首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 311 毫秒
1.
Based on the available observational data on the diffuse X-ray emission from hot gas in virialized systems (the central regions of clusters of galaxies or the coronas of spherical galaxies) and the masses of the central objects in these systems (the central galaxies in clusters or massive compact objects—supermassive black holes—in the galactic nuclei), we show that the X-ray luminosity is proportional to the square of the mass of the central object. This is consistent with the dependence obtained earlier between X-ray luminosities of systems and the square of their optical luminosities (i.e., the luminosity of stars in these systems). The existence of such dependences for virialized systems on various scales may provide evidence that they are all formed by a single mechanism, such as hierarchical gravitational clustering. Although the times to achieve hydrostatic equilibrium between the gaseous and stellar components in systems on various scales differ, the relation between certain internal parameters of these systems may remain the same. This enables us to estimate certain parameters of virialized systems in terms of others, in particular, to estimate the masses of their central objects based on the diffuse X-ray luminosity of their coronas.  相似文献   

2.
We have undertaken a statistical study of the component mass ratios and the orbital eccentricities of WR + O close binary, detached main-sequence (DMS), contact early-type (CE), and semidetached (SD) systems. A comparison of the characteristics of WR + O systems and of DMS, CE, and SD systems has enabled us to draw certain conclusions about the evolutionary paths of WR + O binaries and to demonstrate that up to 90% of all known WR + O binaries formed as a result of mass transfer in massive close O + O binary systems. Since there is a clear correlation between the component masses in SD systems with subgiants, the absence of an anticorrelation between the masses of the WR stars and O stars in WR + O binaries cannot be considered evidence against the formation of WR + O binaries via mass transfer. The spectroscopic transitional orbital period P tr sp corresponding to the transition from nearly circular orbits (e sp<0.1) to elliptical orbits (e sp≥0.1) is ~14d for WR + O systems and ~2d–3d for OB + OB systems. The period range in which all WR + O orbits are circular \((1\mathop d\limits_. 6 \leqslant P \leqslant 14^d )\) is close to the range for SD systems with subgiants, \(0\mathop d\limits_. 7 \leqslant P \leqslant 15^d \). The large difference between the P tr sp values for WR + O and OB + OB systems suggests that a mechanism of orbit circularization additional to that for OB + OB systems at the DMS stage (tidal dissipation of the orbital energy due to radiative damping of the dynamical tides) acts in WR + O binaries. It is natural to suggest mass transfer in the parent O + O binaries as this supplementary orbit-circularization mechanism. Since the transitional period between circular and elliptical orbits for close binaries with convective envelopes and ages of 5×109 years is \(P_{tr} = 12\mathop d\limits_. 4\), the orbits of most known SD systems with subgiants had enough time to circularize during the DMS stage, prior to the mass transfer. Thus, for most SD systems, mass transfer plays a secondary role in circularization of their orbits.In many cases, the initial orbital eccentricities of the O + O binary progenitors of WR + O systems are preserved, due to the low viscosity of the O-star envelopes and the short timescale for their nuclear evolution until the primary O star fills its Roche lobe and the mass transfer begins. The mass transfer in the parent O + O systems is short-lived, and the number of orbital cycles during the early mass-transfer stage is relatively low (lower than for the progenitors of SD systems by three or four orders of magnitude). The continued transfer of mass from the less massive to the more massive star after the component masses have become equal leads to the formation of a WR + O system, and the orbit's residual eccentricity increases to the observed value. The increase of the orbital eccentricity is also facilitated by variable radial mass loss via the wind from the WR star in the WR + O system during its motion in the elliptical orbit. The result is that WR + O binaries can have considerable orbital eccentricities, despite their intense mass transfer. For this reason, the presence of appreciable eccentricities among WR + O binaries with large orbital periods cannot be considered firm evidence against mass transfer in the parent O + O binary systems. Only for the WR + O binaries with the longest orbital periods (4 of 35 known systems, or 11 %) can the evolution of the parent O + O binaries occur without filling of the Roche lobe by the primary O star, being governed by radial outflow in the form of the stellar wind and possibly by the LBV phenomenon, as in the case of HD 5980.  相似文献   

