首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The Erlihe Pb–Zn deposit is an important mine of the Pb–Zn metallogenic zone in the South Qinling Orogen. It has been considered a sedimentary exhalative deposit in previous investigations because the ore body occurs concordantly at the transitional location of an upright fold. Re and Os isotopic analyses for paragenetic pyrites with sphalerite and galena from the ore body have been used to determine the timing of mineralization and to trace the source of metallogenic materials. The Re–Os isotopic data of four pyrite samples construct an isochron, yielding a weighted average age of 226±17 Ma (mean square weighted deviation=1.7), which is considered the main mineralization age. A dioritic porphyrite vein sample, showing weaker mineralization, was also dated using the SHRIMP zircon U–Pb isotopic method to constrain the youngest metallogenic age of the ore deposit, because it distributes along a group of tensional joints cutting not only the upright fold in the deposit field, but also the main ore bodies. The dioritic porphyrite sample yields a weighted mean 206Pb/238U age of 221±3 Ma, which is slightly younger than the Re–Os isotopic isochron age of the pyrites, considered as the upper age limit of the mineralization, namely the ending age of the mineralization. The Os isotopic compositions of sulfide minerals distribute within a range between Os isotopic compositions of the crust and the mantle, indicating that the ore deposit can be derived from magma-related fluid, and the metallogenic materials are most likely derived from the mixing source of the crust and the mantle. The Erlihe Pb–Zn deposit and associated dioritic porphyrite vein, important records of Qinling tectonic–magmatism–mineralization activities, were formed during the Triassic collisional orogeny processes.  相似文献   

2.
The X-drilling cores of the North Yellow Sea basin reveal two sets of Mesozoic clastic rocks, which are the dark rocks in lower part and the red rocks in upper part, respectively. There are two layers of volcanic rocks at the bottom and the upper part of the dark rock unit. The volcanic rocks at the bottom part are trachytic dacite while rocks at the upper part are clastic dacite. The zircon grains from the upper and lower units of volcanic rocks are euhedral-subhedral columnar crystals and show oscillatory zoning on cathodoluminescence images. 22 tests of zircons in the trachytic dacite from the bottom part yield an age of 141-151 Ma, with weighted mean 206Pb/238U age of 145±2 Ma. Whereas 18 tests of zircons from the sample at the upper part give 206Pb/238U ages around 139-149 Ma with weighted mean 206Pb/238U age of 141±2 Ma, which implies that the X well volcanic rocks belong to Late Jurassic-Early Cretaceous. Comparing with the age and geochemical characteristics of the Mesozoic igneous rocks in Shandong peninsula, we suggest that the igneous rocks from both the North Yellow Sea basin and Jiaolai basin were formed under same dynamic setting, i.e., the subduction related volcano arc and back-arc extension. ©, 2015, Science Press. All right reserved.  相似文献   

3.
The Tongshankou Cu-Mo deposit, located in southeast Hubei province, is a typical skarn–porphyry type ore deposit closely related to the Tongshankou granodiorite porphyry, characterized by a high Sr/Y ratio.Detailed in situ analyses of the trace elements and U–Pb and Lu–Hf isotopes in zircons from the Tongshankou granodiorite porphyry were performed.Scarcely any inherited zircons were observed, and the analyzed zircons yielded highly concordant results with a weighted mean 206Pb/238 U age of 143.5 ± 0.45 Ma(n=20, mean square weighted deviation was 0.75), which was interpreted to represent the crystallization age of the Tongshankou granodiorite porphyry.The chondrite-normalized rare-earth element pattern was characterized by a slope that steeply rises from the light-group rare-earth elements(LREE) to the heavy-group rare-earth elements(HREE) with a positive Ce-anomaly and inconspicuous Eu-anomaly, which was coincident with the pattern of the zircons from the Chuquicamata West porphyry, Chile.The analyzed zircons also had relatively low 176Hf/177 Hf ratios of 0.282526–0.282604.Assuming t=143 Ma, the corresponding calculated initial Hf isotope compositions(εHf(t)) ranged from-5.6 to-2.9.The results of the in situ analysis of trace elements and U–Pb and Lu–Hf isotopes in zircons from the Tongshankou granodiorite porphyry suggest that a deep-seated process involving a thickened-crust/enriched-mantle interaction may play an important role in the generation of high Sr/Y-ratio magma and potentially in the generation of porphyry Cu-Mo systems.  相似文献   

