented by multi‐year lake and fluvial monitoring. Consistent spatial patterns of deposition enabled reconstruction of catchment yields from varve‐ and trap‐based fluxes. We used hydroclimatic data and multivariate modeling to examine annual controls of sediment delivery over almost a century, and to examine shorter‐term controls of sediment transfer during peak glacier melt. Particle‐size analyses, especially for annual sediment traps, were used to further infer sediment transfer mechanisms and timing. Through the Medieval Warm Period and Little Ice Age, there were no apparent multi‐century trends in lake sedimentation rates, which were over three times greater than those during the mid‐Holocene when glaciers were diminished. Twentieth‐century sedimentation rates were greater than those of previous millennia, with a mid‐century step increase in mean yield from 240 to 425 Mg km?2 yr?1. Annual yields through the twentieth century showed significant positive relations with spring/summer temperature, rainfall, and peak discharge conditions. This finding is significant for the future of sediment transfer at Linnévatnet, and perhaps more broadly in the Arctic, where continued increases in temperature and rainfall are projected. For 2004–2010, annual yields ranged from 294 to 1330 Mg km?2 yr?1. Sediment trap volumes and particle‐size variations indicate that recent annual yields were largely dominated by spring to early summer transfer of relatively coarse‐grained sediment. Fluvial monitoring showed daily to hourly sediment transfer to be related to current and prior discharge, diurnal hysteresis, air temperature, and precipitation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
The logistical demands of coring lake sediments tend to preclude the replicate coring necessary to establish error estimates for measured sedimentary parameters. However, if such parameters are to be used to reconstruct sediment yield, and particularly to identify temporal variability of sediment yield, reasonable error estimates are required. In this paper data from a series of alpine lakes in British Columbia are applied to develop a new method for deriving such estimates. Regression surfaces fitted to point values of sediment mass are used to model the physically controlled spatial variability of sedimentation. Deviations from these surfaces are assumed to represent remaining unstructured variance, which constitutes a conservative error estimate. Application of the technique to the alpine lake dataset gives sediment yield estimates with error ranges of ±7–21 per cent. The potential error is minimized where the spatial variability of sedimentation is strongly predictable. The best fits were achieved for elongate lakes of simple basin morphology. The range of the error estimates is sufficiently low to allow detection of variability in Holocene sediment yield to one of the lakes. By using this technique, absolute sediment yields with associated error estimates may be derived. The associated gains in precision justify multicore approaches to lake sediment‐based reconstructions of sediment yield. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
Sediment yield in the San Pedro Lake watershed, inferred from sedimentation in the lake, can be related to land use changes shown on aerial photographs taken during the period 1943–1994. In this watershed, which covers 4·5 km2 of mountainous terrain in San Pedro County, central Chile, the area of native forest species decreased from 70 per cent in 1943 to 13 per cent in 1994. During this same period, the area of pine plantations increased from 4 to 46 per cent. To study effects of these changes, we took a core from the centre of the lake and estimated sedimentation rates by 210Pb dating, which we checked with 137Cs and pine pollen. The results show that sedimentation rate ranged from 5 mg cm−2 a−1 in the late 1800s to 60 mg cm−2 a−1 in the late 1960s. These rates, together with assumptions about the production and delivery of the sediment, give corresponding figures for sediment yields with maximum values close to 1 t ha−1 a−1. Sediment yield between 1955 and 1994 closely tracks the total land use change that can be detected, irrespective of land use type, on sets of aerial photographs taken four to 18 years apart. However, this measure of land use change, while convenient and successful as a predictor of historical erosion, may be unreliable because it probably excludes many changes that occurred in long intervals between successive photographs. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
