首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The Petexbatún region of Guatemala's Petén tropical forest lowlands has been largely deforested since the early 1980s as landless peasants have turned even national parks into milpas. The soils of these tropical forest, karst landscapes are known mainly from small-scale maps and archaeological investigations. This paper investigates soil catenas and natural slope processes from the region's last virgin tropical forests and compares these with catenas and processes on slashed and burned slopes. Soils were sampled and analyzed for physical, fertility, and taxonomic measures. This primary forest toposequence forms a typical downward translocation catena, with the thickest soils (>200 cm) in depressions, the thinnest soils on shoulder slopes, and moderately thin soils on the crests and backslopes. Most crest and sloping soils are Lithic Rendolls and contain simple O-A-C horizon sequences, and most soils have little sign of either eluviation or illuviation. A few deeper soils on the slopes are Vertic Rendolls and have moderate slick-ensides, whereas footslopes and seasonally drained depressions are well developed Vertisols. The primary forest soil catena was compared with two slash-and-burn milpas, one with comparable slopes and one with steeper slopes. The comparably sloped milpa had soil thicknesses that were 7.9 to 13.8 cm thinner, truncated horizons, and physical evidence of erosion. The steeper milpa had soil thicknesses that were 11.1 to 18.2 cm thinner and also had truncated horizons and physical evidence of erosion. Where ancient Maya terraces (Late Classic, ca. 550 to 830 A.D.) are present in the slash-and-burn landscape, an average of 25 to 46.5 cm soil remain upslope and 9.3 to 16.1 cm remain downslope. The findings show high soil truncation rates and erosion to bedrock in a decade in one place, though ancient Maya terraces are still holding 2.7 to 3.6 times more soil than the surrounding hillslopes. Despite high modern erosion, lake sediments show surprisingly low soil losses in the Maya Late Classic during the period of the most intensive land use. In contrast, studies at Copán, Honduras and in the northern Petén, where terrace evidence is scant, show high rates of erosion during this period. [Key words: soil catenas, tropical deforestation, milpa, soil erosion, Maya Lowlands.]  相似文献   

2.
ABSTRACT. Chunchucmil, on the Yucatán Peninsula, was densely populated in the Maya Late Classic period (ca. a.d. 550–830), even though it depends principally on groundwater. In the 1990s, hydrologic investigations were conducted to determine whether groundwater could have met domestic and agricultural needs. The region's groundwater is near the surface and is influenced by sea‐level fluctuations; however, geochemical analysis revealed that groundwater quality is not affected by mixing with seawater. The potential exists for high and spatially extensive nitrate contamination in this karstic area, yet water‐quality analyses revealed only moderate levels of nitrate in the groundwater. Agricultural limitations are imposed by chloride, total dissolved solids, and salinity, as indicated by electrical conductivity; domestic water use is limited by the presence of nitrate, sulfate, and chloride. Throughflow in the ring of cenotes (sinkholes) around the Chicxulub impact crater may explain the movement and spatial distribution of water‐quality constituents in Chunchucmil's groundwater.  相似文献   

3.
Irrigated terraces in the Iberian Peninsula are associated with al-Andalus; the name with which the region was known following the migration of Arabic–Berber tribes across the Strait of Gibraltar, starting from 711 AD. Several of these agricultural areas have remained in use in the west Mediterranean to the present day. Historical texts usually refer to later extensions of the original Andalusi irrigated terrace fields, yet little is known about their foundation period. In this study we examined the micromorphology and undertook physico-chemical analyses and radiocarbon dating of a buried soil found in Ricote (Murcia, Spain) to provide relevant information to understand the initial stages of terrace building within al-Andalus. Results of our study show that: (1) Andalusi peasants selected a saline Hipercalcic Calcisol developed on colluvial materials on which to build the first irrigated terraces, (2) The soil was probably cleared of bushes by fire prior to terrace construction, (3) The shifting of sediments implied in the building of terraces seems to have entailed the inversion of the original soil stratigraphy, (4) Radiocarbon dating of submillimetric fragments of charred wood embedded in the top horizon of the buried Hipercalcic Calcisol (2σ 647–778 AD) suggests the original irrigated terraces of Ricote were built shortly after the arrival of Arabic and Berber tribes in the Iberian Peninsula.  相似文献   