4.
Zircons from granodiorite and biotite granite in the Yeniutan granitic intrusion in the western North Qilian Mountains yielded a weighted mean 206Pb/238U apparent age of 460±3 Ma, suggesting that the intrusion originated during the late stage of plate subduction. Its related Ta'ergou and Xiaoliugou deposits are two of the few large tungsten deposits formed in the plate subduction environment in the world. The U-Pb dating of the zircons from the biotite granite gave a discordant lower intercept age of 183±4 Ma, which implies that the Yanshanian event was probably superimposed on the North Qilian region.  相似文献   

5.
Zircon U–Pb and Hf isotope data integrated in this study for magmatic and metamorphic rocks from the Hida Belt,southwest Japan,lead to a new understanding of the evolution of the Cordilleran arc system along the ancestral margins of present-day Northeast Asia.Ion microprobe data for magmatic zircon domains from eight mafic to intermediate orthogneisses in the Tateyama and Tsunogawa areas yielded weighted mean ~(206)Pb/~(238)U ages spanning the entire Permian period(302–254 Ma).Under cathodoluminescence,primary magmatic growth zones in the zircon crystals were observed to be partially or completely replaced by inward-penetrating,irregularly curved featureless or weakly zoned secondary domains that mostly yielded U–Pb ages of 250–240 Ma and relatively high Th/U ratios( 0.2).These secondary domains are considered to have been formed by solid-state recrystallization during thermal overprints associated with intrusions of Hida granitoids.Available whole-rock geochemical and Sr–Nd isotope data as well as zircon age spectra corroborate that the Hida Belt comprises the Paleozoic–Mesozoic Cordilleran arc system built upon the margin of the North China Craton,together with the Yeongnam Massif in southern Korea.The arc magmatism along this system was commenced in the Carboniferous and culminated in the Permian–Triassic transition period.Highly positive εHf(t) values( +12) of late Carboniferous to early Permian detrital zircons in the Hida paragneisses indicate that there was significant input from the depleted asthenospheric mantle and/or its crustal derivatives in the early stage of arc magmatism.On the other hand,near-chondritic εHf(t) values(+5 to-2) of magmatic zircons from late Permian Hida orthogneisses suggest a lithospheric mantle origin.Hf isotopic differences between magmatic zircon cores and the secondary rims observed in some orthogneiss samples clearly indicate that the zircons were chemically open to fluids or melts during thermal overprints.Resumed highly positive zircon εHf(t) values(+9) shared by Early Jurassic granitoids in the Hida Belt and Yeongnam Massif may reflect reworking of the Paleozoic arc crust.  相似文献   

6.
In this paper, we report an integrated study of U-Pb age and Hf isotope compositions of zircons from biotite plagioclase gneiss at Lianghe in western Yunnan. The zircons preserved inherited core and rim texture. Igneous zircon grains and rims yielded a weighted mean 206Pb/238U age of 120.4±1.7 Ma, their εHf (120 Ma) values were mainly negative ranging from –13.9 to –10.7, with Hf model ages between 1.9 Ga and 2.0 Ga, some zircons had positive εHf (120 Ma) values ranging from 0.2 to 2.1. The inherited cores showed the wide variations in the U-Pb age of 375–1315 Ma. One of them showed the εHf (506 Ma) value of –4.2, it was similar to the gray gneiss of old crust, which εHf (500 Ma) values were negative ranging from –4.5 to –3.3. Combining geological feature and geochemical data, we concluded that the protolith of biotite plagioclase gneiss was old crust-derived tonalitic magma during the early Cretaceous.  相似文献   