In the Négron River catchment area (162 km2), surface‐sediment stores are composed of periglacial calcareous ‘grèze’ (5 × 106 t) and loess (21 × 106 t), and Holocene alluvium (12·6 × 106 t), peat (0·6 × 106 t) and colluvium (18·5 × 106 t). Seventy‐five per cent of the Holocene sediments is stored along the thalwegs. Present net sediment yield, calculated from solid discharge at the Négron outlet, is low (0·6 t km?2 a?1) due to the dominance of carbonate rocks in the catchment. Mean sediment yield during the Holocene period is 7·0 t km?2 a?1 from alluvium stores and 7·6 t km?2 a?1 from colluvium stores. Thus, the gross sediment yield during the Holocene period is about 18·7 t km?2 a?1 and the sediment delivery ratio 3 per cent. The yield considerably varies from one sub‐basin to another (3·9 to 24·5 t km?2 a?1) according to lithology: about 25 per cent and 50 per cent of initial stores of periglacial grèze and loess respectively were reworked during the Holocene period. Sediment yield has increased by a factor of 6 in the last 1000 years, due to the development of agriculture. The very high rate of sediment storage on the slope during that period (88 per cent of the yield) can be accounted for by the formation of cultivation steps (‘rideaux’). It is predicted that the current destruction of these steps will result in a sediment wave reaching the valley floors in the coming decades. Subboreal and Subatlantic sediments and pollen assemblages in the Taligny marsh, where one‐third of the alluvium is stored, show the predominant influence of human activity during these periods in the Négron catchment. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
Factors controlling sediment yield in China's Loess Plateau   总被引:2,自引:0,他引:2  
The Loess Plateau in China, an area with some of the highest sediment yield in the world, contributes predominant proportion of the sediments found in the Yellow River. We examined sediment yield and its control variables in the plateau based on a multi‐year dataset from 180 gauging stations in areas varying in size from 102 to 104 km2. Various morphometric, hydrologic, climatic and land cover variables were estimated in order to understand and predict the variations in sediment yield. The results show a spatial pattern of sediment yield exhibiting an obvious zonal distribution and a coupling between precipitation and vegetation cover that fits the Langbein–Schumm law. A critical threshold of precipitation and vegetation cover was observed among the relationships of sediment yield and precipitation/vegetation cover. A multiple regression equation with three control variables, i.e. vegetation cover, percentage of cultivated loess and annual runoff, explains 65% of the total variation in sediment yield. For the loess dominated basins, where the cultivated loess accounts for more than 60% of the total area, annual runoff was the dominant variable, explaining 76% of the observed variation in sediment yield. The established equation could be a valuable tool for predicting total sediment yield in the Loess Plateau. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Rivers display temporal dependence in suspended sediment–water discharge relationships. Although most work has focused on multi‐decadal trends, river sediment behavior often displays sub‐decadal scale fluctuations that have received little attention. The objectives of this study were to identify inter‐annual to decadal scale fluctuations in the suspended sediment–discharge relationship of a dry‐summer subtropical river, infer the mechanisms behind these fluctuations, and examine the role of El Niño Southern Oscillation climate cycles. The Salinas River (California) is a moderate sized (11 000 km2), coastal dry‐summer subtropical catchment with a mean discharge (Qmean) of 11.6 m3 s?1. This watershed is located at the northern most extent of the Pacific coastal North America region that experiences increased storm frequency during El Niño years. Event to inter‐annual scale suspended sediment behavior in this system was known to be influenced by antecedent hydrologic conditions, whereby previous hydrologic activity regulates the suspended sediment concentration–water discharge relationship. Fine and sand suspended sediment in the lower Salinas River exhibited persistent, decadal scale periods of positive and negative discharge corrected concentrations. The decadal scale variability in suspended sediment behavior was influenced by inter‐annual to decadal scale fluctuations in hydrologic characteristics, including: elapsed time since small (~0.1 × Qmean), and moderate (~10 × Qmean) threshold discharge values, the number of preceding days that low/no flow occurred, and annual water yield. El Niño climatic activity was found to have little effect on decadal‐scale fluctuations in the fine suspended sediment–discharge relationship due to low or no effect on the frequency of moderate to low discharge magnitudes, annual precipitation, and water yield. However, sand concentrations generally increased in El Niño years due to the increased frequency of moderate to high magnitude discharge events, which generally increase sand supply. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
《水文科学杂志》2013,58(4):619-635
Abstract