4.
orthernShaanxiisoneoftheregionsexperiencingmostserioussoilerosioninChina.Substantialresearchesindicatedthatinadditiontophysicalfactorsthatplayadecisiveroleininducingsoilerosion,humanfactorsthataccelerateerosionprocesscannotbeignoredeither[1,2,4].NorthernS…  相似文献   

5.
ABSTRACT. Political dimensions of conservation abound. The biosphere-reserve model, however, depoliticizes the landscape by neglecting politics as a shaper of ecologies. To illustrate this process of depoliticization, I examine discourses about environmental degradation, power structures engaged in implementing conservation measures, and emerging landscapes in the Maya Biosphere Reserve. Conservationist discourses hold migrant farmers responsible for deforestation and land degradation in the Petén, to the neglect of wider socioeconomic conditions that perpetuate poverty in Guatemala. Sociospatial consequences include misdirected projects and landscapes that reflect the goals of nongovernmental organizations, not local people's needs and aspirations.  相似文献   

6.
梯田是人类几千年来利用和改造自然能力的象征,在人类社会发展中发挥了重要的作用。甘加盆地位于青藏高原东北部甘肃省夏河县,盆地内的丘陵、山麓地带分布大面积的层状梯形景观,疑似弃耕的古代梯田。本文在实地考察的基础上,基于卫星遥感资料,通过GIS手段分析发现古梯田面积为42.2 km2(约63000亩),主要分布在盆地内央曲河及其支流两侧海拔2936~3326 m间的山坡上。通过对3个古梯田剖面样品的磁化率、总有机碳/氮(TOC、TN)含量、孢粉、粒度等环境代用指标分析,同时对比具有准确年代控制的自然剖面磁化率与粒度。研究结果显示:梯田开垦于晚全新世(距今3000 a)古土壤,梯田剖面顶部25~35 cm不同于自然剖面而呈均一化的指标证实了耕作层的存在(距今约1000 a以下层位);但耕作层之上TOC、TN含量的增多,以及梯田剖面与自然剖面整体一致的指标变化趋势说明了梯田被短期利用后长期废弃;结合历史文献资料推断夏河古梯田是在北宋“弓箭手屯田”制度(1074—1125年)下开垦的;气候重建资料显示该时段温度较高、降水增加,整体有益于农业生产。本文提供了过去人类社会适应气候变化的典型案例。  相似文献   

7.
The Southern Alps lie along the convergent Pacific-Indian plate boundary. Geomorphically distinct eastern, axial and western regions reflect the east-west gradient in tectonic uplift (1 to 10 mm a−1) and precipitation (600 to 10,000 mm a−1). The eastern region is divided into front-ange and basin-and-range subregions. Soil-sequence studies on terraces established temporal contrasts in pedogenesis within and between eastern and western regions encompassing Entisols, Inceptisols and Spodosols. On Late Pleistocene and early Holocene terraces Dystrochrepts are persistent soils in the eastern region and Aquods in the western region. These soil sequences are used in the interpretation of relative soil age, stratigraphy and erosion history in hill and mountain drainage basins of the eastern and western regions. In the subhumid to humid eastern front-range subregion, simple soil forms occur as catenary sequences, and there is little evidence of erosion following the destruction of forests in the last millenium. Mollisols are dominant in the subhumid, and Dystrochrepts in humid areas, respectively. Soil-debris mantle regoliths date from the early Holocene and are still developing on slopes. The soil pattern on mountain slopes in the humid, eastern basin-and-range subregion is a complex array of simple, eroded, composite and compound soils. This pattern has resulted from erosion following forest destruction within the last millenium. The oldest surface or buried forest soils are Dystrochrepts dating from the Late Pleistocene to early Holocene. Wind erosion of these low-fertility soils contributes to the loessial sediments in which younger soils have formed. In the western region, soil patterns and soil stratigraphy indicate continous instability with a complex pattern of highly leached, shallow Orthents and bedrock outcrops on slopes. The soils are eroded from slopes within 2 ka. These contrasts in soil development and erosion periodicity in the eastern and western regions of the Southern Alps parallel the east-west contrasts in erosion rates of ca. 1–10 mm a−1.  相似文献   

