首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tholeiitic basalts and associated intrusives are the major component of the Karoo igneous province. They are of Mesozoic age and constitute one of the world's classic continental flood basalt (CFB) provinces. It has been argued that most Karoo basalts have not undergone significant contamination with continental crust and that their lithospheric mantle source areas were enriched in incompatible minor and trace elements during the Proterozoic. The only exceptions to this are late-stage MORB-like dolerites near the present-day continental margins which are considered to be of asthenospheric origin.When data for the “southern” Karoo basalts are plotted on many of the geochemical discriminant diagrams which have been used to infer tectonic setting, essentially all of them would be classified as calc-alkali basalts (CAB's) or low-K tholeiites. Virtually none of them plot in the compositional fields designated as characteristic of “within-plate” basalts. There is little likelihood that the compositions of the Karoo basalts can be controlled by active subduction at the time of their eruption and no convincing evidence that a “subduction component” has been added to the subcontinental lithospheric mantle under the entire area in which the basalts crop out. It must be concluded that the mantle source areas for CAB's and the southern Karoo basalts have marked similarities.In contrast, the data for “northern” Karoo basalts largely plot in the “within-plate” field on geochemical discriminant diagrams. Available data suggest that the source composition and/or the restite mineralogy and degree of partial melting are different for southern and northern Karoo basalts. There is no evidence for any difference in tectonic setting between the southern and northern Karoo basalts at the time they were erupted. This appears to be clear evidence that specific mantle source characteristics and/or magmatic processes can vary within a single CFB province to an extent that renders at least some geochemical discriminant diagrams most unreliable for classifying tectonic environment with respect to continental volcanic rocks.  相似文献   

2.
A brief account is presented for the Lebombo volcanic succession which crops out in Natal, South Africa. The volcanic belt is of late Karoo age and is composed of a thick sequence of basaltic lavas (Sabie River Formation) overlain by an equally voluminous succession of acid-flows (Jozini Formation) erupted over a period of about 70 m.y. Field relationships indicate that the Lebombo basalt pile consists of simple and compound flow units. The rhyolite succession consists of thick (80–284 m) flows units characterised by features found in both ignimbrites and rhyolitic lavas respectively. It is postulated that they were extruded as high temperature, low volatile pyroclastic flows. The Bumbeni volcanic complex which crops out near the southern termination of the Lebombo mountains, disconformably overlies the Jozini Formation and is characterised by a suite of rocks that includes rhyolite lavas, air-fall and ash-flow tuffs, syenite intrusions and basic-intermediate lavas. Dolerite dykes are ubiquitous throughout the succession and an extremely dense concentration of basic intrusions located along the western margin of the belt gives rise to the Rooi Rand dyke swarm. Rare sill-forms are found associated with the mafic volcanies. Acid intrusives are represented by simple and composite quartz-porphyry intrusions and rhyolite dykes. The structure of the Lebombo is that of a faulted monocline, tilted to the east, developed prior to the fragmentation of eastern Gondwanaland. The volcanic belt is located at the tectonic contact between two major Precambrian elements, the 3,000 m.y. Kaapvaal craton to the west and the southerly extension of the 550 m.y. Mozambique belt to the east. It is bounded to the south by the 1,000 m.y. old Natal-Namaqua mobile belt.  相似文献   