3.
We consider the evolution of close binaries resulting in the most intensive explosive phenomena in the stellar Universe—Type Ia supernovae and gamma-ray bursts. For Type Ia supernovae, which represent thermonuclear explosions of carbon-oxygen dwarfs whose masses reach the Chandrasekhar limit during the accretion of matter from the donor star, we derive the conditions for the accumulation of the limiting mass by the degenerate dwarf in the close binary. Accretion onto the degenerate dwarf can be accompanied by supersoft X-ray radiation with luminosity 1–104 L . Gamma-ray bursts are believe to accompany the formation and rapid evolution of compact accretion-decretion disks during the formation of relativistic objects—black holes and neutron stars. The rapid (~1 M /s) accretion of matter from these disks onto the central compact relativistic star results in an energy release of ~0.1 M c 2 ~ 1053 erg in the form of gamma-rays and neutrinos over a time of 0.1–1000 s. Such disks can form via the collapse of the rapidly rotating cores of Type Ib, Ic supernovae, which are components in extremely close binaries, or alternately due to the collapse of accreting oxygen-neon degenerate dwarfs with the Chandrasekhar mass into neutron stars, or the merging of neutron stars with neutron stars or black holes in close binaries. We present numerical models of the evolution of some close binaries that result in Type Ia supernovae, and also estimate the rates of these supernovae (~0.003/year) and of gamma-ray bursts (~10?4/year) in our Galaxy for various evolutionary scenarios. The collimation of the gamma-ray burst radiation within an opening angle of several degrees “matches” the latter estimate with the observed rate of these events, ~10?7–10?8/year calculated for a galaxy with the mass of our Galaxy.  相似文献   

4.
The paper analyzes the mass distribution of stellar black holes derived from the light and radial-velocity curves of optical stars in close binary systems using dynamical methods. The systematic errors inherent in this approach are discussed. These are associated primarily with uncertainties in models for the contribution from gaseous structures to the optical brightness of the systems under consideration. The mass distribution is nearly flat in the range 4–15M . This is compared with the mass distribution for black holes in massive close binaries, which can be manifest as ultrabright X-ray sources (L x >1039 erg/s) observed in other galaxies. If the X-ray luminosities of these objects correspond to the Eddington limit, the black-hole mass distribution should be described by a power law, which is incompatible with the flat shape derived dynamically from observations of close binaries in our Galaxy. One possible explanation of this discrepancy is the rapid evaporation of stellar-mass black holes predicted in recent multi-dimensional models of gravity. This hypothesis can be verified by refining the stellar black-hole mass spectrum or finding isolated or binary black holes with masses below ~3M .  相似文献   

5.
The radial-velocity curves of optical components in X-ray binary systems can differ from the radial-velocity curves of their barycenters due to tidal distortion, gravitational darkening, X-ray heating, etc. This motivated us to investigate how the semi-amplitudes of the radial-velocity curves of these optical components can depend on the binary-system parameters in a Roche model. The K correction is taken to be the ratio of the radial velocity semi-amplitude for a star in the Roche model to the corresponding value for the stellar barycenter. K corrections are tabulated for the optical stars in the massive X-ray binaries Cen X-3, LMC X-4, SMC X-1, Vela X-1, and 4U 1538-52.  相似文献   

6.
The X-ray luminosities and spectra of F-M stars of luminosity classes IV–V are analyzed. In dwarfs with rotational velocities of about 100 km/s, such as the optical components of low-mass X-ray novae with black holes, hot plasma can be confined in coronal loops even in the presence of fairly weak magnetic fields. Thus, the soft X-ray emission of such systems in their quiescent state (to 1031 erg/s) could be associated with the coronal emission of the optical component/dwarf. Two systems studied with subgiants (V1033 Sco and V404 Cyg) have X-ray luminosities 2×1032–2×1033 erg/s. The X-ray emission of a solar-type corona cannot provide such luminosities. However, a transition to a non-solar corona is possible in rapidly rotating subgiants—a dynamical corona whose X-ray emission can be one to two orders of magnitude higher than observed for more slowly rotating late-type subgiants in the solar neighborhood. This suggests that the quiescent X-ray emission of these two systems is provided by emission from the corona of the subgiant optical component.  相似文献   

