首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract The matrix of Vigarano, a meteorite which belongs to the reduced subgroup of the CV3 chondrites, contains small amounts (<10%) of ferrihydrite and smectite. These hydrous minerals occur together as fine fibrous intergrowths between anhydrous silicate and oxide grains. Coarser crystals of ferrihydrite fill fractures that cut matrix minerals, and smectite also lines narrow channels within olivine grains. These channels may have formed by preferential alteration of olivines along (100)-parallel defects. Formation of ferrihydrite and smectite in the matrix of Vigarano was the result of mild aqueous alteration in a low-temperature (<150 °C), oxidising parent body environment. Partial equilibration of matrix olivines indicates that alteration was followed by thermal metamorphism with a peak temperature of 400–500 °C. Mineralogically similar alteration products, which also were formed by parent body processes, have previously been described from the matrices of four CV meteorites: Bali, Grosnaja, Kaba and Mokoia, all of which belong to the oxidised subgroup. This discovery of the products of oxidative aqueous alteration in Vigarano has important consequences for understanding the chemical and thermal history of the CV class of meteorites.  相似文献   

2.
Abstract– Metamorphosed clasts in the CV carbonaceous chondrite breccias Mokoia and Yamato‐86009 (Y‐86009) are coarse‐grained, granular, polymineralic rocks composed of Ca‐bearing (up to 0.6 wt% CaO) ferroan olivine (Fa34–39), ferroan Al‐diopside (Fs9–13Wo47–50, approximately 2–7 wt% Al2O3), plagioclase (An37–84Ab63–17), Cr‐spinel (Cr/(Cr + Al) = 0.19–0.45, Fe/(Fe + Mg) = 0.60–0.79), nepheline, pyrrhotite, pentlandite, Ca‐phosphate, and rare grains of Ni‐rich taenite; low‐Ca pyroxene is absent. Most clasts have triple junctions between silicate grains, indicative of prolonged thermal annealing. Based on the olivine‐spinel and pyroxene thermometry, the estimated metamorphic temperature recorded by the clasts is approximately 1100 K. Few clasts experienced thermal metamorphism to a lower degree and preserved chondrule‐like textures. The Mokoia and Y‐86009 clasts are mineralogically unique and different from metamorphosed chondrites of known groups (H, L, LL, R, EH, EL, CO, CK) and primitive achondrites (acapulcoites, brachinites, lodranites). On a three‐isotope oxygen diagram, compositions of olivine in the clasts plot along carbonaceous chondrite anhydrous mineral line and the Allende mass‐fractionation line, and overlap with those of the CV chondrule olivines; the Δ17O values of the clasts range from about ?4.3‰ to ?3.0‰. We suggest that the clasts represent fragments of the CV‐like material that experienced metasomatic alteration, high‐temperature metamorphism, and possibly melting in the interior of the CV parent asteroid. The lack of low‐Ca pyroxene in the clasts could be due to its replacement by ferroan olivine during iron‐alkali metasomatic alteration or by high‐Ca ferroan pyroxene during melting under oxidizing conditions.  相似文献   

3.
Analysis of the NWA 2086 CV3 chondrite showed a matrix/chondrule ratio of 52%, similar to Bali, Mokoia, and Grosanaja. Nearly twice as many chondrule fragments as intact ones demonstrate that an early fragmentation phase occurred prior to final accretion. After this event, no substantial mechanical change or redeposition is evident. Rims with double‐layered structures were identified around some chondrules, which, in at least one case, is attributed to an accretionary origin. The rim's outer parts with a diffuse appearance were formed by in situ chemical alteration. During this later process, Mg content decreased, Fe content increased, and olivine composition was homogenized, producing a rim composition close to that of the matrix. This alteration occasionally happened along fractures and at confined locations, and was probably produced by fluid interactions. Iron oxides are the best candidate for a small grain‐sized alteration product; however, technical limitations in the available equipment did not allow exact phase identification. These results suggest that NWA 2086 came from a location (possible more deeply buried) in the CV parent body than Mokoia or Bali, and suffered less impact effects—although there is no evidence of sustained thermal alteration. This meteorite may represent a sample of the CV parent asteroid interior and provide a useful basis for comparison with other CV meteorites in the future.  相似文献   