3.
Continental flood basalts are usually regarded as a single tectonomagmatic entity but frequently quoted examples exhibit a variety of tectonic settings. In one well-studied, classic, flood basalt province, the Mesozoic Karoo province of southern Africa, magmatism occurred in the following tectonic settings: (a) continental rifting leading to ocean-floor spreading in the South Atlantic Ocean (Etendeka suite of Namibia); (b) stretched continental lithosphere and rifting not leading directly to ocean-floor formation (Lebombo suite of southeastern Africa); and (c) an a-tectonic, within-plate, continental setting characterized by an absence of faulting or warping (Lesotho highlands and Karoo dolerites of South Africa). By means of spidergrams of the elements Rb, Ba, Th, Nb, K, La, Ce, Sr, Nd, P, Hf, Zr, Sm, Ti, Tb, Y, V, Ni and Cr, uncontaminated tholeiites from (c) above [i.e. the Lesotho-type continental flood basalts (LTCFB)] are compared with mid-ocean ridge basalts (MORB), ocean-island tholeiites (OIT), and tholeiites and calc-alkali basalts from subduction environments. The comparison reveals the LTCFBs are geochemically distinct. The differences are reflected in relative enrichments or depletions of the more incompatible elements (Rb-Ce) to less incompatible elements (Ce-Y), i.e. the overall slope of the spidergrams, and in anomalous enrichments or depletions of one or more of the elements Th, K, Nb, Sr, Ti, Hf, and Zr. The distinctive geochemical character of the Lesotho LTCFBs is interpreted in terms of a lithospheric mantle source for the basalts. This is supported by isotopic data. There are no major geochemical differences between Lesotho CFBs and basalts of the rift-related Etendeka and Lebombo suites, although the latter are somewhat enriched in Rb, Ba and K. However, unlike the Lesotho basalts, the Lebombo and Etendeka basalts are associated with voluminous silicic volcanics or intrusive centres and late-stage dolerites having MORB/OIT (i.e. asthenospheric) geochemical characteristics. The flood basalt/silicic magmatism/late-stage dyke swarm association is characteristic of several rift or thinned lithosphere environments (e.g., Ethiopia, Skye, eastern Greenland) but in many of these the flood basalts have ocean-island basalt (OIT) geochemical characteristics. The Lesotho-type CFB geochemistry is exhibited by the Grande Ronde Basalt of the Columbia River Group (a possible subduction-related flood basalt province) and the basic rocks associated with Mesozoic rifting in the North and South Atlantic. Basalt geochemistry alone is unhelpful in determining the tectonic setting of CFBs although the rift-related environments may be identified by the petrology and geochemistry of the whole igneous suite. A two-source model is proposed for the mantle-derived basic rocks in rift-related CFB provinces. Early enriched basalts are derived from the lithosphere and, following pronounced lithospheric attenuation or rifting, later MORB-like melts are emplaced from the rising asthenosphere. The presence of both Lesotho- and OIT-type geochemical patterns in rift-related CFBs suggests that the lithosphere exhibits different styles of enrichment.  相似文献   

4.

The late-Paleozoic mafic volcanic rocks occurring in the surrounding areas of the Gonghe basin are distributed in the A’nyêmaqên ophiolite zone, Zongwulong tectonic zone and Kuhai-Saishitang volcanic zone. The mafic volcanics in the A’nyêmaqên zone formed an ancient ridge-centered hotspot around the Majixueshan OIB, the Kuhai-Saishitang mafic rocks consist of E-MORB and continental rift basalts and the Zongwulong volcanic rocks are enriched N-MORB. The regionally low Nb/U and Ce/Pb ratios reflect the influence of the OIB material on the mafic magma source. From geochemistry, spatial distribution and tectonic relationship of the mafic rocks, an ancient triple-junction centered at the Majixueshan can be inferred. The existence of the Kuhai-Saishitang aulacogen may have provided a tectonic channel for the Majixueshan OIB materials metasomatizing the magma source for the Zongwulong rocks. The formation of the triple-junction and the rifting of the Zongwulong zone have separated the orogens and massifs in the region.

