首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Based on six-degree-of-freedom three-dimensional shaking table tests, the seismic response of a recycled aggregate concrete (RAC) frame was obtained. The analysis results indicate that the maximum story shear force and overturning moment reduce proportionally along the height of the model under the same earthquake wave. The story shear force, base shear coefficient and overturning moment of the structure increase progressively as the acceleration amplitude increases. The base shear coefficient is primarily controlled by the peak ground acceleration (PGA). The relationships between the PGA and the shear coefficient as well as between the PGA and the dynamic amplification factor are obtained by mathematical fitting. The dynamic amplification factor decreases rapidly at the elastic-plastic stage, but decreases slowly with the development of the elastic-plasticity stage. The results show that the RAC frame structure has reasonable deformability when compared with natural aggregate concrete frame structures. The maximum inter-story drift ratios of the RAC frame model under frequent and rare intensity 8 test phases are 1/266 and 1/29, respectively, which are larger than the allowable value of 1/500 and 1/50 according to Chinese seismic design requirements. Nevertheless, the RAC frame structure does not collapse under base excitations with PGAs from 0.066 g up to 1.170 g.  相似文献   

2.
油浸式高压变压器地震易损性分析   总被引:1,自引:0,他引:1  
油浸式变压器是由多种材料组成的复杂结构。本文对油浸式高压变压器建立了较为精确的有限元模型,考虑了各组件之间相互作用的影响。对该设备进行了动力性能和地震响应分析以及易损性分析。分析结果表明,大型高压变压器在地震中的首要破坏模式为瓷套破坏,其地震响应的离散度较高。易损性分析得到设备的地震易损性曲线,可直接应用于电力系统的抗震分析。  相似文献   

3.
A numerical and experimental study on the sloshing behaviours of cylindrical and rectangular liquid tanks is addressed. A three‐dimensional boundary element method for space with the second‐order Taylor series expansion in time is established to simulate the sloshing phenomenon and its related physical quantities inside a liquid tank subjected to horizontal harmonic oscillations or recorded earthquake excitations. The small‐scale model experiments are carried out to verify some results of numerical methods in this study. The comparisons between numerical and experimental results show that the numerical method is reliable for both kinds of ground excitations. Finally, the water wave and the base shear force of a rectangular tank due to harmonic excitation are also presented at different frequencies. A huge cylindrical water tank subjected to a recorded earthquake excitation is used for application and discussion. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
5.
The dynamic response of equipment mounted on an isolated raised floor inside a building while the primary fixed base structure is subjected to harmonic and earthquake ground motions is numerically investigated. Sliding concave foundation (SCF) system is utilized for isolating the raised floor. The equations of motion for a MDOF shear building containing a SCF isolated raised floor with a mounted equipment are developed and the rigid link method is utilized to handle the non‐linearity of the system. The equipment, which can be modelled as a SDOF or MDOF system, may represent a critical computer unit or telecommunication processing system. SCF can be used easily to achieve the desired long period, necessary for protecting sensitive equipment. In this investigation, the ability of SCF in reducing the acceleration level experienced by the equipment inside a building is demonstrated while the lateral displacement is still within an acceptable range. The analysis considered the case of equipment housed in the upper floors of a building where the acceleration is amplified and the motion contains strong components at long periods. For this purpose, different excitations including both harmonic and real earthquake ground motions are employed and the performance of the system is evaluated. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
According to Eurocode 8, the seismic design of flat‐bottom circular silos containing grain‐like material is based on a rough estimate of the inertial force imposed on the structure by the ensiled content during an earthquake: 80% of the mass of the content multiplied by the peak ground acceleration. A recent analytical consideration of the horizontal shear force mobilised within the ensiled material during an earthquake proposed by some of the authors has resulted in a radically reduced estimate of this load suggesting that, in practice, the effective mass of the content is significantly less than that specified. This paper describes a series of laboratory tests that featured shaking table and a silo model, which were conducted in order to obtain some experimental data to verify the proposed theoretical formulations and to compare with the established code provisions. Several tests have been performed with different heights of ensiled material – about 0.5 mm diameter Ballotini glass – and different magnitudes of grain–wall friction. The results indicate that in all cases, the effective mass is indeed lower than the Eurocode specification, suggesting that the specification is overly conservative, and that the wall–grain friction coefficient strongly affects the overturning moment at the silo base. At peak ground accelerations up to around 0.35 g, the proposed analytical formulation provides an improved estimate of the inertial force imposed on such structures by their contents. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a detailed study on feasibility of un‐bonded fiber reinforced elastomeric isolator (U‐FREI) as an alternative to steel reinforced elastomeric isolator (SREI) for seismic isolation of un‐reinforced masonry buildings. Un‐reinforced masonry buildings are inherently vulnerable under seismic excitation, and U‐FREIs are used for seismic isolation of such buildings in the present study. Shake table testing of a base isolated two storey un‐reinforced masonry building model subjected to four prescribed input excitations is carried out to ascertain its effectiveness in controlling seismic response. To compare the performance of U‐FREI, same building is placed directly on the shake table without isolator, and fixed base (FB) condition is simulated by restraining the base of the building with the shake table. Dynamic response characteristic of base isolated (BI) masonry building subjected to different intensities of input earthquakes is compared with the response of the same building without base isolation system. Acceleration response amplification and peak response values of test model with and without base isolation system are compared for different intensities of table acceleration. Distribution of shear forces and moment along the height of the structure and response time histories indicates significant reduction of dynamic responses of the structure with U‐FREI system. This study clearly demonstrates the improved seismic performance of un‐reinforced masonry building model supported on U‐FREIs under the action of considered ground motions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The objective of this work is to obtain estimations of the amplification factors α and δ used for torsion design of buildings, from experiments. For this study, simple one‐storey torsionally unbalanced (TU) steel models were considered. Models consisted of a deck supported on four columns with a selected arrangement of hinges at column ends. Two theoretical structural eccentricities (e = 0.05 and 0.15) were considered. Models were excited with a simple long‐period pendulum consisting of a hanging platform with a forced‐vibration generator on it. Eight models were tested at several excitation levels (frequencies and force magnitudes) in both ranges of behaviour: elastic and inelastic. Experiments were conducted at three frequency ratios of excitation. Registered accelerations of the pendulum platform indicate that the experimental set‐up leads to excitations that resemble narrow‐band seismic ground motions. Frame shear force estimations, based on accelerations recorded at both deck sides, indicate that torsion design factors (α and δ) depend on eccentricity. Estimations of frame shears based on measurements indicate that for normalized eccentricities e ? 0.025, the amplification α can be between 2 and 3; while δ factor resulted between 0.0 and 1.6. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
A roller seismic isolation bearing is proposed for use in highway bridges. The bearing utilizes a rolling mechanism to achieve seismic isolation and has a zero post‐elastic stiffness under horizontal ground motions, a self‐centering capability, and unique friction devices for supplemental energy dissipation. The objectives of this research are to investigate the seismic behavior of the proposed bearing using parametric studies (1) with nonlinear response history analysis and (2) with equivalent linear analysis according to the AASHTO guide specifications, and by comparing the results from both analysis methods (3) to evaluate the accuracy of the AASHTO equivalent linear method for predicting the peak displacement of the proposed bearing during an earthquake. Twenty‐eight ground motions are used in the studies. The parameters examined are the sloping angle of the intermediate plate of the bearing, the amount of friction force for supplemental energy dissipation, and the peak ground acceleration levels of the ground motions. The peak displacement and base shear of the bearing are calculated. Results of the studies show that a larger sloping angle does not reduce the peak displacement for most of the parametric combinations without friction devices. However, for parametric combinations with friction devices, it allows for the use of a higher friction force, which effectively reduces the peak displacement, while keeping a self‐centering capability. The AASHTO equivalent linear method may underestimate the peak displacement by as much as 40%. Vertical ground motions have little effect on the peak displacement, but significantly increase the peak base shear. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
针对大型超高压换流变压器的地震响应问题,以一超高压±800kV换流变压器为研究对象,考虑其本体中油与箱壁的相互作用建立三维有限元分析模型,采用LS-DYNA分析换流变压器的自振特性、地震作用下的动力响应规律以及换流变压器的薄弱部位。研究结果显示,对于大型超高压换流变压器,本体中油与箱壁的相互作用对结构动力响应有一定的放大作用,进行自振特性和地震响应分析时应考虑;套管体系的薄弱部位为套管的底部和中间部位,在这两个位置拉应力和压应力最大值交替出现;换流变套管体系在地震作用下的位移较大,套管顶部的导线应设置足够大的伸缩距离。  相似文献   

11.