4.
Abstract— Chondrules in the Bali-like CV chondrite Kaba and the Allende-like portion of the Mokoia breccia have been studied to explore the relationship between hydrous alteration to form phyllosilicates and anhydrous alteration resulting in secondary olivine zonation, replacement of enstatite by ferroan olivine and formation of feldspathoids (nepheline and sodalite). All Kaba chondrules experienced extensive hydrous alteration; whereas, anhydrous alteration was minor and resulted only in the olivine zonation. On the other hand, all of the Mokoia chondrules experienced both extensive anhydrous and hydrous alteration. Bronzite rims formed between relic enstatite grains and phyllosilicates in both Kaba and Mokoia during the hydrous alteration. Petrographic observations indicate that phyllosilicates in Mokoia postdate formation of the secondary ferroan olivine and feldspathoids. We conclude that anhydrous alteration in Kaba and Mokoia predated hydrous alteration and took place before accretion of chondrules into the CV parent asteroid.  相似文献   

5.
Meteoritic matrices are commonly classified by their modal mineralogy, alteration, and shock levels. Other “textural” characteristics are not generally considered in classification schemes, yet could carry important information about their genesis and evolution. Terrestrial rocks are routinely described by grain morphology, which has led to morphology‐driven classifications, and identification of controlling processes. This paper investigates three CV chondrites—Allende (CV3.2oxA), Kaba (CV3.0oxB), and Vigarano (CV3.3red)—to determine the morphologic signature of olivine matrix grains. 2D grain size and shape, and crystallographic preferred orientations (CPOs) are quantified via electron backscatter diffraction mapping. Allende contains the largest and most elongate olivine grains, while Vigarano contains the least elongate, and Kaba contains the smallest grains. Weak but notable CPOs exist in some regions proximal to chondrules and one region distal to chondrules, and CPO geometries reveal a weak flattening of the matrix grains against the edge of chondrules within Allende. Kaba contains the least plastically deformed grains, and Allende contains the most plastically deformed grains. We tentatively infer that morphology is controlled by the characteristics of the available population of accreting grains, and aqueous and thermal alteration of the parent body. The extent of overall finite deformation is likely dictated by the location of the sample with respect to compression, the localized environment of the matrix with respect to surrounding material, and the post deformation temperature to induce grain annealing. Our systematic, quantitative process for characterizing meteorite matrices has the potential to provide a framework for comparison within and across meteorite classes, to help resolve how parent body processing differed across and between chondritic asteroids.  相似文献   

6.
The study of shock metamorphism of olivine might help to constrain impact events in the history of meteorites. Although shock features in olivine are well known, so far, there are processes that are not yet completely understood. In shock veins, olivine clasts with a complex structure, with a ringwoodite rim and a dense network of lamellae of unidentified nature in the core, have been reported in the literature. A highly shocked (S5‐6), L6 meteorite, Asuka 09584, which was recently collected in Antarctica by a Belgian–Japanese joint expedition, contains this type of shocked olivine clasts and has been, therefore, selected for detailed investigations of these features by transmission electron microscopy (TEM). Petrographic, geochemical, and crystallographic studies showed that the rim of these shocked clasts consists of an aggregate of nanocrystals of ringwoodite, with lower Mg/Fe ratio than the unshocked olivine. The clast's core consists of an aggregate of iso‐oriented grains of olivine and wadsleyite, with higher Mg/Fe ratio than the unshocked olivine. This aggregate is crosscut by veinlets of nanocrystals of olivine, with extremely low Mg/Fe ratio. The formation of the ringwoodite rim is likely due to solid‐state, diffusion‐controlled, transformation from olivine under high‐temperature conditions. The aggregate of iso‐oriented olivine and wadsleyite crystals is interpreted to have formed also by a solid‐state process, likely by coherent intracrystalline nucleation. Following the compression, shock release is believed to have caused opening of cracks and fractures in olivine and formation of olivine melt, which has lately crystallized under postshock equilibrium pressure conditions as olivine.  相似文献   