  相似文献   

5.
It is well known that the destruction of the North China Carton(NCC) is closely related to subduction of the PaleoPacific slab, but materials recording such subduction has not been identified at the peak time of decratonization. This paper presents data of whole-rock major and trace elements and Sr-Nd-Hf isotopes and zircon U-Pb ages and Hf-O isotopes for Mesozoic volcanic rocks from the Liaodong-Jinan region in the northeastern NCC, in order to trace the subduction-related materials in their source and origin. The Mesozoic volcanic rocks in the Liaodong-Jinan region are mainly composed of two series of rocks, including alkaline basaltic trachyandesite, trachyandesite and trachyte, and subalkaline trachyandesite and andesite. Zircon U-Pb dating yields eruption ages of 129–124 Ma for these rocks. The Early Cretaceous volcanic rocks are all enriched in LILEs(such as Rb, Sr, Ba and Th) and LREEs, depleted in HFSEs(such as Nb, Ta and Ti), indicating that they were originated from mantle sources that had been modified by subducted crustal materials. However, they have relatively heterogeneous and variable isotopic compositions. The alkaline basaltic trachyandesite, trachyandesite and trachyte have enriched whole-rock Sr-Nd-Hf and zircon Hf isotopic compositions and mantle-like δ~(18)O values, suggesting that they were derived from low-degree partial melting of an isotopically enriched lithospheric mantle source. In contrast, the subalkaline trachyandesite and andesite have relatively depleted isotopic compositions with zircon ε_(Hf)(t) values up to +5.2 and heavy zircon O isotopic compositions with δ~(18)O values of +8.1‰ to +9.0‰, indicating that they were originated from a lithospheric mantle source that had been metasomatized by melts/fluids derived from the recycled low-T altered oceanic basalt. All of these geochemical features suggest that the Early Cretaceous volcanic rocks in the Liaodong-Jinan region would result from mixing of mafic magmas with different compositions. Such magmas were originated from the enriched lithospheric mantle and the young metasomatized mantle, respectively, with variable extents of enrichment and depletion in trace elements, radiogenic isotopes and O isotopes. Importantly, the identification of the low-T altered oceanic crust component in the origin of Early Cretaceous volcanic rocks by the zircon Hf-O isotopes provides affirmative isotopic evidence and direct material records for Mesozoic subduction of the Paleo-Pacific slab that induced decratonization of the North China Craton.  相似文献   

6.
Petrography and geochemistry(major, trace and rare earth elements) of clastic rocks from the Late Palaeozoic Madzaringwe Formation, in the Tshipise-Pafuri Basin, Northern South Africa, have been investigated to understand their provenance. Sandstone petrography and detrital modes indicates that the Late Palaeozoic succession was derived from craton interior and recycled orogen provenance. Sandstones in the Madzaringwe Formation are sub-arkosic to sub-litharenite. The sediments may represent a recycled to craton interior provenance. The geochemical data of major elements show that sandstone and shales have the same source. The study of paleoweathering conditions based on modal composition, chemical index of alteration(CIA) and A-CN-K(Al2O3-Ca O+Na2O-K2O) relationships indicate that probably chemical weathering in the source area and recycling processes have been more important in shale and sandstone rocks. The relatively high CIA values(70–90%) indicates moderate to high weathering conditions of the samples and the paleoclimate of the source area was warm. K2O/Na2 O versus Si O2 and Na2O-Ca O-K2 O tectonic setting discrimination plots, suggest a passive continental margin. In the study of trace elements, triangular Th-Sc-Zr/10 and La-Th-Sc plots both suggest a passive margin setting of the basin. Petrographic and geochemical results of the samples suggest uplifted basement source areas dominated by sedimentary rocks and/or granite-gneiss rocks. The source rocks might have been the recycled pre-Soutpansberg Karoo Supergroup rocks and the metasedimentary rocks of the Soutpansberg Group. Other source rocks may have been the pre-Beit-Bridge basement rocks(granites and gneisses).  相似文献   