7.
Using the “Scenario Machine” (a computer code based on the Monte-Carlo method, developed to calculate the evolution of a large ensemble of binaries), we have carried out population-synthesis calculations for X-ray binaries for the purpose of modeling the X-ray luminosity functions in various type galaxies. These calculations were focused on the evolution of magnetized neutron stars. The X-ray luminosity function is not universal, and depends on the star formation rate in the galaxy. In theoretical models, it is very important to take into account the evolution of the binaries and their lifetimes in their X-ray stages. We calculated the cumulative and differential X-ray luminosity functions in galaxies with a constant star formation rate, the cumulative luminosity functions for various time intervals since the peak star formation, and curves describing the evolution of the X-ray luminosity after a star formation burst in the galaxy.  相似文献   

8.
We consider the evolutionary status of observed close binary systems containing black holes and Wolf-Rayet (WR) stars. When the component masses and the orbital period of a system are known, the reason for the formation of a WR star in an initial massive system of two main-sequence stars can be established. Such WR stars can form due to the action of the stellar wind from a massive OB star (MOB≥50M), conservative mass transfer between components with close initial masses, or the loss of the common envelope in a system with a large (up to ~25) initial component mass ratio. The strong impact of observational selection effects on the creation of samples of close binaries with black holes and WR stars is demonstrated. We estimate theoretical mass-loss rates for WR stars, which are essential for our understanding the observed ratio of the numbers of carbon and nitrogen WR stars in the Galaxy \(\dot M_{WR} (M_ \odot yr^{ - 1} ) = 5 \times 10^{ - 7} (M_{WR} /M_ \odot )^{1.3} \). We also estimate the minimum initial masses of the components in close binaries producing black holes and WR stars to be ~25M. The spatial velocities of systems with black holes indicate that, during the formation of a black hole from a WR star, the mass loss reaches at least several solar masses. The rate of formation of rapidly rotating Kerr black holes in close binaries in the Galaxy is ~3×10?6 yr?1. Their formation may be accompanied by a burst of gamma radiation, possibly providing clues to the nature of gamma-ray bursts. The initial distribution of the component mass ratios for close binaries is dNdq=dM2/M1 in the interval 0.04?q0≤1, suggesting a single mechanism for their formation.  相似文献   

9.
The question of why the observed periods of anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs) cluster in the range 2–12 s is discussed. The possibility that AXPs and SGRs are the descendants of high-mass X-ray binaries that have disintegrated in core-collapse supernova explosions is investigated. The spin periods of neutron stars in high-mass X-ray binaries evolve towards the equilibrium period, which is a few seconds, on average. After the explosion of its massive companion, the neutron star becomes embedded in a dense gaseous envelope, and accretion from this envelope leads to the formation of a residual magnetically levitating disk. It is shown that the expected mass of the disk in this case is 10?7–10?8 M, which is sufficient to support accretion at the rate 1014–1015 g/s over a few thousand years. During this period, the star manifests itself as an isolated X-ray pulsar with a number of parameters similar to those of AXPs and SGRs. The periods of such pulsars can cluster if the lifetime of the residual disk does not exceed the spin-down timescale of the neutron star.  相似文献   

10.
The rate of gamma-ray bursts (GRBs) in the Galaxy is estimated assuming that these events result from the formation of rapidly rotating Kerr black holes during the core collapse of massive, helium, Wolf-Rayet secondary components in very close binary systems. This process brings about rapid rotation of the cores of such Wolf-Rayet stars, inevitably resulting in the formation of Kerr black holes during type Ib,c supernovae. The current rate of formation of Kerr black holes (GRBs) in the Galaxy is about 3×10?5/year. Collimation of the gamma-ray radiation into a small solid angle (about 0.1–0.01 sr) brings this rate into consistency with the observed rate of GRBs, estimated to be 10?6–10?7/year. Possible immediate progenitors of GRBs are massive X-ray binaries with X-ray luminosities of 1038–1040 erg/s. Due to the short lifetimes of the progenitors and the very high brightnesses of GRBs, the GRB rate can provide information about the history of star formation in the Universe on the Hubble time scale. A model in which the star-formation rate is determined by the conditions for ionization of the interstellar gas, whose density and volume are determined by supernovae, yields a Galactic star-formation history that can be viewed as representing the history of star formation in the Universe. The theoretical history of star formation is in satisfactory agreement with the history reconstructed from observations. The theoretical model for the history of star formation in the Galaxy can also be used to assess the influence of dust on optical observations of supernovae and GRBs in galaxies of various ages.  相似文献   