7.
All mesosiderites previously reported were subjected to thermal metamorphism and/or partial melting on the parent body. Therefore, their primordial features have been mostly lost. Here, we report detailed petrological and mineralogical features on a mesosiderite, Northwest Africa (NWA) 1878. This meteorite comprises silicate lithology and aggregates of small spheroidal Fe‐Ni metal grains. Silicate lithology typically shows igneous texture without recrystallization features, and mainly consists of low‐Ca pyroxene and plagioclase. Pyroxenes often show normal zoning. Exsolution lamella of augite is rarely noticed and very thin in width, compared with other mesosiderites. A few magnesian olivine grains are encountered without typical corona texture around them. They are not equilibrated with pyroxene on a large scale. Plagioclase shows a wide compositional range. These results show that NWA 1878 hardly experienced thermal metamorphism, distinguished from mesosiderites of subgroups 1–4. Therefore, we propose that this is classified as subgroup 0 mesosiderite. Nevertheless, NWA 1878 was locally subjected to secondary reactions, such as weak reduction of pyroxene and Fe‐Mg diffusion between olivine and pyroxene, on the parent body.  相似文献   

8.
A new meteorite find, named Khatyrka, was recovered from eastern Siberia as a result of a search for naturally occurring quasicrystals. The meteorite occurs as clastic grains within postglacial clay‐rich layers along the banks of a small stream in the Koryak Mountains, Chukotka Autonomous Okrug of far eastern Russia. Some of the grains are clearly chondritic and contain Type IA porphyritic olivine chondrules enclosed in matrices that have the characteristic platy olivine texture, matrix olivine composition, and mineralogy (olivine, pentlandite, nickel‐rich iron‐nickel metal, nepheline, and calcic pyroxene [diopside‐hedenbergite solid solution]) of oxidized‐subgroup CV3 chondrites. A few grains are fine‐grained spinel‐rich calcium‐aluminum‐rich inclusions with mineral oxygen isotopic compositions again typical of such objects in CV3 chondrites. The chondritic and CAI grains contain small fragments of metallic copper‐aluminum‐iron alloys that include the quasicrystalline phase icosahedrite. One grain is an achondritic intergrowth of Cu‐Al metal alloys and forsteritic olivine ± diopsidic pyroxene, both of which have meteoritic (CV3‐like) oxygen isotopic compositions. Finally, some grains consist almost entirely of metallic alloys of aluminum + copper ± iron. The Cu‐Al‐Fe metal alloys and the alloy‐bearing achondrite clast are interpreted to be an accretionary component of what otherwise is a fairly normal CV3 (oxidized) chondrite. This association of CV3 chondritic grains with metallic copper‐aluminum alloys makes Khatyrka a unique meteorite, perhaps best described as a complex CV3 (ox) breccia.  相似文献   

9.
The Jezersko meteorite is a newly confirmed stony meteorite found in 1992 in the Karavanke mountains, Slovenia. The meteorite is moderately weathered (W2), indicating short terrestrial residence time. Chondrules in partially recrystallized matrix are clearly discernible but often fragmented and have mean diameter of 0.73 mm. The meteorite consists of homogeneous olivine (Fa19.4) and low‐Ca pyroxenes (Fs16.7Wo1.2), of which 34% are monoclinic, and minor plagioclase (Ab83An11Or6) and Ca‐pyroxene (Fs6Wo45.8). Troilite, kamacite, zoned taenite, tetrataenite, chromite, and metallic copper comprise about 16.5 vol% of the meteorite. Phosphates are represented by merrillite and minor chlorapatite. Undulatory extinction in some olivine grains and other shock indicators suggests weak shock metamorphism between stages S2 and S3. The bulk chemical composition generally corresponds to the mean H chondrite composition. Low siderophile element contents indicate the oxidized character of the Jezersko parent body. The temperatures recorded by two‐pyroxene, olivine‐chromite, and olivine‐orthopyroxene geothermometers are 854 °C, 737–787 °C, and 750 °C, respectively. Mg concentration profiles across orthopyroxenes and clinopyroxenes indicate relatively fast cooling at temperatures above 700 °C. A low cooling rate of 10 °C Myr?1 was obtained from metallographic data. Considering physical, chemical, and mineralogical properties, meteorite Jezersko was classified as an H4 S2(3) ordinary chondrite.  相似文献   