7.
Geochemical and isotopic analyses (Sr–Nd–Pb) of late Miocene to Quaternary plateau lavas from the Pali Aike and Morro Chico areas (52°S) were undertaken to constrain the melting processes and mantle sources that contributed to magma generation and the geodynamic evolution of southernmost Patagonia, South America. The Pali Aike and Morro Chico lavas are alkaline (Pali Aike, 45–49 wt.% SiO2; 4.3–5.9 wt.% Na2O+K2O) and subalkaline (Morro Chico, 50.5–50.8 wt.% SiO2; 4.0–4.4 wt.% Na2O+K2O), relatively primitive (Pali Aike, 9.5–13.7 wt.% MgO; Morro Chico, 7.6–8.8 wt.% MgO) mafic volcanic rocks that have typical intraplate ocean island basalt‐like signatures. Incompatible trace element ratios and isotopic ratios of the Pali Aike and Morro Chico lavas differ from those of the majority of Neogene southern Patagonian slab window lavas in showing more enriched characteristics and are similar to high‐μ (HIMU)‐like basalts. The rare earth element (REE) modeling to constrain mantle melting percentages suggests that these lavas were produced by low degrees of partial melting (1.0–2.0% for Pali Aike lavas and about 2.6–2.7% for Morro Chico lavas) of a garnet lherzolite mantle source. The major systematic variations of Sr–Nd–Pb isotopes in southern Patagonian lavas are related to geographic location. The Pali Aike and Morro Chico lavas from the southernmost part of Patagonia have lower 87Sr/86Sr and higher 143Nd/144Nd and 206Pb/204Pb ratios, relative to most of the southern Patagonian lavas erupted north of 49.5°S, pointing to a HIMU‐like signature. An isotopically depleted and HIMU‐like asthenospheric domain may have been the main source of magmas in the southernmost part of Patagonia (e.g. Pali Aike, Morro Chico, and Camusu Aike volcanic field), suggesting the presence of a major discontinuity in the isotopic composition of the asthenosphere in southern Patagonia. On the basis of geochemical and isotope data and the available geological and geotectonic reconstructions, a link between the HIMU asthenospheric mantle domain beneath southernmost Patagonia and the HIMU mega‐province of the southwestern Pacific Ocean is proposed.  相似文献   

8.
Quan-Ru  Geng  Zhi-Ming  Sun  Gui-Tang  Pan  Di-Cheng  Zhu  Li-Quan  Wang 《Island Arc》2009,18(3):467-487
The well‐studied Mesozoic and Cenozoic volcanic rocks of the Gangdise Terrane, southern Tibet, are widely interpreted to have resulted from subduction of the Neotethys; however, Late Paleozoic volcanic rocks and their tectonic setting remain poorly studied. Based on new geological data, we carried out stratigraphical and geochemical analyses of Permian volcano‐stratigraphic sequences within an east–west‐trending, fault‐bounded zone of uplift in the central Gangdise Terrane. Sedimentary rocks in this area consist of platform carbonates and terrigenous clastic rocks that represent widespread shallow‐marine sedimentary basins developed around northern Gondwana. A regression or tectonic uplift event is recorded in Permian sedimentary rocks that show the local development of fluvial environments. The sedimentary succession contains evidence of two volcanic stages: a period of basaltic extrusions and younger explosive felsic magmatism. The first volcanic stage is Early and Middle Permian in age. Tholeiitic basaltic lavas are exposed around Maizhokunggar (Tangjia) and Lhunzhub in central Gangdise. The Lower Permian basalts are relatively enriched in MgO (4.58–12.19%), whereas the Middle Permian basalts are characterized by high Al2O3 contents (11.75–21.22%). Rocks of both ages are enriched in large‐ion lithophile elements (LILE) and light rare earth elements (LREE), and show pronounced negative Nb and Ta anomalies. Total REE contents and light (LREE)/heavy (HREE) ratios increased from the Early to Middle Permian. Observed variations in initial Sr, Nd, and Pb isotopes (87Sr/86Sri = 0.7013–0.7066, 207Pb/204Pbi = 15.53–15.63, and 208Pb/204Pbi = 38.04–38.64 for a given 206Pb/204Pbi; εNd = +0.69 to ?11.55) can be explained by crustal interaction with mantle sources, as is characteristic of metasomatism by slab‐derived fluids or assimilation and fractional crystallization (AFC) processes during magmatic evolution. The observed geochemical signatures, coupled with stratigraphic constraints, support the hypothesis that an initial arc formed during the Permian due to southward subduction of the Paleotethys, predating the well‐known Mesozoic arc preserved in the Gangdise Terrane.  相似文献   