7.
Radio-isotopic analysis of single zircons from two early Telychian K-bentonites, one of which is among the most widespread Lower Paleozoic volcanic ash falls in north- ern Europe, yields overlapping weighted mean 206pb/238U ages of 438. 7± 1.0 Ma and 437.8 ± 0.5 Ma, respectively. The former age is from zircons of the Osmundsberg K-bentonite from the type locality at Osmundsberget in the Siljan area of central Sweden where it occurs in the lower part of the Spirograptus tur- riculatus Graptolite Zone and in the lower part of the Angochitina longicollis Chitinozoan Zone. Zircons giv- ing the latter age are from a bed previously identified as the Osmundsberg K-bentonite at the Kallholn Quarry in the same area. Based on new biostratigraphic data, the latter bed is now considered to be slightly younger than the Osmundsberg K-bentonite. The dated stratigraphic level of the ash layers is slightly younger than the base of the Telychian Stage and thus represents a minimum age for the Aeronian/Telychian Stage boundary. A U-Pb age of 〉 438 Ma for the base of this stage, however, is older and in conflict with estimates in the most recent compilation of the Silurian time scale. In view of the fact that only three radio-isotopic dates from the entire Llan- dovery have been previously accepted, this new and biostratigraphically exceptionally well-controlled radio-isotopic date fills an important gap in the Lower Silurian geochronology.  相似文献   

8.
As China's most important gold-producing district,the Jiaodong Peninsula also contains copper,lead-zinc,molybdenum(tungsten),and other nonferrous metal ore deposits,but the space-time and genetic relationships with gold deposits remain uncertain.To investigate the temporal relationship between these nonferrous metal and gold ore deposits,We collected the samples from a number of nonferrous metallic and silver deposits and metallogenetic rock bodies in the eastern Jiaodong Peninsula for isotopic dating.The results show that the Re-Os isotopic model ages of the Lengjia molybdenum deposit in Rongcheng range from 114.5± 1.8 Ma to 112.6± 1.5 Ma,with an average age of 113.6± 1.6Ma;the LA-ICP-MS ~(206)Pb/~(238)U ages of 33 zircons in the sericitization porphyritic monzogranite that hosts the Tongjiazhuang silver deposit in Rongcheng range between 122 Ma and 109 Ma,with a weighted mean age of 116.04± 0.95 Ma;the LA-ICP-MS ~(206)Pb/~(238)U ages of 31 zircons in the copper metallogenic pyroxene monzodiorite that hosts the Kuangbei copper deposit in Rongcheng range from126 Ma to 106 Ma,with a weighted mean age of 116.6± 1.7 Ma;and the LA-ICP-MS ~(206)Pb/~(238)U ages of19 zircons in the pyroxene monzodiorite surrounding the Dadengge gold and multimetal deposit in Weihai range from 113 Ma to 110 Ma,with a weighted mean age of 111.7± 0.6 Ma.All these results indicate that the metallogenic ages of the silver and nonferrous metallic deposits in the Jiaodong Peninsula are in a limited range from 118 Ma to 111 Ma.Previous studies have demonstrated that the isotopic ages of gold deposits in the Jiaodong Peninsula range from 123 Ma to 110 Ma,while Weideshanian magmatism occurred between 126 Ma to 108 Ma.Both these ranges are grossly consistent with the metallogenic ages of silver and nonferrous metallic deposits in this study,suggesting that the large-scale mineralization occurred in the Early Cretaceous when magmatic activities were strong.This epoch may be linked to the lithosphere thinning and the thermo-upwelling extension in eastern China at that time.In addition,field investigation also shows that gold and nonferrous metallic deposits are distributed nearby the Weideshanian granite,with the nonferrous metallic deposits lying within or surrounding the granite pluton and the gold deposits outside the granite pluton.We propose the following mineralization scenario:In the Early Cretaceous,an intensive lithospheric extension induced partial melting and degassing of the metasomatized lithospheric mantle,which resulted in the formation of mantle-derived fluids enriched in metal elements.During the rapid process of magma ascent and intrusion,crust-derived fluids were activated by the magmatic thermal dome and served to further extract ore-forming materials from the crust.These fluids may have mixed with the mantle-derived fluid to form a crust-mantle mixing-type ore-forming fluid.The high-temperature conditions in the center or in contact with the granitic magmatic thermal dome would have been favorable for the formation of porphyry-type,skarn-type,and hydrothermal-vein-type ores,thus forming a series of Mo(W),Cu,and Pb-Zn deposits in the mid-eastern Jiaodong Peninsula.In contrast,the medium-to low-temperature conditions in the periphery of the magmatic thermal dome would have favored the deposition of gold(silver) ores under the appropriate physiochemical and structural conditions.The metallogenic epoch of the molybdenum,copper,and silver deposits,and their spatio-temporal and genetic relations to the gold deposits,as demonstrated in this study,not only provide important insights to the study of regional metallogeny,our understanding of the metallogenesis of the Jiaodong type gold deposit,and the geodynamic background of the large-scale mineralization in the Jiaodong Peninsula,but also have practical value in guiding the mineral exploration.  相似文献   