10.
CV (Vigarano type) carbonaceous chondrites, comprising Allende‐like (CVoxA) and Bali‐like (CVoxB) oxidized and reduced (CVred) subgroups, experienced differing degrees of fluid‐assisted thermal and shock metamorphism. The abundance and speciation of secondary minerals produced during asteroidal alteration differ among the subgroups: (1) ferroan olivine and diopside–hedenbergite solid solution pyroxenes are common in all CVs; (2) nepheline and sodalite are abundant in CVoxA, rare in CVred, and absent in CVoxB; (3) phyllosilicates and nearly pure fayalite are common in CVoxB, rare in CVred, and virtually absent in CVoxA; (4) andradite, magnetite, and Fe‐Ni‐sulfides are common in oxidized CVs, but rare in reduced CVs; the latter contain kirschsteinite instead. Thus, a previously unrecognized correlation exists between meteorite bulk permeabilities and porosities with the speciation of the Ca‐, Fe‐rich silicates (pyroxenes, andradite, kirschsteinite) among the CVox and CVred meteorites. The extent of secondary mineralization was controlled by the distribution of water ices, permeability, and porosity, which in turn were controlled by impacts on the asteroidal parent body. More intense shock metamorphism in the region where the reduced CVs originated decreased their porosity and permeability while simultaneously expelling intergranular ices and fluids. The mineralogy, petrography, and bulk chemical compositions of both the reduced and oxidized CV chondrites indicate that mobile elements were redistributed between Ca,Al‐rich inclusions, dark inclusions, chondrules, and matrices only locally; there is no evidence for large‐scale (>several cm) fluid transport. Published 53Mn‐53Cr ages of secondary fayalite in CV, CO, and unequilibrated ordinary chondrites, and carbonates in CI, CM, and CR chondrites are consistent with aqueous alteration initiated by heating of water ice‐bearing asteroids by decay of 26Al, not shock metamorphism.  相似文献   

11.
Abstract– A metamorphosed lithic clast was discovered in the CM chondrite Grove Mountains 021536, which was collected in the Antarctica by the Chinese Antarctic Research Exploration team. The lithic clast is composed mainly of Fe‐rich olivine (Fo62) with minor diopside (Fs9.7–11.1Wo48.3–51.6), plagioclase (An43–46.5), nepheline, merrillite, Al‐rich chromite (21.8 wt% Al2O3; 4.43 wt% TiO2), and pentlandite. Δ17O values of olivine in the lithic clast vary from ?3.9‰ to ?0.8‰. Mineral compositions and oxygen isotopic compositions of olivine suggest that the lithic clast has an exotic source different from the CM chondrite parent body. The clast could be derived from strong thermal metamorphism of pre‐existing chondrule that has experienced low‐temperature anhydrous alteration. The lithic clast is similar in mineral assemblage and chemistry to a few clasts observed in oxidized CV3 chondrites (Mokoia and Yamato‐86009) and might have been derived from the interior of the primitive CV asteroid. The apparent lack of hydration in the lithic clast indicates that the clast accreted into the CM chondrite after hydration of the CM components.  相似文献   

12.
We have conducted scanning electron microscope (SEM) and transmission electron microscope (TEM) studies of a variety of occurrences of matrix in the reduced CV3 chondrite breccia Vigarano. Matrix, which occurs as clastic interchondrule material and finer‐grained rims, is dominated by morphologically variable olivines that host submicron, hercynitic spinel, and carbonaceous inclusions. Clastic matrix and fine‐grained rims show significant differences in their olivine morphologies, abundance, and composition of olivine inclusions, and characteristics of the carbonaceous matter. We suggest that these differences are the result of different degrees of alteration of clastic matrix and rims and are not due to variability in their precursor materials. Textural and compositional characteristics of olivine in the matrix are consistent with formation by growth, possibly from an amorphous precursor material during asteroidal metamorphism, in the presence of limited quantities of aqueous fluids. Spinel inclusions in olivine may be nebular condensates that acted as seeds for nucleation of olivine or may have formed during metamorphism and were subsequently overgrown by olivine. Carbonaceous material occurs as nanometer‐sized inclusions within olivine in both fine‐grained rims and clastic matrix, but is most abundant as 100–200 nm grains, interstitial to matrix olivines. Most carbonaceous material is amorphous, but poorly graphitized carbon (PGC) also occurs as a minor component in both olivine inclusions and interstitial C. The widespread occurrence of fine‐grained amorphous carbon grains in the interstitial regions between olivine grains may preserve the distribution and grain size of nebular organic material. No clear textural relationships exist between carbonaceous grains and the other mineralogical components of Vigarano matrix that could help constrain the origin of the organic grains (i.e., evidence for Fischer‐Tropsch‐type reactions). Finally, there are considerable differences between matrix olivines in Vigarano in comparison with those in oxidized CV3 chondrites. In particular, the mineralogy and morphology of the matrix olivines and the nature, composition, and distribution of inclusions in the olivine grains are distinct. Based on these differences, we conclude that matrix in the oxidized CV3 chondrites could not have formed by thermal processing of Vigarano‐like material.  相似文献   