9.
Talat  Ahmad  Kabita C.  Longjam  Baishali  Fouzdar  Mike J.  Bickle  Hazel J.  Chapman 《Island Arc》2009,18(1):155-174
The Sakoli Mobile Belt comprises bimodal volcanic rocks that include metabasalt, rhyolite, tuffs, and epiclastic rocks with metapelites, quartzite, arkose, conglomerate, and banded iron formation (BIF). Mafic volcanic rocks are tholeiitic to quartz‐tholeiitic with normative quartz and hypersthene. SiO2 shows a large compositional gap between the basic and acidic volcanics, depicting their bimodal nature. Both the volcanics have distinct geochemical trends but display some similarity in terms of enriched light rare earth element–large ion lithophile element characteristics with positive anomalies for U, Pb, and Th and distinct negative anomalies for Nb, P, and Ti. These characteristics are typical of continental rift volcanism. Both the volcanic rocks show strong negative Sr and Eu anomalies indicating fractionation of plagioclases and K‐feldspars, respectively. The high Fe/Mg ratios for the basic rocks indicate their evolved nature. Whole rock Sm–Nd isochrons for the acidic volcanic rocks indicate an age of crystallization for these volcanic rocks at about 1675 ± 180 Ma (initial 143Nd/144Nd = 0.51017 ± 0.00017, mean square weighted deviate [MSWD] = 1.6). The εNdt (t = 2000 Ma) varies between ?0.19 and +2.22 for the basic volcanic rock and between ?2.85 and ?4.29 for the acidic volcanic rocks. Depleted mantle model ages vary from 2000 to 2275 Ma for the basic and from 2426 to 2777 Ma for the acidic volcanic rocks, respectively. These model ages indicate that protoliths for the acidic volcanic rocks probably had a much longer crustal residence time. Predominantly basaltic magma erupted during the deposition of the Dhabetekri Formation and part of it pooled at crustal or shallower subcrustal levels that probably triggered partial melting to generate the acidic magma. The influence of basic magma on the genesis of acidic magma is indicated by the higher Ni and Cr abundance at the observed silica levels of the acidic magma. A subsequent pulse of basic magma, which became crustally contaminated, erupted as minor component along with the dominantly acidic volcanics during the deposition of the Bhiwapur Formation.  相似文献   

10.
Many episodes of ignimbrite volcanism have occurred in North Wales. Ignimbrites can be recognised amongst the Pre-Cambrian rocks and from almost every stage of the Ordovician succession. The best known and most instructively exposed ignimbrite volcanies are those of Caradocian age in Snowdonia. In this deeply incised mountainous area it is possible to demonstrate the major characteristics of ignimbrite volcanism and to examine the relationship between numerous intrusive rhyolite masses and the extrusive rocks. Both acid and basic magmas were available in North Wales during Ordovician times, and at several of the volcanic centres the rocks show a differentiation sequence from pyroxeneandesite to alkali-rhyolite. The emergence and growth of volcanic islands upon which the ignimbrites were deposited is revealed in the stratigraphical record. An intimate relationship exists between magmatism and crustal unrest, and it is possible to discuss certain problems regarding the petrogenesis of the rocks, the location and character of the volcanic vents and the palaeogeography of North Wales during the Ordovician. Definition of the terms employed and criteria used in the identification of Welsh ignimbrites is given, and the field relationships and petrology of a number of areas are described in detail.  相似文献   