11.
We have analyzed the observed radial-velocity curve for the X-ray binary M33 X-7 in a Roche model. We have analyzed the dependence between the component masses and the degree of filling of the optical star’s Roche lobe to obtain the ratio of the masses of the optical star and compact object. For the most probable mass of the optical star, m v = 70 M⊙, the mass of the compact object is m x = 15.55 ± 3.20 M⊙. It has been shown that black holes with masses of mx = 15 M⊙ and even higher can form in binaries. We present characteristic evolutionary tracks for binary systems passing through an evolutionary stage with properties similar to M33 X-7-type objects. According to population-synthesis analyses, such binaries should be present in galaxies with masses of at least 1011 M⊙. The present number of such systems in M33 should be of the order of unity. We have also studied the evolutionary status of the X-ray binary IC 10 X-1 with a Wolf-Rayet component, which may contain a massive black hole. The final stages of the evolution of the M33 X-7 and IC 10 X-1 systems should be accompanied by the radiation of gravitational waves.  相似文献   

12.
We describe the results of a statistical approach to analyzing the combined radial-velocity curves of X-ray binaries with OB supergiants in a Roche model, both with and without allowance for the anisotropy of the stellar wind. We present new mass estimates for the X-ray pulsars in the close binary systems Cen X-3, LMC X-4, SMC X-1, 4U 1538-52, and Vela X-1.  相似文献   

13.
The results of a systematic analysis of master radial-velocity curves for the X-ray binary 4U 1700-37 are presented. The dependence of the mass of the X-ray component on the mass of the optical component is derived in a Roche model based on a fit of the master radial-velocity curve. The parameters of the optical star are used to estimate the mass of the compact object in three ways. The masses derived based on information about the surface gravity of the optical companion and various observational data are 2.25 ?0.24 +0.23 M and 2.14 ?0.56 +0.50 M. The masses based on the radius of the optical star, 21.9R, are 1.76 ?0.21 +0.20 M and 1.65 ?0.56 +0.78 M. The mass of the optical component derived from the mass-luminosity relation for X-ray binaries, 27.4M, yields masses for the compact object of 1.41 ?0.08 + M and 1.35 ?0.18 +0.18 M.  相似文献   

14.
The results of infrared observations of the two Be stars X Per and V725 Tau, which are the optical components of X-ray binary systems, obtained in 1994–2016 are presented. The observations cover Be-star phases as well as shell phases. The data analysis shows that the radiation observed from the binaries at 1.25, 3.5, and 5 μm can be explained as the combined radiation from the optical components and variable sources (shells/disks) that emit as blackbodies (BBs). Emission from a source with the color temperature T c ~1000?1500 K was detected for X Per at λ ≥ 3.5 μm. The highest IR-brightness variation amplitudes for X Per were 0.9?1.2 m (JHK magnitudes) and ~1.45 m (LM magnitudes); for V725 Tau, they were 1.1?1.4 m and ~1.7 m (L magnitudes). The parameters of the optical components and interstellar extinction during the Be phases were estimated: the color excesswasE(B?V) = 0.65±0.08 m and 0.77 ± 0.03 m for X Per and V725 Tau, respectively. Light from the variable sources (disks/shells) was distinguished and their color temperatures, radii, and luminosities estimated for different observation epochs in a BB model. The variations of the binaries’ IR brightness and colors are shown to be due to changing parameters of the variable sources. The mean color temperature of the cool source (disk/shell) and the mean radius and mean luminosity of X Per are 9500± 2630 K, (35 ± 10) R, and (9100± 540) L. For V725 Tau, these parameters are 6200 ± 940 K, (27 ± 6) R, and (980 ± 420) L. The 1.25–5 μm radiation from X Per at different epochs can be represented as a sum of contributions from at least three sources: the optical component and two objects emitting as BBs. To reproduce the 1.25–3.5 μm radiation from V725 Tau, two components are sufficient: the optical component and a single variable BB object. For both binary systems, orbital variations of the IR brightness can be noted near the Be-star phase. The amplitudes of the J-band variations of X Per and V725 Tau are about 0.3 m and 0.1 m , respectively.  相似文献   