13.
Abstract— Reflectance spectra from 0.44 to 1.65 μm were obtained for three K asteroids. These objects all have spectra consistent with olivine‐dominated assemblages whose absorption bands have been suppressed by opaques. The two observed Eos family members (221 Eos and 653 Berenike) are spectral analogs to the CO3 chondrite Warrenton. The other observed object (599 Luisa) is a spectral analog for CV3 chondrite Mokoia. These asteroids are all located near meteorite‐supplying resonances with the Eos family cut by the 9:4 resonance and Luisa is found near the 5:2 resonance. However, K asteroids have been identified throughout the main belt so it is difficult to rule out other possible parent bodies for the CO3 and CV3 chondrites.  相似文献   

14.
MnO/FeO ratios in olivine from amoeboid olivine aggregates (AOAs) reflect conditions of nebular condensation and can be used in concert with matrix textures to compare metamorphic conditions in carbonaceous chondrites. LIME (low‐iron, Mn‐enriched) olivine was identified in AOAs from Y‐81020 (CO3.05), Kaba (CV~3.1), and in Y‐86009 (CV3), Y‐86751 (CV3), NWA 1152 (CR/CV3), but was not identified in AOAs from Efremovka (CV3.1–3.4) or Allende (CV>3.6). According to thermodynamic models of nebular condensation, LIME olivine is stable at lower temperatures than Mn‐poor olivine and at low oxygen fugacities (dust enrichment <10× solar). Although this set of samples does not represent a single metamorphic sequence, the higher subtypes tend to have AOA olivine with lower Mn/Fe, suggesting that Mn/Fe decreases during parent body metamorphism. Y‐81020 has the lowest subtype and most forsteritic AOA olivine (Fo>95) in our study, whereas Efremovka AOAs are slightly Fe‐rich (Fo>92). AOA olivines from Kaba are mostly forsteritic, but rare Fe‐rich olivine precipitated from an aqueous fluid. A combination of precipitation of Fe‐rich olivine and diffusion of Fe into primary olivine grains resulted in iron‐rich compositions (Fo97–59) in Allende AOAs. Variations from fine‐grained, nonporous matrix toward higher porosity and coarser lath‐like matrix olivine can be divided into six stages represented by (1) Y‐81020, Efremovka, NWA 1152; (2) Y‐86751 lithology B; (3) Y‐86009; (4) Kaba; (5) Y‐86751 lithology A; (6) Allende. These stages are inferred to represent general degree of metamorphism, although the specific roles of thermally driven grain growth and diffusion versus aqueous dissolution and precipitation remain uncertain.  相似文献   

15.
Veins containing carbonates, hydrous silicates, and sulfates that occur within and between grains of augite and olivine in the Nakhla meteorite are good evidence for the former presence of liquid water in the Martian crust. Aqueous solutions gained access to grain interiors via narrow fractures, and those fractures within olivine whose walls were oriented close to (001) were preferentially widened by etching along [001]. This orientation selective dissolution may have been due to the presence within olivine of shock‐formed [001](100) and [001]{110} screw dislocations. The duration of etching is likely to have been brief, possibly less than a year, and the solutions responsible were sufficiently cool and reducing that laihunite did not form and Fe liberated from the olivine was not immediately oxidized. The pores within olivine were mineralized in sequence by siderite, nanocrystalline smectite, a Fe‐Mg phyllosilicate, and then gypsum, whereas only the smectite occurs within augite. The nanocrystalline smectite was deposited as submicrometer thick layers on etched vein walls, and solution compositions varied substantially between and sometimes during precipitation of each layer. Together with microcrystalline gypsum the Fe‐Mg phyllosilicate crystallized as water briefly returned to some of the veins following desiccation fracturing of the smectite. These results show that etching of olivine enhanced the porosity and permeability of the nakhlite parent rock and that dissolution and secondary mineralization took place within the same near‐static aqueous system.  相似文献   