8.
This research assessed the soil erosion threat in the Congo Nile Ridge Region of Rwanda. The study forecasted erosion by applying the Revised Universal Soil Erosion (RUSLE) with five factors (rainfall, soil, topography, cover management, and support practices) and spatial data. About 85.5% of the area under investigation was predisposed to erosion with unsustainable average soil loss rates of > 1 t/ha/yr. The outcomes of the research highlighted that the average rate of estimated soil loss in the region prone to erosion was > 63.62 t/ha/yr, resulting in an overall annual predicted soil loss of approximately 44 × 106 t in 2016. All of the districts studied have steep slope gradients (30.4%–36.1%) and high annual rainfall totals (1199–1484 mm/yr), except Rubavu district. More than 88.8% of croplands had unsustainable average soil loss rates of > 1 t/ha/yr. The analysis indicated that both terracing and strip cropping have the potential to reduce rates of soil loss in the farmland, by 64.4% and 10.4%, respectively. The results of this study will serve as a baseline for soil erosion mitigation and land-use planning in the study area and Rwanda at large.  相似文献   

9.
撒哈拉沙漠东北部全新世气候环境与人类活动   总被引:2,自引:0,他引:2  
张虎才 《中国沙漠》1997,17(3):291-294
现代极端干旱的撒哈拉沙漠东北部,在12000 aB.P.前出现了代表湿润气候记录的湖相沉积;全新世以来,在9900~2400 aB.P.形成了大面积的连续湖泊,并在9800~6450 aB.P.达到鼎盛时期。在6000 aB.P.~3600 aB.P.前,湖泊演化进入波动期,反映了该时期气候环境周期性的变动并具600年的准周期。撒哈拉沙漠东北全新世湿润时期,是该区古人类发展与进步、繁演与分化的时期;也是自然演变史上一个十分重要的时期,其中强烈的风化作用和碎屑物质积累为今日撒哈拉沙漠的形成奠定了物质基础。  相似文献   

10.
坡地开发中的植物篱技术   总被引:6,自引:0,他引:6  
李阳兵  谢德体  杨朝现 《热带地理》2001,21(2):121-124,130
论述了植物篱在我国坡地开发中的地位、作用、选取标准及在坡地开发中的其它应用,认为植物篱应是控制川中丘陵遂宁组母质区水土流失的主要手段。  相似文献   