15.
We present the results of population syntheses for binary stars carried out using the “Scenario Machine” code with the aim of analyzing events that may result in long gamma-ray bursts. We show that the observed distribution of morphological types of the host galaxies of long gamma-ray bursts can be explained in a model in which long gamma-ray bursts result from the core collapse of massive Wolf-Rayet stars in close binaries. The dependence of the burst rate on galaxy type is associated with an increase in the rate of stellar-wind mass-loss with increasing stellar metallicity. The separation of binary components at the end of their evolution increases with the stellar-wind rate, resulting in a reduction of the number of binaries that produce gamma-bursts.  相似文献   

16.
Tutukov  A. V.  Fedorova  A. V. 《Astronomy Reports》2019,63(6):460-478

Under certain conditions, stars close to intermediate-mass black holes (IMBHs) can form close binary systems with these objects, in which the Roche lobe can be filled by the star and intense accretion of the star’s matter onto the IMBH is possible. Recently, accreting IMBHs have been associated with hyperluminous X-ray sources (HLXs), whose X-ray luminosities can exceed 1041 erg/s. In this paper, the evolution of star—IMBH binary systems is investigated assuming that the IMBH mainly accretes the matter of its companion star, and that the presence of gas in the vicinity of the IMBH does not appreciably affect changes in the orbit of the star. The computations take into account all processes determining the evolution of ordinary binary systems, as well as the irradiation of a star by hard radiation during the accretion of its matter onto the IMBH. The absorption of external radiation in the stellar envelope was calculated applying the same formalism that is used to calculate the opacity of the stellar matter. The computations also assumed that, if the characteristic time for the mass transfer is less than the thermal time scale of the star, there is no exchange betwween the orbital angular momentum of the system and the angular momentum of the matter flowing onto the IMBH.

Numerical simulations have shown that, under these assumptions, three types of evolution are possible for such a binary system, depending on the mass of the IMBH and the star, as well as on the star’s initial distance from the IMBH. The first type ends with the destruction of the star. For low-mass main sequence (MS) stars, only this option is realized, even in the case of large initial distances from IMBH. For massive MS stars, the star is also destroyed if the mass of the IMBH is high and the initial distance of the star from the IMBH is sufficiently small.

The second type of evolution can occur for massive MS stars, which are initially located farther from the IMBH than in the first type of evolution. In this case, the massive star fills its Roche lobe during its evolutionary expansion, after which a stage of intense mass transfer begins. It is in this phase of the evolution that the star- IMBH system can manifest itself as a HLX, when its X-ray luminosity LX exceeds 1041 erg/s for a fairly long time. Numerical simulations show that the initial mass of the donor star in systems with MBH = (103?105)M must be close to ~10 M in this case. The characteristic duration of the HLX stage is 30 000–70 000 years. For smaller initial donor masses close to ~5M, LX does not reach 1041 erg/s in the stage of intense mass transfer, but can exceed 1040 erg/s. The duration of this stage of evolution is 300 000–800 000 years. A characteristic feature of this second type of evolution is an increase in the orbital period of the system over time. As a result, after a period of intense mass loss, the star “retreats” inside the Roche lobe. A remnant of the star in the form of a white dwarf is left behind, and can end up fairly far from the IMBH.