16.
We observed metamorphosed clasts in the CV3 chondrite breccias Graves Nunataks 06101, Vigarano, Roberts Massif 04143, and Yamato‐86009. These clasts are coarse‐grained polymineralic rocks composed of Ca‐bearing ferroan olivine (Fa24–40, up to 0.6 wt% CaO), diopside (Fs7–12Wo44–50), plagioclase (An52–75), Cr‐spinel (Cr/[Cr + Al] = 0.4, Fe/[Fe + Mg] = 0.7), sulfide and rare grains of Fe‐Ni metal, phosphate, and Ca‐poor pyroxene (Fs24Wo4). Most clasts have triple junctions between silicate grains. The rare earth element (REE) abundances are high in diopside (REE ~3.80–13.83 × CI) and plagioclase (Eu ~12.31–14.67 × CI) but are low in olivine (REE ~0.01–1.44 × CI) and spinel (REE ~0.25–0.49 × CI). These REE abundances are different from those of metamorphosed chondrites, primitive achondrites, and achondrites, suggesting that the clasts are not fragments of these meteorites. Similar mineralogical characteristics of the clasts with those in the Mokoia and Yamato‐86009 breccias (Jogo et al. 2012 ) suggest that the clasts observed in this study would also form inside the CV3 chondrite parent body. Thermal modeling suggests that in order to reach the metamorphosed temperatures of the clasts of >800 °C, the clast parent body should have accreted by ~2.5–2.6 Ma after CAIs formation. The consistency of the accretion age of the clast parent body and the CV3 chondrule formation age suggests that the clasts and CV3 chondrites could be originated from the same parent body with a peak temperature of 800–1100 °C. If the body has a peak temperature of >1100 °C, the accretion age of the body becomes older than the CV3 chondrule formation age and multiple CV3 parent bodies are likely.  相似文献   

17.
Abstract— We used high‐resolution transmission electron microscopy (HRTEM), electron tomography, electron energy‐loss spectroscopy (EELS), and energy‐dispersive spectroscopy (EDS) to investigate the structure and composition of polyhedral serpentine grains that occur in the matrices and fine‐grained rims of the Murchison, Mighei, and Cold Bokkeveld CM chondrites. The structure of these grains is similar to terrestrial polygonal serpentine, but the data show that some have spherical or subspherical, rather than cylindrical morphologies. We therefore propose that the term polyhedral rather than polygonal be used to describe this material. EDS shows that the polyhedral grains are rich in Mg with up to 8 atom% Fe. EELS indicates that 70% of the Fe occurs as Fe3+. Alteration of cronstedtite on the meteorite parent body under relatively oxidizing conditions is one probable pathway by which the polyhedral material formed. The polyhedral grains are the end‐member serpentine in a mineralogic alteration sequence for the CM chondrites.  相似文献   

18.
Abstract– An anomalous Ca‐Al‐Fe‐rich spherical inclusion (CAFI) was found in the Vigarano CV3 chondrite. The CAFI has an igneous texture and contains large amounts of almost pure and coarse‐grained hercynite grains (approximately 56 vol%) as well as refractory phases such as grossite and perovskite. However, melilite and Mg‐spinel, which are common in ordinary Ca‐Al‐rich inclusions, are very rare (<1 vol%). Another unique characteristic of the CAFI is the presence in its core of dmitryivanovite (CaAl2O4), which was formed by shock metamorphism of a low‐pressure form of CaAl2O4 that was originally crystallized from a molten droplet. The fine‐grained hercynite and unidentified aluminous phase in the rim of the CAFI may have been produced from grossite during aqueous alteration in the Vigarano parent body.  相似文献   