11.
This petrologic analysis of the Negra Muerta Volcanic Complex (NMVC) contributes to understanding the magmatic evolution of eruptive centres associated with prominent NW-striking fault zones in the southern Central Andes. Specifically, the geochemical characteristics and magmatic evolution of the two eruptive episodes of this Complex are analysed. The first one occurred as an explosive eruption at 9 Ma and is represented by a strongly welded, fiamme-rich, andesitic to dacitic ignimbrite deposit. The second commenced with an eruption of a rhyolitic ignimbrite at 7.6 Ma followed by effusive discharge of hybrid lavas at 7.3 Ma and by emplacement of andesitic to rhyodacitic dykes and domes. Both explosive and effusive eruptions of the second episode occurred within a short time span, but geochemical interpretations permit consideration of the existence of different magmas interacting in the same magma chamber. Our model involves an andesitic recharge into a partially cooled rhyolitic magma chamber, pressurising the magmatic system and triggering explosive eruption of rhyolitic magma. Chemical or mechanical evidence for interaction between the rhyolitic and andesitic magma in the initial stages are not obvious because of their difference in composition, which could have been strong enough to inhibit the interaction between the two magmas. After the initial explosive stages of the eruption at 7.6 Ma, the magma chamber become more depressurised and the most mafic magma settled in compositional layers by fractional crystallisation. Restricted hybridisation occurred and was effective between adjacent and thermally equivalent layers close to the top of the magma chamber. At 7.3 Ma, increments of caldera formation were accompanied by effusive discharge of hybrid lavas through radially disposed dykes whereby andesitic magma gained in importance toward the end of this effusive episode in the central portion of the caldera. Assimilation during turbulent ascent (ATA) is invoked to explain a conspicuous reversed isotopic signature (87Sr/86Sr and 143Nd/144Nd) in the entire volcanic series. Therefore, the 7.6 to 7.3 Ma volcanic rocks of the NMVC resulted from synchronous and mutually interacting petrological processes such as recharge, fractional crystallization, hybridisation, and Assimilation during Turbulent Ascent (ATA).Geochemical characteristics of both volcanic episodes show diverse type and/or depth in the sources and variable influence of upper crustal processes, and indicate a recurrence in the magma-forming conditions. Similarly, other minor volcanic centres in the transversal volcanic belts of the Central Andes repeated their geochemical signatures throughout the Miocene.  相似文献   

12.
Samples were systematically collected from metamorphic basic volcanic rocks in the Jiehekou and Xiyupi areas on both sides of the Lüliang Mountains, Shanxi Province and analyzed for their major elements, trace elements and rare earth elements (REE). The geochemical characteristics of their major, trace and rare-earth elements indicated that the metamorphic basic volcanic rocks in this area were emplaced in the tectonic environment like a modern continental rift. Sm-Nd and Rb-Sr isotope chronological studies demonstrated that the Jiehekou Group metamorphic basic volcanic rocks were formed during the 2600-Ma crust/mantle differentiation event, and were transformed by granulite facies metamorphism during the late Neo-Archaean period (2500 Ma ±), making the Sm-Nd systematics of the rocks reset. During the late Paleoproterozoic period (1800 Ma ±) the Rb-Sr systematics of the rocks were disturbed again in response to the Lüliang movement. Since the extent of disturbance was so weak that the Sm-Nd systematics was not affected, the age of 1600 Ma ± obtained from this area seems to be related to local magmatic activities within the craton. Research results lend no support to the idea that the Lüliang Group was formed during the Archaean. Instead, it should be formed during the Proterozoic.  相似文献   

13.
A new geochronological and geochemical study was carried out to better constrain the petrogenesis and eruptive history of Monte Amiata, a large Pleistocene trachydacitic volcano of Southern Tuscany. Previous studies suggested a magma mixing origin between calc-alkaline silicic melts from the Tuscan Magmatic Province (TMP) and potassic mafic melts like those found in the Roman Magmatic Province (RMP). Two eruptive episodes–the first at ca. 300 kyr, the second at ca. 200 kyr–were distinguished from the few available ages. However, both the involvement of a RMP-like melt as mafic end-member and the timing of volcanic activity remained to be ascertained. The K–Ar ages obtained on plagioclase, sanidine and glass separated from Mt Amiata volcanic rocks demonstrate the sanidine is the most suitable phase for K–Ar dating. Sanidine yields ages of 304–293 kyr for the basal trachydacitic unit (BTC), 298–280 kyr in the domes unit (DLC) and unexpected older ages of 312–308 kyr for the more mafic summit lava unit (OLL). A careful re-examination of the literature ages together with those obtained in this study shows that they tend to a common age of ca. 300 kyr whatever the volcanic unit. We interpret this as a reset of the K–Ar chronometer in response to a consequent recharge of the silicic magma reservoir by hot mafic melts. This recharge most probably triggered the first volcanic eruption of Mt Amiata magmas. In our model, we suppose an initially chemically-stratified magma chamber; the input of deep hot mafic melts reset the crystals clock and probably allowed the eruption of the huge amount of trachydacitic crystal mush. We propose that the controversial BTC unit could have emplaced during a non-explosive eruption if we consider either pre-eruption passive degassing or extrusion of the trachydacites as magmatic foam.First Pb isotopic data of mafic enclaves from the trachydacitic units, together with major and trace elements and new Sr and Nd data support the magma mixing as the dominant process at the origin of the Mt Amiata volcanic rocks. The similar LILE/HFSE ratios evidenced in this contribution between the magmatic enclaves of Mt Amiata and RMP volcanic rocks, together with their comparable Sr, Nd and Pb isotopic compositions, definitively argue for the involvement of a RMP-like melt in the mixing. The Mt Amiata is thus indisputably a hybrid volcano between TMP and RMP in terms of petrogenesis and ages.  相似文献   