The drawdown of Crombie Reservoir in November 2001 afforded the opportunity to examine the exposed sediments trapped since impoundment in 1868. Direct measurements of infill depth enabled an isopachyte map to be produced. Gravimetric conversion using measured bulk densities and a trap efficiency term indicated a long-term catchment sediment yield of 59.1 t km?2 year?1. Core stratigraphy analysis indicated that sediments were dark brown/black cohesive silty-muds with multiple sandy sub-units, representing a combination of discrete flood events and previous drawdown surfaces. Dating, constrained by mineral magnetic and 137Cs analysis, indicated that sedimentation rates have varied from 0.2 to 0.8 g cm?2 year?1, corresponding to a four-fold variation in catchment sediment yield (approximately 20–93 t km?2 year?1), most likely controlled by extensive conversion of moorland to woodland, and post-World War II agricultural expansion. The Crombie investigation is combined with other reservoir sedimentation surveys within the Midland Valley of Scotland. Area-specific sediment yields (t km?2 year?1) evidence a weak, though statistically significant (p > 0.05), positive correlation with catchment area (km2). The increase in area-specific yield with catchment area contradicts the decline, which is generally expected, and is taken to reflect the significance of channel erosion within water supply basins featuring mainly natural and semi-natural vegetation cover and low-intensity land management practices. With stable slopes channel erosion dominates and area-specific sediment yield increases downstream due to greater entrainment and transport potential. The high degree of scatter in the Midland Valley database reflects significant variations in the extent of land-use change and the local importance of agricultural improvements and afforestation practices.  相似文献   

11.
H. Marttila  B. Kløve 《水文研究》2014,28(17):4756-4765
Lowland catchments in Finland are intensively managed, promoting erosion and sedimentation that negatively affects aquatic environments. This study quantified fine‐grained bed sediment in the main channel and upstream headwaters of the River Sanginjoki (399.93 km2) catchment, Northern Finland, using remobilization sediment sampling during the ice‐free period (May 2010–December 2011). Average bed sediment storage in river was 1332 g m?2. Storage and seasonal variations were greater in small headwater areas (total bed sediment storage mean 1527 g m?2, range 122–6700 g m?2 at individual sites; storage of organic sediment: mean 414 g m?2, range 27–3159 g m?2) than in the main channel (total bed sediment storage: mean 1137 g m?2, range 61–4945 g m?2); storage of organic sediment: mean 329 g m?2, range 13–1938 g m?2). Average reach‐specific bed sediment storage increased from downstream to upstream tributaries. In main channel reaches, mean specific storage was 8.73 t km?1, and mean specific storage of organic sediment 2.45 t km?1, whereas in tributaries, it was 126.94 and 34.05 t km?1, respectively. Total fine‐grained bed sediment storage averaged 563 t in the main channel and 6831 t in the catchment. The proportion of mean organic matter at individual sites was 15–47% and organic carbon 4–455 g C m?2, with both being highest in small headwater tributaries. Main channel bed sediment storage comprised 52% of mean annual suspended sediment flux and stored organic carbon comprised 7% of mean annual total organic carbon load. This indicates the importance of small headwater brooks for temporary within‐catchment storage of bed sediment and organic carbon and the significance of fine‐grained sediment stored in channels for the suspended sediment budget of boreal lowland rivers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
The sedimentology of proglacial Silt Lake was assessed by lake sediment coring and monitoring of lacustrine processes during a late‐summer period of high glacier melt to characterize sediment delivery from the heavily glacierized catchment and investigate the sediment trapping dynamics of this upland lake. A complete varve chronology was established for a distal basin of the lake which was exposed by Lillooet Glacier retreat between 1947 and 1962. The varve record showed decreasing sedimentation rates in the basin while the glacier retreated, and as the lake became free of ice contact in the early 1970s. Although recession has continued over recent decades, and glacier proximity to the lake has, therefore, continued decreasing, lacustrine sedimentation rates are now accelerating due to changing basin morphometry caused by delta progradation. Over shorter time scales, lake sedimentation patterns respond to changing runoff conditions, including late‐summer glacier melt intensity, intra‐annual flooding events, diumal runoff fluctuations, and within‐lake turbidity currents. Turbidity currents included quasi‐regular flows during high diurnal discharges and an episodic flushing of temporarily stored sediment from the sandur or delta at a time of low stage. Suspended sediment yield to Silt Lake is estimated to exceed 103 Mg km?2 a?1, a magnitude that surpasses previous local and regional yield estimates for the glacierized headwaters of the Lillooet River valley. Since Silt Lake currently traps a significant prooportion of that upland sediment supply, and the trapping efficiency of the basin has been variable at decadal time scales, the formation and continued development of Lilt Lake has likely had a significant influence on downstream sediment delivery. Lacustrine sediment‐based proxies of long‐term hydroclimatic variability being developed in glacially distal settings should include provisions for dynamic sediment trapping effects in upstream water bodies that often form in the active proglacial environment. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