11.
Stream-terrace genesis: implications for soil development   总被引:3,自引:0,他引:3  
Genesis of three distinct types of stream terraces can be understood through application of the concepts of tectonically induced downcutting, base level of erosion, complex response, threshold of critical power, diachronous and synchronous response times, and static and dynamic equilibrium. Climatic and tectonic stream terraces are major terraces below which flights of minor complex-response degradation terraces can form.These three types of terraces can be summarized by describing a downcutting-aggradation-renewed downcutting sequence for streams with gravell bedload. By tectonically induced downcutting, streams degrade to achieve and maintain a dynamic equilibrium longitudinal profile at the base level of erosion. Lateral erosion bevels bedrock beneath active channels to create major straths that are the fundamental tectonic stream-terrace landform. Aggradation events record brief reversals of long-term tectonically induced downcutting because they raise active channels. They may be considered as major (the result of climatic perturbations) or minor (the result of complex-response model types of perturbations). Climatically controlled aggradation followed by degradation leaves an aggradation surface; this type of fill-terrace tread is the fundamental climatic stream-terrace landform. Aggradation surfaces may be buried by subsequent episodes of deposition unless intervening tectonically induced downcutting is sufficient for younger aggradation surfaces to form below older surfaces. Raising of the active channel by either tectonic uplift or by climatically induced aggradation provides the vertical space for degradation terraces to form; first in alluvial fill and then in underlying bedrock along tectonically active streams. These are complex-response terraces because they result from interactions of dependent variables within a given fluvial system. Pauses in degradation to a new base level of erosion, and/or minor episodes of backfilling, lead to formation of complex-response fill-cut and strath, or of fill terraces. Fill-cut terraces are formed in alluvium; they are complex-response terraces because they are higher than the base level of erosion. Good exposures and dating are needed to distinguish static equilibrium complex-response minor strath terraces from dynamic equilibrium tectonic (major) straths. Strath terraces may be regarded as complex-response terraces where degradation rates between times terrace-tread formation exceed the long-term uplift rate for the reach based on ages and positions of tectonic terraces.Late Quaternary global climatic changes control aggradation events and even the times of cutting of major (tectonic) straths, because the base level of erosion can not be attained during times of climatically driven aggradation-degradation events.Most terrace soils form on treads of climatic and complex-response terraces. Aggradation surfaces may provide an ideal flight of terraces on which to study a soils chronosequence. Each aggradation event is recorded by a single relict soil where tectonically induced downcutting is sufficient to provide clear altitudinal separation of the terrace treads. Multiple paleosols are typical of tectonically stable regions where younger aggradation events spread alluvium over treads of older climatic terraces. Pedons on a climatic terrace in a small fluvial system commonly are roughly synchronous - variations of soil properties that can be attributed to temporal differences will be minor compared to altitudinally controlled climatic factors. Climatic terraces of adjacent watersheds also should be roughly synchronous (correlatable) - variations of soil properties that can be attributed to temporal differences will be minor compared to lithologic and climatic factors between different watersheds. Such generalizations may not apply to basins with sufficient relief that geomorphic responses to climatic changes occur at different and overlapping times, and to large rivers whose widely separated reaches are characterized by different response times to climatic perturbations. Soils on climatic terraces of distant watershedswill not be synchronous if their respective aggradation events occur during full-glacial times and interglacial times. Soils on some complex-response terraces may be diachronous within a given fluvial system, and typically are diachronous between watersheds.  相似文献   

12.
黄土高原侵蚀期研究   总被引:22,自引:12,他引:10  
赵景波  杜娟  黄春长 《中国沙漠》2002,22(3):257-261
黄土高原在沉积的同时也存在着侵蚀,主要是流水、重力等因素造成的。这种侵蚀会受到气候、构造运动以及人类活动控制。资料显示,黄土高原存在3种基本的侵蚀期,一是气候侵蚀期,二是构造侵蚀期,三是人为因素侵蚀期。此外还有气候与构造共同作用产生的侵蚀期和构造与人类共同作用产生的侵蚀期。温湿期风尘堆积少,降水量增多,流水动力增强,是黄土高原理论上的侵蚀期。构造抬升引起侵蚀基准面下降,进而导致黄土高原加快侵蚀,出现构造侵蚀期。人类活动破坏了黄土高原的植被和土层结构,导致黄土高原侵蚀加剧,从而出现了人类因素引起的现代侵蚀加速期。在黄土发育的冷干期,由于植被稀疏,侵蚀量大于温湿期,但堆积量远大于侵蚀量。要改变现代侵蚀状况,就应当加强黄土高原生态环境治理。  相似文献   