9.
The Linxi Formation occupies an extensive area in the eastern Inner Mongolia in the Central Asian Orogenic Belt(CAOB).The Linxi Formation is composed of slate,siltstone,sandstone and plant,lamellibranch microfossils in the associated strata.Major and trace element data(including REE) for sandstones from the formation indicate that these rocks have a greywacke protolith and have been deposited during a strong tectonic activity.LA-ICPMS U—Pb dating of detrital zircons yield ages of 1801 to 238 Ma for four samples from the Linxi Formation.425—585 Ma,together with the ~500 Ma age for the metamorphism event previously determined for Northeast China,indicates that their provenance is the metamorphic rocks of Pan-African age that have a tectonic affinity to NE China.A few older zircons with U-Pb ages at 1689-1801 Ma,1307-1414 Ma,593-978 Ma are also present,revealing the Neoproterozoic history of NE China.The youngest population shows a peak at ca.252 Ma,suggesting that the main deposition of the Linxi Formation was at late Permain.Moreover,the ca.250 Ma zircon grains of all four samples yield weighted mean ~(206)Pb/~(238)U ages of 250 ± 3 Ma,248 ± 3 Ma,249 ± 3 Ma,and 250 ± 2 Ma,respectively.These ages,together with the youngest zircon age in the sample ZJB-28(ca.238 Ma),suggest that the deposition of the Linxi Formation extended to the early Triassic.Combining with previous results,we suggest that the final collision of the Central Asian Orogenic Belt(CAOB) in the southern of Linxi Formation,which located in the Solonker-Xra Moron-Changchun suture,and the timing for final collision should be at early Triassic.  相似文献   

10.
For magmatic rocks, it is often found that zircon 206 Pb/238 U and 207 Pb/235 U ratios continuously plot on the concordia line with a relatively large age span for the same sample, which gives rise to large dating errors or even unrealistic dating results. As the trace element concentrations of zircon can reflect its equilibrated magma characteristics, they can be used to determine whether all the analytical spots on the zircons selected to calculate the weighted mean age are cogenetic and formed in a single magma chamber. This work utilizes the results of zircon trace element concentrations and U-Pb isotopic analyses to explore the screening of reasonable U-Pb ages, which can be used to determine a more accurate intrusion crystallization age. The late Mesozoic Huayuangong granitic pluton complex, which is located in the Lower Yangtze region, eastern China, was selected for a case study. The Huayuangong pluton comprises the central intrusion and the marginal intrusion. Two samples from the marginal intrusion yielded consistent zircon weighted mean 206 Pb/238 U ages of 124.6 ± 2.0 Ma and 125.9 ± 1.6 Ma. These analytical spots also exhibit Zr/Hf and Th/U ratios concordant with the evolution of a single magma, from which the dated zircons crystallized. However, for the central intrusion, the analytical spots on zircons from two samples all show a continuous distribution on the concordia line with a relatively large age span. For each sample from the central intrusion, the zircon Zr/Hf ratios do not conform to a single magma evolutionary trend, but rather can be divided into two groups. We propose that zircon Zr/Hf ratios can provide a new constraint on U-Pb zircon dating and zircon Th/U ratios can also be used as a supplementary indicator to constrain zircon dating and determine the origins of the zircons and whether magma mixing has occurred. By screening zircon analytical spots using these two indicators, the two samples from the central intrusion of the Huayuangong pluton produce results of 122.8 ± 4.3 Ma and 122.9 ± 2.2 Ma, which are consistent with the field observations that the central intrusion is slightly younger than the marginal intrusion.  相似文献   