The third type of evolution can occur for massive MS stars that are initially even farther from the IMBH, as well as for massive stars that are already evolved at the initial time. In this case, conservative mass exchange in the presence of intense stellar wind leads to the star moving away from the IMBH, without filling its Roche lobe at all. For massive stars with sufficiently strong stellar winds (for example, stars with masses ~50M), the accretion rate of matter onto the IMBH in this case can reach values that are characteristic of HLXs. As in the case of the second type of evolution, the stellar remnant can remain at a fairly large distance from the IMBH.

  相似文献   

17.
We analyze the observed parameters of massive extremely close binaries containing Wolf-Rayet stars and black holes, and identify those systems whose supernova outbursts lead to the formation of rapidly rotating Kerr black holes. It is proposed that the formation of such a black hole is accompanied by a strong gamma-ray burst. Several types of observed systems satisfy the conditions necessary for the formation of a Kerr black hole: BH+WR, BH+OB, WR+O, and BH+K,M.  相似文献   

18.
Optical spectra and light curves of the massive X-ray binary V1357 Cyg are analyzed. The calculations were based on models of irradiated plane-parallel stellar atmospheres, taking into account reflection of the X-ray radiation, asphericity of the stellar surface, and deviations from LTE for several ions. Comparison of observed spectra obtained in 2004?C2005 at the Bohyunsan Observatory (South Korea) revealed variations of the depths of HI lines by up to 18% and of HeI and heavy elements lines by up to 10%. These variations are not related to the orbital motion of the star, and are probably due to variations of the stellar wind intensity. Perturbations of the thermal structure of the atmosphere due to irradiation in various states of Cyg X-1 (including outburst) do not lead to the formation of a hot photosphere with an electron temperature exceeding the effective temperature. As a result, variations of the profiles of optical lines of HI, HeI, and heavy elements due to the orbital motion of the star and variations of the irradiating X-ray flux do not exceed 1% of the residual intensities. Allowing for deviations from LTE enhances the HI and HeI lines by factors of two to three and the MgII lines by a factor of nine, and is therefore required for a fully adequate analysis of the observational data. Analysis of the HI, HeI, and HeII lines profiles yielded the following set of parameters for theOstar at the observing epoch: T eff = 30 500±500 K, log g = 3.31±0.05, [He/H] = 0.42 ± 0.05. The observed HeI line profiles have emission components that are formed in the stellar wind and increase with the line intensity. The abundances of 11 elements in the atmospheres of V1357 Cyg and ?? Cam, which has a similar spectral type and luminosity class, are derived. The chemical composition of V1357 Cyg is characterized by a strong excess of helium, nitrogen, neon, and silicon, which is related to the binarity of the system.  相似文献   

19.
An analysis of the basic parameters of a sample of radio and X-ray pulsars that are members of close binary systems is used to separate them into several families according to the nature of the pulsar companions and the previous evolution of the systems. To quantitatively describe the main parameters of close binaries containing neutron stars, we have performed numerical modeling of their evolution. The main driving forces of the evolution of these systems are the nuclear evolution of the donor, the magnetically coupled and radiation-induced stellar winds of the donor, and gravitational-wave radiation. We have considered donors that are low-mass stars in various stages of their evolution, nondegenerate helium stars, and degenerate stars. The systems studied are either the products of the normal evolution of close binaries with large initial component-mass ratios or result from inelastic collisions of old neutron stars with single and binary low-mass, main-sequence stars in the dense cores of globular clusters. The formation of single millisecond pulsars requires either the dynamical disruption of a low-mass (?0.1M) donor or its complete evaporation under the action of the X-ray radiation of the millisecond pulsar. The observed properties of binary radio pulsars with eccentric orbits combined with the bimodal spatial-velocity distribution of single radio pulsars suggest that it may be possible to explain the observed rotational and spatial motions of all radio pulsars as a result of their formation in close binaries. In this case, neutron stars formed from massive single stars or the components of massive wide binaries probably cannot acquire the high spatial velocities or rapid rotation rates that are required for the birth of a radio pulsar.  相似文献   

20.
An analysis of observational data shows that, in most cases,Wolf–Rayet (WR) stars in known WR+ OB binary systems were formed as a result of mass transfer in initial OB + OB systems, rather than through radial mass loss by the more massive OB star via its stellar wind.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号