13.
The New River crosses three physiogeologic provinces of the ancient, tectonically quiescent Appalachian orogen and is ideally situated to record variability in fluvial erosion rates over the late Cenozoic. Active erosion features on resistant bedrock that floors the river at prominent knickpoints demonstrate that the river is currently incising toward base level. However, thick sequences of alluvial fill and fluvial terraces cut into this fill record an incision history for the river that includes several periods of stalled downcutting and aggradation. We used cosmogenic 10Be exposure dating, aided by mapping and sedimentological examination of terrace deposits, to constrain the timing of events in this history. 10Be concentration depth profiles were used to help account for variables such as cosmogenic inheritance and terrace bioturbation. Fill-cut and strath terraces at elevations 10, 20, and 50 m above the modern river yield model cosmogenic exposure ages of 130, 600, and 600–950 ka, respectively, but uncertainties on these ages are not well constrained. These results provide the first direct constraint on the history of alluvial aggradation and incision events recorded by New River terrace deposits. The exposure ages yield a long-term average incision rate of 43 m/my, which is comparable to rates measured elsewhere in the Appalachians. During specific intervals over the last 1 Ma, however, the New River's incision rate reached 100 m/my. Modern erosion rates on bedrock at a prominent knickpoint are between 28 and 87 m/my, in good agreement with rates calculated between terrace abandonment events and significantly faster than 2 m/my rates of surface erosion from ancient terrace remnants. Fluctuations between aggradation and rapid incision operate on timescales of 104− 105 year, similar to those of late Cenozoic climate variations, though uncertainties in model ages preclude direct correlation of these fluctuations to specific climate change events. These second-order fluctuations appear within a longer-term signal of dominant aggradation (until 2 Ma) followed by dominant incision. A similar signal is observed on other Appalachian rivers and may be the result of sediment supply fluctuations driven by the increased frequency of climate changes in the late Cenozoic.  相似文献   

14.
137Cs法在风沙过程研究中的应用前景   总被引:6,自引:3,他引:3  
严平  张信宝 《中国沙漠》1998,18(2):182-187
137Cs法在土壤侵蚀与泥沙沉积研究中已得到普遍的应用,但在风沙过程研究中尚未引起足够的重视。针对风沙过程研究中存在的有关问题,对137Cs法的应用前景作了展望,并提出了137Cs应用的若干建议。  相似文献   

15.
Wind erosion is a major contributor to land degradation and desertification. According to the Global Assessment of Human Induced Soil Degradation, the dryland territories of Mongolia are significantly affected by wind erosion. We used the wind erosion equation model in an ArcGIS environment to evaluate wind erosion across Mongolia. The individual factors of the wind erosion equation were parameterized using the following datasets: (a) monthly climatic data from 45 meteorological stations; (b) 16-day composites of MODIS Normalized Difference Vegetation Index data; (c) a SRTM DEM with a 90 m spatial resolution; and (d) the soil map of Mongolia. The results revealed the significant influence of aridity on wind erosion. The desert and semi-desert ecosystems were more vulnerable to wind erosion, hence more affected. The map of wind erosion revealed three major wind erosion regions where the maximum soil loss of 15–27 t/(hm2?a) was observed. In general, the wind erosion potentials for the entire country of Mongolia are 15–27 t/(hm2?a) in the deserts and semi-deserts, 10–15 t/(hm2?a) in the dry steppes and 5–10 t/(hm2?a) in the steppe regions.  相似文献   

16.
SlopelandameliorationandutilizationwithcomplexagroforestrysystemraisedbyProfessorHuangBingweiwasmainlyaimedatimprovingslopelandsustainableproductivitybyusingbiologicalmeasuresforthepurposeofprovidingnewmethodforfuturecomprehensiveexploitationandutili…  相似文献   