11.
As a typical orogenic gold deposit in Tibet, Shangxu gold deposit is located at the Bangong Lake–Nujiang River Metallogenic Belt in the south of Qinghai–Tibet Plateau. In this paper, zircon U-Pb dating, trace elements and Hf isotopic analysis were performed on Au-bearing quartz veins in the Shangxu gold deposit. Zircons from Au-bearing quartz veins can be divided into three types: detrital, magmatic, and hydrothermal zircons. There are two age peaks in detrital zircons: ca. 1700 Ma and ca. 2400 Ma. There are two groups of concordant ages including 157 ± 4 Ma(MSWD = 0.69) and 120 ± 1 Ma(MSWD = 0.19) in magmatic zircons, in which εH f(t) value of ca. 120 Ma from the magmatic zircons range from +8.24 to +12.9. An age of 119 ± 2 Ma(MSWD = 0.42) was yielded from hydrothermal zircons, and their εH f(t) values vary between +15.7 and +16.4. According to sericite Ar-Ar age, this paper suggests that an age of 119 ± 2 Ma from hydrothermal zircons represent the formation age of the Shangxu gold Deposit, and its mineralization should be related to the collision between Lhasa Block and Qiangtang Block. The metallogenic age is basically the same as the diagenetic age of Mugagangri granite, and εH f(t) value of hydrothermal zircon is significantly higher than that of the contemporaneous magmatic zircon, which indicates that there is a genetic relationship between the gold mineralization and the deep crust-mantle magmatism.  相似文献   

12.
The Xiongdian eclogite occurring in the Sujiahe tectonic melange zone at Luoshan County, Henan Province, in the western Dabie Mountains, is typical high-pressure (HP)-ultrahigh-pressure (UHP) and medium-temperature eclogite. The occurrence, internal texture and surface characteristics of zircons in eclogite were studied rather systematically petrographically combined with the cathodoluminescence (CL) and scanning electron microscope (SEM) methods. Zircons are mainly hosted in garnet and other metamorphic minerals with sharp boundaries, have a multifaceted morphology and are homogeneous or exhibit a metamorphic growth texture in the interior, thus indicating that they are the product of metamorphism. SHRIMP analyses give zircon 206Pb/238U ages of 335 to 424 Ma and show a certain degree of radiogenic Pb loss; therefore it may be inferred that the age of 424? Ma represents the minimum age of a HP-UHP metamorphic age. From the above analyses coupled with previous Sm-Nd, 40Ar-39Ar, U-Pb and 207Pb/206Pb age d  相似文献   

13.
Zircon U-Pb ages and geochemical data of volcanic rocks in the Suifenhe Formation in eastern Heilongjiang Province are reported, and their petrogenesis is discussed in this paper. The Suifenhe Formation mainly consists of basalt, andesite, and dacite. Zircon from andesite and dacite are euhedral in shape and show typical oscillatory zoning with high Th/U ratios (0.18-0.57), implying its magmatic origin. Zircon U-Pb dating results by laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) indicate that the 206Pb/238U ages of zircons from andesite range within 105-106 Ma, yielding a weighted mean age of 105.5±0.8 Ma (n=14), and that 206Pb/238U ages of zircons from dacite are between 90-96 Ma, yielding a weighted mean age of 93.2±1.3 Ma (n =13). The volcanic rocks from the Suifenhe Formation are subalkaline series and show a calc-alkaline evolutionary trend with SiO2 content of 47.69%-65.47%, MgO contents of 1.42%-6.80% (Mg#= 45-53), and Na2O/K2O ratios of 1.83-3.63. They are characterized by enrichment in large ion lithophile elements (LILE) and light-rare-earth elements (LREE), depletion in heavy rare earth elements (HREE) and high field strength elements (HFSE) (e.g., Nb, Ta, Ti), and low initial 87Sr/86Sr ratios (0.7041-0.7057) and positiveεNd(t) values (039-4.08), implying that they could be derived from a depleted magma source. Taken together, these results suggest that the primary magma of the volcanic rocks might originate from partial melting of the mantle wedge metasomatized by fluids derived from subducted slab under a tectonic setting of active continental margin.  相似文献   