超高层结构地震剪力响应由振型分解反应谱法得到的结果经常不能满足规定的最小剪力系数要求。为此,文章简述剪力系数的概念和调整方法,以具有不同剪力系数的两个模型对比分析结构弹性、弹塑性地震响应差异,探讨剪力系数对超高层结构地震响应的影响。以通过强度和刚度调整使最小剪力系数满足规范要求的两个模型,分析不同调整方法引起的结构响应的合理性。结果表明:满足最小剪力系数的结构的弹性基底剪力大、层间位移角较小,结构的弹塑性位移响应也较小,受力状态优于不满足最小剪力系数的结构,安全性得到了提高。结构弹性倾覆力矩需求和弹塑性基底剪力按刚度调整大于按强度调整;结构弹塑性最大顶点位移和层间位移角响应相差不大,但出现刚度大\,层间位移角也大的与抗震理论相悖的情况;在满足抗震要求的情况下,构件的受力状态则是按强度调整更优,构件截面更加经济合理。  相似文献   

12.
The non‐stationary rocking response of liquid storage tanks under seismic base excitations including soil interaction has been developed based on the wavelet domain random vibration theory. The ground motion has been characterized through statistical functionals of wavelet coefficients of the ground acceleration history. The tank–liquid–foundation system is modelled as a multi‐degree‐of‐freedom (MDOF) system with both lateral and rocking motions of vibration of the foundation. The impulsive and convective modes of vibration of the liquid in the tank have been considered. The wavelet domain coupled dynamic equations are formulated and then solved to get the expressions of instantaneous power spectral density function (PSDF) in terms of functionals of input wavelet coefficients. The moments of the instantaneous PSDF are used to obtain the stochastic responses of the tank in the form of coefficients of hydrodynamic pressure, base shear and overturning base moment for the largest expected peak responses. Parametric variations are carried out to study the effects of various governing parameters like height of liquid in the tank, height–radius ratio of the tank, ratio of total liquid mass to mass of foundation, and shear wave velocity in the soil medium, on the responses of the tank. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
The influence of vertical ground motions on the seismic response of highway bridges is not very well understood. Recent studies suggest that vertical ground motions can substantially increase force and moment demands on bridge columns and girders and cannot be overlooked in seismic design of bridge structures. For an evaluation of vertical ground motion effects on the response of single‐bent two‐span highway bridges, a systematic study combining the critical engineering demand parameters (EDPs) and ground motion intensity measures (IMs) is required. Results of a parametric study examining a range of highway bridge configurations subjected to selected sets of horizontal and vertical ground motions are used to determine the structural parameters that are significantly amplified by the vertical excitations. The amplification in these parameters is modeled using simple equations that are functions of horizontal and vertical spectral accelerations at the corresponding horizontal and vertical fundamental periods of the bridge. This paper describes the derivation of seismic demand models developed for typical highway overcrossings by incorporating critical EDPs and combined effects of horizontal and vertical ground motion IMs depending on the type of the parameter and the period of the structure. These models may be used individually as risk‐based design tools to determine the probability of exceeding the critical levels of EDP for pre‐determined levels of ground shaking or may be included explicitly in probabilistic seismic risk assessments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
In seismic base isolation, most of the earthquake‐induced displacement demand is concentrated at the isolation level, thereby the base‐isolation system undergoes large displacements. In an attempt to reduce such displacement demand, this paper proposes an enhanced base‐isolation system incorporating the inerter, a 2‐terminal flywheel device whose generated force is proportional to the relative acceleration between its terminals. The inerter acts as an additional, apparent mass that can be even 200 times higher than its physical mass. When the inerter is installed in series with spring and damper elements, a lower‐mass and more effective alternative to the traditional tuned mass damper (TMD) is obtained, ie, the TMD inerter (TMDI), wherein the device inertance plays the role of the TMD mass. By attaching a TMDI to the isolation floor, it is demonstrated that the displacement demand of base‐isolated structures can be significantly reduced. Due to the stochastic nature of earthquake ground motions, optimal parameters of the TMDI are found based on a probabilistic framework. Different optimization procedures are scrutinized. The effectiveness of the optimal TMDI parameters is assessed via time history analyses of base‐isolated multistory buildings under several earthquake excitations; a sensitivity analysis is also performed. The enhanced base‐isolation system equipped with optimal TMDI attains an excellent level of vibration reduction as compared to the conventional base‐isolation scheme, in terms not only of displacement demand of the base‐isolation system but also of response of the isolated superstructure (eg, base shear and interstory drifts); moreover, the proposed vibration control strategy does not imply excessive stroke of the TMDI.  相似文献   