17.
The geomorphological evolution of the Northeastern Tibetan Plateau (NETP) could provide valuable information for reconstructing the tectonic movements of the region. And the considerable uplift and climatic changes at here, provide an opportunity for studying the impact of tectonic and monsoon climate on fluvial morphological development and sedimentary architecture of fluvial deposits. The development of peneplain-like surface and related landscape transition from basin filling to incision indicate an intense uplift event with morphological significance at around 10–17 Ma in the NETP. After that, incision into the peneplain was not continuous but a staircase of terraces, developed as a result of climatic influences. In spite of the generally persisting uplift of the whole region, the neighbouring tectonic blocks had different uplift rates, leading to a complicated fluvial response with accumulation terraces alternating with erosion terraces at a small spatial and temporal scale. The change in fluvial activity as a response to climatic impact is reflected in the general sedimentary sequence on the terraces from high-energy (braided) channel deposits (at full glacial) to lower-energy deposits of small channels (towards the end of the glacial), mostly separated by a rather sharp boundary from overlying flood-loams (at the glacial-interglacial transition) and overall soil formation (interglacial). Pronounced incision took place at the subsequent warm-cold transitions. In addition, it is hypothesized that in some strongly uplifted blocks energy thresholds could be crossed to allow terrace formation as a response to small climatic fluctuations (103–104 year timescale). Although studies of morpho-tectonic and geomorphological evolution of the NETP, improve understanding on the impacts of tectonic motions and monsoonal climate on fluvial processes, a number of aspects, such as the distribution and correlation of peneplain and the related morphological features, the extent and intensity of tectonic movements influencing the crossing of climatic thresholds, leading to terrace development, need to be studied further.  相似文献   

18.
长安少陵塬全新世以来的土壤侵蚀规律研究   总被引:2,自引:7,他引:2  
杜娟  赵景波 《中国沙漠》2004,24(1):63-67
根据作者的观察和测量,文章对长安县少陵塬区土壤侵蚀特征和侵蚀规律进行了研究。结果表明,塬区土壤侵蚀的确定依据不是侵蚀面,而是土层保存程度和土层厚度的变化。高平地土壤侵蚀较弱,低地与洼地侵蚀较强,这是本文得出的与以往不同的重要规律。由塬边向塬内土壤侵蚀普遍减弱,但塬的内部也有侵蚀增强的显示,这种变化取决于塬内地形的起伏。气候对土壤也有明显的影响,无论是在全新世冷干期,还是在全新世温湿期,都存在着土壤侵蚀,但冷干期侵蚀厚度比温湿期显著大,前者侵蚀厚度比后者大7倍多。约从3100aBP全新世黄土沉积开始,土壤侵蚀发生了由弱到强的转折。  相似文献   

19.
针对黄土丘陵沟壑区土壤侵蚀非常严重、作物产量低而不稳以及农业生产力水平低下的特点,本文首先分析了近几年来王家沟流域不同种类和不同年份作物生产力变化的特征,然后在地理信息系统(GIS)技术支持下,利用基于土壤侵蚀条件下的YIELD作物生产力模型并结合各作物的实际观测资料,从降雨量、气温等气象因素以及地膜覆盖、施肥、梯田等耕作措施两方面分析了该小流域作物生产力变化的原因,结果表明在气象因素(大气降水)和土壤侵蚀的共同影响下,土壤水分和养分的变化是影响该区域作物生产力变化的主要制约因素。  相似文献   

20.
祖厉河流域位于年降水量200~400 mm之间过渡带,是气候变化最敏感和最为复杂的区域之一。运用祖厉河流域1955-2013年径流量、输沙量与年降雨量的变化趋势、时段特征进行了分析。结果表明:祖厉河流域降雨量、径流量和输沙量存在年际变化大、逐年减小的变化趋势;年降雨量在1995年出现突变点,降雨量存在明显的丰水和枯水变化,丰水时段(1955-1989年)年降水量为376.2 mm,枯水时段(1990-2013年)年降水量为224.9 mm;径流量和泥沙量的突变点分别出现在1995年和2000年;依据UFk值信度变化趋势,将径流量、输沙量变化分为非显著减少(1955-1971年)、显著减少(1972-1985年)、较显著减少(1986-2000年)和极显著减少(2001-2013年)四个时期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号