14.
The newly discovered Yangchongli gold deposit is a unique independent gold deposit in the Tongling ore-cluster region controlled by the tectonic alteration firstly discovered in the Lower Yangtze Metallogenic Belt(LYMB). The host magmatic rocks mainly consist of monzodiorite and K-feldspar granite. The LA-ICP-MS U-Pb zircons dating yielded weighted mean ~(206)Pb/~(238)U ages of 140.7 ± 1.8 Ma and 126.4 ± 1.2 Ma for the monzodiorite and K-feldspar granite, respectively. Monzodiorites are enriched in Sr, Ba, Rb, and depleted in Y, Yb with high Sr/Y and La/Yb ratios, similar to the geochemical features of adakite, considered as products of differentiation of mafic magmas originating from lithospheric mantle melt/fluids caused by metasomatism during paleo-Pacific Plate subduction in the Mesozic. In contrast, the compositions of K-feldspar granites are A-type granites, indicating an extensional tectonic background. Gold ores hosted in the fracture zone occurred as quartz vein within cataclastic rock. Sulfur and lead isotopes from pyrites show crust-mantle mixing characteristics. Metal components from strata also took part in the gold mineralization, and resulted from two episodes of magmatism that were probably related to tectonic transition from a compressive to an extensional setting between 140–126 Ma, which led to the Mesozoic large-scale polymetallic mineralization events in eastern China.  相似文献   

15.
In this paper we present new zircon U–Pb ages, whole-rock major and trace element analyses, and zircon Hf isotopic data for magmatic rocks in the Tuotuohe region of the western segment of the Jinshajiang suture. Our aim is to constrain the Early Permian–Late Triassic tectonic evolution of the region. Zircons from the magmatic rocks of the Tuotuohe region are euhedral–subhedral in shape and display fine-scale oscillatory zoning as well as high Th/U ratios(0.4–4.6), indicating a magmatic origin. The zircon U–Pb ages obtained using LA–ICP–MS are 281 ± 1 Ma, 258 ± 1 Ma, 244 ± 1 Ma, and 216 ± 1 Ma, which indicate magmatism in the Early Permian–Late Triassic. A diorite from Bashihubei(BSHN) has SiO2 = 57.18–59.97 wt%, Al2O3 = 15.70–16.53 wt%, and total alkalis(Na2O + K2O) = 4.46–6.34 wt%, typical of calc-alkaline and metaluminous series. A gabbro from Bashibadaoban(BSBDB) belongs to the alkaline series, and is poor in SiO2(45.46–54.03 wt%) but rich in Al2O3(16.19–17.39 wt%) and total alkalis(Na2O + K2O = 5.48–6.26 wt%). The BSHN diorite and the BSBDB gabbro both display an enrichment of LREEs and LILEs and depletion of HFSEs, and they have no obvious Eu anomaly; they have relatively low MgO contents(2.54–4.93 wt%), Mg# values of 43 to 52, and low Cr and Ni contents(8.07–33.6 ppm and 4.41–14.2 ppm, respectively), indicating they differentiated from primitive mantle magmas. They have low Nb/U, Ta/U, and Ce/Pb ratios(1.3–9.6, 0.2–0.8, and 0.1–18.1, respectively), and their initial Hf isotopic ratios range from +9.6 to +16.9(BSHN diorite) and +6.5 to +12.6(BSBDB gabbro), suggesting their primary magmas were derived mainly from the partial melting of a mantle wedge that had been metasomatized by subduction fluids. Taking all the new data together, we conclude that the western and eastern segment of the Jinshajiang suture regions underwent identical processes of evolution in the Early Permian–Late Triassic: oceanic crust subduction before the Early Permian, continental collision during the Early–Middle Triassic, and post-collisional extension from the Late Triassic.  相似文献   

