首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
In the subglacial eruption at Gjálp in October 1996 a 6 km long and 500 m high subglacial hyaloclastite ridge was formed while large volumes of ice were melted by extremely fast heat transfer from magma to ice. Repeated surveying of ice surface geometry, measurement of inflow of ice, and a full Stokes 2-D ice flow model have been combined to estimate the heat output from Gjálp for the period 1996–2005. The very high heat output of order 106 MW during the eruption was followed by rapid decline, dropping to  2500 MW by mid 1997. It remained similar until mid 1999 but declined to 700 MW in 1999–2001. Since 2001 heat output has been insignificant, probably of order 10 MW. The total heat carried with the 1.2 × 1012 kg of basaltic andesite erupted (0.45 km3 DRE) is estimated to have been 1.5 × 1018 J. About two thirds of the thermal energy released from the 0.7 km3 edifice in Gjálp occurred during the 13-day long eruption, 20% was released from end of eruption until mid 1997, a further 10% in 1997–2001, and from mid 2001 to present, only a small fraction remained. The post-eruption heat output history can be reconciled with the gradual release of 5 × 1017 J thermal energy remaining in the Gjálp ridge after the eruption, assuming single phase liquid convection in the cooling edifice. The average temperature of the edifice is found to have been approximately 240 °C at the end of the eruption, dropping to  110 °C after 9 months and reaching  40 °C in 2001. Although an initial period of several months of very high permeability is possible, the most probable value of the permeability from 1997 onwards is of order 10− 12 m2. This is consistent with consolidated/palagonitized hyaloclastite but incompatible with unconsolidated tephra. This may indicate that palagonitization had advanced sufficiently in the first 1–2 years to form a consolidated hyaloclastite ridge, resistant to erosion. No ice flow traversing the Gjálp ridge has been observed, suggesting that it has effectively been shielded from glacial erosion in its first 10 years of existence.  相似文献   

12.
13.
14.
The solar-terrestrial extrastorm of August 22–25, 2005, has been considered in the context of the cyclic dynamics and structure of the large-scale open solar magnetic field and has been rated among the other extrastorms of cycle 23. It has been established that the storm under discussion was one of the last six extrastorms in the cycle that occurred during the specific third interval of the declining phase—the period of quasirigidly corotating four-sector structure. Inside this structure, we have revealed convergent motions of the photospheric sources of open fields, the active sector boundary, and the formation of a narrow longitudinal sector with the activity complex responsible for the set of four extrastorms of January–September 2005. It is shown that all extrastorms were accompanied by significant variations (up to 1021 μs) of the open field flux Φ. The storm of August 22–25 was accompanied by an increase in the magnetic flux Φ in the corresponding sector (with a doublet of solar flares) and a fast expansion of the sector to the dimensions at the beginning of this interval (September 2004).  相似文献   

15.
During the last six years, the National Geophysical Research Institute, Hyderabad has established a semi-permanent seismological network of 5 broadband seismographs and 10 accelerographs in the Kachchh seismic zone, Gujarat, with the prime objective to monitor the continued aftershock activity of the 2001 Mw7.7 Bhuj mainshock. The reliable and accurate broadband data for the Mw 7.6 (8 Oct., 2005) Kashmir earthquake and its aftershocks from this network, as well as from the Hyderabad Geoscope station, enabled us to estimate the group velocity dispersion characteristics and the one-dimensional regional shear-velocity structure of peninsular India. Firstly, we measure Rayleigh- and Love-wave group velocity dispersion curves in the range of 8 to 35 sec and invert these curves to estimate the crustal and upper mantle structure below the western part of peninsular India. Our best model suggests a two-layered crust: The upper crust is 13.8-km thick with a shear velocity (Vs) of 3.2 km/s; the corresponding values for the lower crust are 24.9 km and 3.7 km/sec. The shear velocity for the upper mantle is found to be 4.65 km/sec. Based on this structure, we perform a moment tensor (MT) inversion of the bandpass (0.05–0.02 Hz) filtered seismograms of the Kashmir earthquake. The best fit is obtained for a source located at a depth of 30 km, with a seismic moment, Mo, of 1.6 × 1027 dyne-cm, and a focal mechanism with strike 19.5°, dip 42°, and rake 167°. The long-period magnitude (MA ~ Mw) of this earthquake is estimated to be 7.31. An analysis of well-developed sPn and sSn regional crustal phases from the bandpassed (0.02–0.25 Hz) seismograms of this earthquake at four stations in Kachchh suggests a focal depth of 30.8 km.  相似文献   

16.
Seth Rose 《水文研究》2009,23(8):1105-1118
An extensive dataset (230 precipitation gauges and 79 stream gauges) was used to analyse rainfall–runoff relationships in 10 subregions of a 482000 km2 area in the south‐eastern USA (Maryland, Virginia, North Carolina, South Carolina and Georgia). The average annual rainfall and runoff for this study area between 1938 and 2005 were 1201 and 439 mm, respectively. Average runoff/rainfall ratios during this period varied between 0·24 in the southernmost Coastal Plain subregion to 0·64 in the Blue Ridge Province. Watershed elevation and relief are the principal determinants governing the conversion of rainfall to runoff. Temporal rainfall variation throughout the south‐eastern USA ranges from ~40% above and below normal while the variation for runoff is higher, from ? 75% to + 100%. In any given year there can exist a ± 25–50% error in predicted runoff deviation using the annual rainfall–runoff regression. Fast Fourier Transform and autoregressive spectral analysis revealed dominant cyclicities for rainfall and runoff between 14 and 17 years. Secondary periodicities were typically between 6–7 and 10–12 years. The inferred cyclicity may be related to ENSO and/or Central North Pacific atmospheric phenomena. Mann–Kendall analyses indicate that there were no consistent statistically significant temporal trends with respect to south‐eastern US rainfall and runoff during the study period. The results of U‐tests similarly indicated that rainfall between 1996 and 2005 was not statistically higher or lower than during earlier in the study period. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
18.
19.
20.
This year's annual UK Solar Physics Meeting was held in parallel with the National Astronomy Meeting in Birmingham, from 4–8 April 2005. Bill Chaplin and Robert Erdélyi report on proceedings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号