This study investigates erosion dynamics of the past 90 years in three small semi‐arid watersheds with histories of grazing and vegetation change. Activity of 137Cs and excess 210Pb from 18 cores collected from sedimentation ponds were measured using a gamma spectrometer. The sediment was dated using a constant rate of supply (CRS) model. This study represents the first time that reservoir sediment accumulation rates determined from fallout isotopes have been verified by direct volumetric measurements of aggradation based on topographic surveys. Measured sedimentation in the ponds ranged between 1.9 and 2.3 cm y?1, representing average sediment delivery rates from the watersheds of between 0.6 and 2.0 t ha?1 y?1. These sediment delivery rates were in agreement with those established by other methods for similar catchments in the region. Past variations in sedimentation rates were identified and correlated with recorded history of anthropogenic disturbance. 137Cs and 210Pb methods are suitable for use in arid environments and can complement each other to increase reliability of erosion rate estimates. The abundance of stock ponds in southwestern USA presents an opportunity to quantify historic erosion and sediment transfer dynamics in areas that have not been well studied or instrumented. Published 2016. This article is a U.S. Government work and is in the public domain in the USA  相似文献   

14.
ABSTRACT

To assess seasonal patterns of suspended sediment load and its erosion–transport interactions, 17 years of river monitoring data from the Isser River Basin (northwest Algeria) were studied, considering continuous and event-scale approaches. The results show significant differences in sediment yield and transport processes between dry and wet periods. A rate of 8 t ha?1 year?1 was estimated from continuous analysis, with values of 4.3 and 13 t ha?1 year?1 for wet and dry periods, respectively. Estimates of soil delivery ratio pointed to higher values during dry periods and the dominance of hillslope erosion processes. At the event scale, the hysteresis loops confirmed these seasonal patterns in transport dynamics. The calibration of the MUSLE model highlighted the severity of rainfall during the dry period. These results emphasize the importance of seasonality in erosion and transport processes with special relevance in terms of climate change predictions.  相似文献   

15.
The sediment budget of the small research catchment of Cal Parisa (Vallcebre, Eastern Pyrenees) was studied by hydrological monitoring and assessment of the erosion rates in the major sediment sources. This area is characterized by clayey mudrock prone to landsliding and badland erosion, but the catchment was selected in an area free of major badland features, as a representative of middle mountain regions where a system of terraces and drainage ditches had been built for agricultural use but is now abandoned. Streamwater chemistry is dominated by Ca2+ and HCO3 at concentrations close to calcite saturation. Total dissolved solids show dilution during runoff peaks and positive hysteresis loops that support a slow contribution of subsurface water. Relative dissolved ion concentrations are different for each event analysed. Particulate sediment yield is very low and represents only about 1 per cent of gross erosion in the catchment. Mineralogical analysis of suspended sediments shows an enrichment in calcite because of precipitation. Chemical analysis of suspended sediments, using common one-litre water samples, shows higher contents of Ca, P and Mn in transported sediment than in sediment source areas, attributed to the precipitation of calcite, and enrichment in organic particulate matter during events respectively for the two first elements, whereas enrichment in Mn remains uncertain. Solid matter yield is therefore clearly dominated by dissolved transport as a result of both high calcium bicarbonate concentrations in runoff waters and strong suspended sediment conveyance discontinuities. Land conservation structures are very effective because they are in good condition whereas the soil is covered by dense permanent vegetation. Nevertheless, this state is unstable because the network of drainage ditches needs maintenance; its spontaneous breakdown after abandonment may result in the rearrangement of the elementary stream network and gullying of old fields in hollows. © 1997 John Wiley & Sons, Ltd.  相似文献   

16.