16.
The Yunmengshan Geopark in northern Beijing is located within the Yanshan range. It contains the Yunmengshan batholith, which is dominated by two plutons: the Yunmengshan gneissic granite and the Shicheng gneissic diorite. Four samples of the Yunmengshan gneissic granite give SHRIMP zircon U–Pb ages from 145 to 141 Ma, whereas four samples of the Shicheng gneissic diorite have ages from 159 Ma to 151 Ma. Dikes that cut the Yunmengshan diorite record SHRIMP zircon U–Pb age of 162±2 and 156±4 Ma. The cumulative plots of zircons from the diorites show a peak age of 155 Ma, without inherited zircon cores, and the peak age of 142 Ma for granite is interpreted as the emplacement age of the Yunmengshan granitic pluton, whose igneous zircons contain inherited zircon cores. The data presented here show that there were two pulses of magmatism: early diorites, followed c13 Ma later by true granites, which incorporated material from an older continental crust.  相似文献   

17.
The Marwar Supergroup(NW Peninsular India)is thought to be of Ediacaran-Cambrian age,based on previous paleontological and geochronological studies.However,direct constraints on the onset of sedimentation within the Marwar basin are still scarce.In this study,we report U–Pb zircon,LA-ICP-MS,and SIMS ages from the Chhoti Khatu felsic volcanic rocks,interlayered with the Jodhpur Group sandstones(Lower Marwar Supergroup).The cathodoluminescence images of the zircons indicate complex morphologies,and core-rim textures coupled with the wide range of ages indicate that they are likely inherited or in the case of thin poorly indurated ash-beds,detrital in origin.The age spectra of 68 zircon analyses from our sampling display a dominant 800–900 Ma age peak corresponding to the age of basement"Erinpura granite"rocks in the region.The youngest inherited zircon from a felsic ash layer yielded a U–Pb age of651 Ma±18 Ma that,together with previous studies and paleontological evidence,indicates a postCryogenian age for the initiation of Marwar sedimentation following a~125 Ma hiatus between the end of Malani magmatism and Marwar deposition.  相似文献   

18.
Radiogenic isotopic dating and Lu–Hf isotopic composition using laser ablation-inductively coupled plasma-mass spectrometry(LA-ICP-MS)of the Wude basalt in Yunnan province from the Emeishan large igneous province(ELIP)yielded timing of formation and post-eruption tectonothermal event.Holistic lithogeochemistry and elements mapping of basaltic rocks were further reevaluated to provide insights into crustal contamination and formation of the ELIP.A zircon U–Pb age of 251.3±2.0 Ma of the Wude basalt recorded the youngest volcanic eruption event and was consistent with the age span of 251-263 Ma for the emplacement of the ELIP.Such zircons hadεHf(t)values ranging from7.3 to+2.2,identical to those of magmatic zircons from the intrusive rocks of the ELIP,suggesting that crust-mantle interaction occurred during magmatic emplacement,or crust-mantle mixing existed in the deep source region prior to deep melting.The apatite U–Pb age at 53.6±3.4 Ma recorded an early Eocene magmatic superimposition of a regional tectonothermal event,corresponding to the Indian–Eurasian plate collision.Negative Nb,Ta,Ti and P anomalies of the Emeishan basalt may reflect crustal contamination.The uneven Nb/La and Th/Ta values distribution throughout the ELIP supported a mantle plume model origin.Therefore,the ELIP was formed as a result of a mantle plume which was later superimposed by a regional tectonothermal event attributed to the Indian–Eurasian plate collision during early Eocene.  相似文献   