15.
This paper presents an analytical study used to establish design factors for a new seismic design methodology for precast concrete floor diaphragms. The design factors include diaphragm force amplification factors Ψ and diaphragm shear overstrength factors Ωv. The Ψ factors are applied to the ASCE7‐05 diaphragm design forces to produce diaphragm design strengths aligned to different performance targets. These performance targets are based on diaphragm detailing choices, and include: (i) elastic diaphragm behavior or (ii) limiting inelastic deformation demand on the diaphragm reinforcement (connectors between precast units or reinforcing bars in a topping slab) to within their reliable deformation capacities. The Ωv factors provide overstrength relative to the diaphragm bending strength for capacity protection against shear failure. The analytical study was performed by conducting nonlinear time history analyses of a simple evaluation structure, of which the dimensions and structural properties were varied. The analytical model used in the study is constructed and calibrated on the basis of extensive physical testing. The analytically obtained values of the diaphragm design factors are presented as functions of the geometric and structural properties of the building. The design factors presented here have been verified through evaluation of a set of realistic precast prototype structures. The diaphragm design methodology is currently in the codification process. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Semi‐active dampers offer significant capability to reduce dynamic wind and seismic structural response. A novel resetable device with independent valve control laws that enables semi‐active re‐shaping of the overall structural hysteretic behaviour has been recently developed, and a one‐fifth scale prototype experimentally validated. This research statistically analyses three methods of re‐shaping structural hysteretic dynamics in a performance‐based seismic design context. Displacement, structural force, and total base‐shear response reduction factor spectra are obtained for suites of ground motions from the SAC project. Results indicate that the reduction factors are suite invariant. Resisting all motion adds damping in all four quadrants and showed 40–60% reductions in the structural force and displacement at the cost of a 20–60% increase in total base‐shear. Resisting only motion away from equilibrium adds damping in quadrants 1 and 3, and provides reductions of 20–40%, with a 20–50% increase in total base‐shear. However, only resisting motion towards equilibrium adds damping in quadrants 2 and 4 only, for which the structural responses and total base‐shear are reduced 20–40%. The spectral analysis results are used to create empirical reduction factor equations suitable for use in performance based design methods, creating an avenue for designing these devices into structural applications. Overall, the reductions in both response and base‐shear indicate the potential appeal of this semi‐active hysteresis sculpting approach for seismic retrofit applications—largely due to the reduction of the structural force and overturning demands on the foundation system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Unstiffened steel plate shear walls (SPSWs) are used as lateral load‐resisting systems in building structures. The energy dissipation mechanism of SPSWs consists of the tension yielding of web plates and the formation of plastic hinges at the ends of horizontal boundary elements. However, vertical boundary elements (VBEs) of high‐rise SPSWs may experience high axial forces under lateral loading. This study explores the effectiveness of staggering of web plates on the reduction of VBE forces and drift response of SPSWs during an earthquake event. An analytical study has been conducted to determine the base shear reduction factor so as to match the overstrength of staggered systems with conventional SPSWs. A design methodology has been proposed for staggered SPSWs. Six‐, 9‐, and 20‐storey staggered and conventional SPSWs with varying aspect ratios are considered in this study to compare their seismic response. These study frames are modelled and analysed in OpenSEES platform. Nonlinear static and dynamic analyses are performed to compare the drift response, hinge mechanisms, and steel tonnage. Staggered SPSWs showed uniform drift distribution and reduction in interstorey drift and axial force demand on the VBEs.  相似文献   

18.