Our ability to understand erosion processes in semi‐arid ecosystems depends on establishing relationships between rainfall and runoff. This requires collection of extensive and accurate hydrologic and sediment data sets. A supercritical flume with a total load traversing slot sediment sampler used on several sites at the Walnut Gulch Experimental Watershed (WGEW) near Tombstone, AZ has proven to be a reliable way to measure flow and sediment discharge from small watersheds. However, it requires installation of a costly structure that is only suitable for relatively small flows. A more commonly used method based on ease of installation and expense is the pump sampler. One example of this is a set of instrumentation developed by the Australian Commonwealth Scientific and Industrial Research Organization (CSIRO), in which the pump sediment sampler is part of an in‐channel, fully automated system for measuring water velocity, depth, turbidity and collecting runoff samples. A 3.7 ha arid watershed at WGEW was instrumented with both systems and hydrologic and sediment data were collected and compared during a 2 year period. Total sediment yield for the entire period measured by the CSIRO pump sampler (11.6 t ha‐1) was similar to that by traversing slot sampler (11.5 t ha‐1). The pump sampler accurately estimated the amount of fine (< 0.5 mm) sediment fractions exported, but consistently underestimated the coarse (>0.5 mm) sediment fractions. Median sediment diameter of samples collected by traversing slot and pump sampler were 0.32 and 0.22 mm, respectively. This study outlines the benefits and limitations of the pump sampler based system for monitoring sediment concentration and yield in high‐energy headwater catchments, and makes recommendations for improvement of its performance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
This paper investigates temporal variations in fluxes of peat and other sediment in the catchment of March Haigh Reservoir, West Yorkshire. Long‐term estimates of sediment yield were derived from a study of reservoir sediments. Magnetic properties were used to correlate ten cores to a master profile dated using 210Pb and 137Cs. A 14C date suggests that most of the organic component of the sediment is allochthonous and derived from peat eroded from the catchment. Organic sediment yields suggest low catchment erosion rates between 1838 and 1963. Blanket peat erosion increased significantly after 1963, and peaked between 1976 and 1984. Estimates of total sediment yield range between 2 and 28 t km?2 a?1. These yields are significantly lower than those from some previous studies examining reservoir sedimentation in other blanket peat‐covered catchments. The low yield estimates may be due to relatively low rates of erosion in the basin, but may also be partly explained by maintenance of silt traps during the early life of the reservoir and removal of sediment by scouring. Sedimentation within the reservoir is spatially variable, and bathymetry and sediment source appear to be the dominant controls on sedimentation patterns within the reservoir. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
Streams can be classified as stable or unstable, depending on the stage of channel evolution. Many streams of the southern Piedmont in United States have high sediment loads and are listed as impaired under the total maximum daily load (TMDL) program and may be unstable. It is not clear as to what the target (reference) load or remediation measures should be for unstable streams. The objective of this study was to determine the relative channel stability for a typical southern Piedmont stream using rapid geomorphic assessments (RGAs) and sediment yield analysis. The results were supported through a sediment fingerprinting analysis. RGAs were performed along 52 reaches on the North Fork Broad River (NFBR) main stem and two tributaries. Annual sediment yields were calculated and compared with yields in the southern Piedmont for stable streams that are resilient to degradation or aggradation and unstable streams that are susceptible to such disturbances. Majority of the NFBR main stem was found to be unstable with signs of geomorphic instability in the form of degradation and aggradation. The estimated average annual sediment yield was 0·78 T ha?1 year?1. By comparison, the median annual yield is 0·20 T ha?1 year?1 for stable streams and 0·48 T ha?1 year?1 for unstable streams in the Piedmont ecoregion with comparable drainage basin size. We conclude that the NFBR is in an unstable stage of channel evolution. Sediment fingerprinting proved that majority of the stream‐suspended sediment emanated from eroding stream channels. The methods outlined in this study have implications for the reference condition and remediation efforts related to stream turbidity and stream channel restoration. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Lake sedimentation has a fundamental impact on lake lifetime. In this paper, we show how sensitive calculation of the latter is to the quality of data available and assumptions made during analysis. Based on the collection of a large new dataset, we quantify the sediment masses (1) mobilized on the hillslopes draining towards Lake Tana (Ethiopia), (2) stored in the floodplains, (3) transported into the lake, (4) deposited in the lake and (5) delivered out from the lake so as to establish a sediment budget. In 2012–2013, suspended sediment concentration (SSC) and discharge measurements were made at 13 monitoring stations, including two lake outlets. Altogether, 4635 SSC samples were collected and sediment rating curves that account for land cover conditions and rainfall seasonality were established for the 11 river stations, and mean monthly SSC was calculated for the outlets. Effects of the floodplain on rivers' sediment yield (SY) were investigated using measurements at both sides of the floodplains. SY from ungauged rivers was assessed using a model that includes catchment area and rainfall, whereas bedload and direct sediment input from lake shores were estimated. As a result, the gross annual SY was c. 39.55 (± 0.15) Mt, dominantly from Gilgel Abay and Gumara Rivers. The 2.57 (± 0.17) Mt sediment deposited in floodplains indicate that the floodplains serve as an important sediment sink. Moreover, annually c. 1.09 Mt of sediment leaves the lake through the two outlets. Annual sediment deposition in the lake was c. 36.97 (± 0.22) Mt and organic matter accumulation was 2.15 Mt, with a mean sediment trapping efficiency of 97%. Furthermore, SSC and SY are generally higher at the beginning of the rainy season because soils in cultivated fields are bare and loose due to frequent ploughing and seedbed preparation. Later in the season, increased crop and vegetation cover lead to a decrease in sediment production. Based on the established sediment budget with average rainfall, the lifetime of Lake Tana was estimated as 764 to 1032 years, which is shorter than what was anticipated in earlier studies. The sedimentation rate of Lake Tana (11.7 ± 0.1 kg m?2 yr?1) is in line with the sedimentation rates of larger lakes in the world, like Lake Dongting and Lake Kivu. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
A suite of 27 short cores, 10 of which have been used for magnetic measurements and four for radiometric dating, provides a framework for reconstructing the processes, patterns and rates of sedimentation in Ponsonby Tarn, a small artificial impoundment created towards the end of the 19th century, close to the Sellafield nuclear reprocessing plant in NW England. Spatial and temporal changes in sedimentation are reconstructed and evidence presented for non-synchroneity in magnetic property changes from core to core in the upper part of the sequence, as a result of sorting and selective deposition at different distances from the inflow to the Tarn. Magnetic measurements alone are therefore not a secure basis upon which to quantify sediment yield for defined time intervals at this site. The chronology, established mainly from 210Pb and 134Cs analyses, allows estimates of mean sediment yield per annum for four periods: prior to AD 1940, 1940–1964, 1964–1986 and 1986–1991. The rates of sediment accumulation have increased in recent times, especially since 1964, with evidence for input from both magnetically enhanced soils and gleyed alluvial and/or podsolized subsoil sources. Pre-1940 mean annual deposition within the present area of the lake is calculated as 19·5 t a−1 and for the period since 1986 (the period of maximum sedimentation rates), as 111·3 t a−1. These represent yields of 7·0 t km−2 a−1 and 39·8 t km−2 a−1, respectively, for the catchment as a whole. Rock magnetic evidence, based on measurements of both bulk samples and the finest particle size separates, suggests that bacterial magnetite, formed within the lake, contributes to the magnetic properties of the sediments, thus modifying the signatures relating to allochthonous sediment input. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号