19.
Zircon U-Pb ages and geochemical analytical results are presented for the volcanic rocks of the Naozhigou, Ergulazi, and Sidaogou Formations in the Linjiang area, southeastern Jilin Province to constrain the nature of magma source and their tectonic settings. The Naozhigou Formation is composed mainly of andesite and rhyolite and its weighted mean 206Pb/238U age for 13 zircon grains is 222±1 Ma. The Ergulazi Formation consists of basaltic andesite, basaltic trachyandesite, and andesite, and six grains give a weighted mean 206Pb/238U age of 131±4 Ma. The Sidaogou Formation consists mainly of trachyandesite and rhyolite, and six zircon grains yield a weighted mean 206Pb/238U age of 113±4 Ma. The volcanic rocks have SiO2=60.24%–77.46%, MgO=0.36%–1.29% (Mg#=0.32–0.40) for the Naozhigou Formation, SiO2=51.60%–59.32%, MgO=3.70%–5.54% (Mg#=0.50–0.60) for the Ergulazi Formation, and SiO2=58.28%–76.32%, MgO=0.07%–1.20% (Mg#=0.14–0.46) for the Sidaogou Formation. The trace element analytical results indicate that these volcanic rocks are characterized by enrichment in light rare earth elements (LREEs) and large ion lithophile elements (LILEs), relative depletion in heavy rare earth elements (HREEs) and high field strength elements (HFSEs, Nb, Ta, and Ti), and negative Eu anomalies. Compared with the primitive mantle, the Mesozoic volcanic rocks in the Linjiang area have relatively high initial 87Sr/86Sr ratios (0.7053-0.7083) and low εNd(t) values (?8.38 to ?2.43), and display an EMII trend. The late Triassic magma for the Naozhigou Formation could be derived from partial melting of a newly accretional crust with the minor involvement of the North China Craton basement and formed under an extensional environment after the collision of the Yangtze Craton and the North China Craton. The Early Cretaceous volcanic rocks for the Ergulazi and Sidaogou Formations could be formed under the tectonic setting of an active continental margin related to the westward subduction of the Izanagi plate.  相似文献   

20.
The NE–striking Jiamusi–Yitong fault zone(JYFZ) is the most important branch in the northern segment of the Tancheng–Lujiang fault zone. The precise shearing time of its large–scale sinistral strike–slip has yet to determined and must be constrained. Detailed field investigations and comprehensive analyses show that strike–slip faults or ductile shear belts exist as origination structures along the western region of Yitong Graben. The strike of the shear belts trend to the NE–SW with steep mylonitic foliation. The zircon U–Pb dating result for the granite was 264.1±1 Ma in the ductile shear belt of the JYFZ. The microstructural observation(rotated feldspar porphyroclasts, S–C fabrics, and quartz c–axis fabrics, etc.) demonstrated the sinistral shearing of the ductile shear zones. Moreover, the recrystallized quartz types show a transitional stage of the subgrain rotation toward the recrystallization of the grain boundary migration(SR–GBM). Therefore, we suggest that the metamorphic grade of the shear zone in the ductile shear zones should have reached high greenschist facies conditions, and the deformation temperatures should approximately 450–500°C, which is obviously higher than the blocking temperature of muscovite(300–400°C). Hence, the ~(40)Ar/~(39)Ar isochron age of muscovite from ductile shear zones should be a cooling age(162.7±1 Ma). We infer that the sinistral strike–slipping event at the JYFZ occurred in the late Jurassic period, and it was further inferred from the ages of the main geological events in this region that the second sinistral strike–slip age of the Tancheng–Lujiang fault zone occurred during the period of tectonic movements in the Circum–Pacific tectonic domain. This discovery also indicates the age of the Tancheng–Lujiang fault zone that stretches to northeastern China. The initiation of the JYFZ in the late Jurassic is related to the speed and direction of oblique subduction of the west Pacific Plate under the Eurasian continent and is responsible for collision during the Jurassic period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号