The seismic demand parameters including the floor acceleration amplification (FAA) factors and the interstory drift ratios (IDRs) were acquired from the floor response in time history analysis of a tall building subjected to selected ground motions. The FAA factors determined in this way are larger than those given in most current code provisions, but the obtained IDRs are close to the values given in some code provisions. Imposing a series of in‐plane pre‐deformations to two glass curtain wall (CW) specimens mounted on a shaking table, the IDRs were reproduced and the FAA factors were satisfied through applications of computed floor spectra compatible motion time histories, whose peak accelerations corresponded to the FAA factors. The CW specimens performed well during the whole experimental program with almost no change in the fundamental frequencies. No visible damage was observed in the glass panels. The maximum stresses detected in each component of the CW system were smaller than the design strengths. The obtained component acceleration amplification factor approached 3.35, which is larger than the value given in the current code provisions. In conclusion, the performance of the studied CW system is seismically safe. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents a numerical investigation on the seismic response of multidrum classical columns. The motivation for this study originates from the need to understand: (a) the level of ground shaking that classical multidrum columns can survive, and (b) the possible advantages or disadvantages of retrofitting multidrum columns with metallic shear links that replace the wooden poles that were installed in ancient times. The numerical study presented in this paper is conducted with the commercially available software Working Model 2D?, which can capture with fidelity the sliding, rocking, and slide‐rocking response of rigid‐body assemblies. This paper validates the software Working Model by comparing selected computed responses with scarce analytical solutions and the results from in‐house numerical codes initially developed at the University of California, Berkeley, to study the seismic response of electrical transformers and heavy laboratory equipment. The study reveals that relative sliding between drums happens even when the g‐value of the ground acceleration is less than the coefficient of friction, µ, of the sliding interfaces and concludes that: (a) typical multidrum classical columns can survive the ground shaking from strong ground motions recorded near the causative faults of earthquakes with magnitudes Mw=6.0–7.4; (b) in most cases multidrum classical columns free to dislocate at the drum interfaces exhibit more controlled seismic response than the monolithic columns with same size and slenderness; (c) the shear strength of the wooden poles has a marginal effect on the sliding response of the drums; and (d) stiff metallic shear links in‐between column drums may have an undesirable role on the seismic stability of classical columns and should be avoided. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
基于结构动力学原理和有限元基本理论,利用SAP2000有限元分析软件,以某框架结构基础隔震楼和与其相近的非隔震楼为研究对象分别建立分析模型,运用动力时程分析法对两种模型进行水平地震反应分析。结果表明:基础隔震楼的水平向地震反应远小于非隔震楼,其上部结构的自振周期明显大于非隔震楼,其层间剪力和基底剪力、楼层相对位移和加速度低于非隔震楼。总体来说,隔震支座可以显著降低水平向地震对于结构的不良反应,值得推广应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号