19.
We report on the petrography and mineralogy of three types of silicate veinlets in the brecciated eucrite Northwest Africa (NWA) 1109. These include Fe‐rich olivine, Mg‐rich olivine, and pyroxene veinlets. The Fe‐rich olivine veinlets mainly infill fractures in pyroxene and also occur along grain boundaries between pyroxene and plagioclase crystals, in both nonequilibrated and equilibrated lithic clasts. The host pyroxene of Fe‐rich olivine veinlets shows large chemical variations between and within grains. The Fe‐rich olivine veinlets also contain fine‐grained Fe3+‐bearing chromite, highly calcic plagioclase, merrillite, apatite, and troilite. Based on texture and mineral chemistry, we argue that the formation of Fe‐rich olivine was related to fluid deposition at relatively high temperatures. However, the source of Fe‐rich olivine in the veinlets remains unclear. Magnesium‐rich olivine veinlets were found in three diogenitic lithic clasts. In one of these, the Mg‐rich olivine veinlets only occur in one of the fine‐grained interstitial regions and extend into fractures within surrounding coarse‐grained orthopyroxene. Based on the texture of the interstitial materials, we suggest that the Mg‐rich olivine veinlets formed by shock‐induced localized melting and recrystallization. Pyroxene veinlets were only observed in one clast where they infill fractures within large plagioclase grains and are associated with fine‐grained pyroxene surrounding coarse‐grained pyroxene. The large chemical variations in pyroxene and the fracture‐filling texture indicate that the pyroxene veinlets might also have formed by shock‐induced localized melting and rapid crystallization. Our study demonstrates that silicate veinlets formed by a range of different surface processes on the surface of Vesta.  相似文献   

20.
Abstract— The oxidized CV3 chondrites can be divided into two major subgroups or lithologies, Bali-like (CV3oxB) and Allende-like (CV3oxA), in which chondrules, calcium-aluminum-rich inclusions (CAIs) and matrices show characteristic alteration features (Weisberg et al, 1997; Krot et al, 1997d; Kimura and Ikeda, 1997). The CV3oxB lithology is present in Bali, Kaba, parts of the Mokoia breccia and, possibly, in Grosnaja and Allan Hills (ALH) 85006. It is characterized by the presence of the secondary low-Ca phyllosilicates (saponite and sodium phlogopite), magnetite, Ni-rich sulfides, fayalite (Fa>90), Ca-Fe-rich pyroxenes (Fs10–50Wo45–50) and andradite. Phyllosilicates replace primary Ca-rich minerals in chondrules and CAIs, which suggests mobilization of Ca during aqueous alteration. Magnetite nodules are replaced to various degrees by fayalite, Ca-Fe-rich pyroxenes and minor andradite. Fayalite veins crosscut fine-grained rims around chondrules and extend into the matrix. Thermodynamic analysis of the observed reactions indicates that they could have occurred at relatively low temperatures (<300 °C) in the presence of aqueous solutions. Oxygen isotopic compositions of the coexisting magnetite and fayalite plot close to the terrestrial fractionation line with large Δ18Ofayalite-magnetite fractionation (~20%). We infer that phyllosilicates, magnetite, fayalite, Ca-Fe-rich pyroxenes and andradite formed at relatively low temperatures (<300 °C) by fluid-rock interaction in an asteroidal environment. Secondary fayalite and phyllosilicates are virtually absent in chondrules and CAIs in the CV3oxA lithology, which is present in Allende and its dark inclusions, Axtell, ALHA81258, ALH 84028, Lewis Cliff (LEW) 86006, and parts of the Mokoia and Vigarano breccias. Instead secondary nepheline, sodalite, and fayalitic olivine are common. Fayalitic olivine in chondrules replaces low-Ca pyroxenes and rims and veins forsterite grains; it also forms coarse lath-shaped grains in matrix. Secondary Ca-Fe-rich pyroxenes are abundant. We infer that the CV3oxA lithology experienced alteration at higher temperatures than the CV3oxB lithology. The presence of the reduced and CV3oxA lithologies in the Vigarano breccia and CV3oxA and CV3oXB lithologies in the Mokoia breccia indicates that all CV3 chondrites came from one heterogeneously altered asteroid. The metamorphosed clasts in Mokoia (Krot and Hutcheon, 1997) may be rare samples of the hotter interior of the CV asteroid. We conclude that the alteration features observed in the oxidized CV3 chondrites resulted from the fluid-rock interaction in an asteroid during progressive metamorphism of a heterogeneous mixture of ices and anhydrous materials mineralogically similar to the reduced CV3 chondrites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号