14.
Edwin  Ortiz  Barry P.  Roser 《Island Arc》2006,15(2):223-238
Abstract Basement rocks in the catchment of the Kando River in southwest Japan can be divided into two main groups. Paleogene to Cretaceous felsic granitoids and volcanic rocks dominate in the upstream section, and more mafic, mostly Miocene volcanic and volcaniclastic rocks occur in the downstream reaches. Geochemically distinctive Mount Sambe adakitic volcanic products also crop out in the west. X‐ray fluorescence analyses of major elements and 14 trace elements were made of two size fractions (<180 and 180–2000 µm) from 86 stream sediments collected within the catchment, to examine contrasts in composition between the fractions as a result of sorting and varying source lithotype. The <180 µm fractions are depleted in SiO2 and enriched in most other major and trace elements relative to the 180–2000 µm fractions. Na2O, K2O, Ba, Rb and Sr are either depleted relative to the 180–2000 µm fractions, or show little contrast in abundance. Sediments from granitoid‐dominated catchments are distinguished by greater K2O, Th, Rb, Ba and Nb than those derived from the Miocene volcanic rocks. Granitoid‐derived <180 µm fractions are also enriched in Zr, Ce and Y. Sediments derived from the Miocene volcanic rocks generally contain greater TiO2, Fe2O3*, Sc, V, MgO and P2O5, reflecting their more mafic source. Sediments containing Sambe volcanic rocks in their source are marked by higher Sr, CaO, Na2O and lower Y, reflecting an adakitic signature that persists into the lower main channel, where compositions become less variable as the bedload is homogenized. Normalization against source averages shows that compositions of the 180–2000 µm fractions are less fractionated from their parents than are the <180 µm fractions, which are enriched for some elements. Contrast between the size fractions is greatest for the granitoid‐derived sediments. Weathering indices of the sediments are relatively low, indicating source weathering is moderate, and typical of temperate climates. Some zircon concentration has occurred in granitoid‐derived <180 µm fractions relative to 180–2000 µm counterparts, but Th/Sc and Zr/Sc ratios overall closely reflect both provenance and homogenization in the lower reaches.  相似文献   

15.
Volcanic rocks of the Sunda and Banda arcs range from tholeiitic through calcalkaline and shoshonitic to leucititic, the widest compositional span of mafic magmatism known from an active arc setting.Mafic rocks in our data set, which includes 315 new analyses of volcanic rocks from twelve Quaternary volcanoes, including Batu Tara in the previously geochemically unknown Flores-Lembata arc sector, are generally similar to those from other island arcs: most contain <1.3 wt. % TiO2 and 16–22 wt. % Al2O3, and have characteristically high K/Nb and La/Nb values. Abundances of P, Ba, Rb, Sr, La, Ce, Nd, Zr and Nb increase sympathetically with increasing K2O contents of mafic rocks but those of Na, Ti, Y and Sc vary little throughout the geochemical continuum from low-K tholeiitic to high-K leucititic rocks.Excluding Sumatra and Wetar, which possess mainly dacitic and rhyolitic volcanics, the Sunda-Banda arc is divisible into four geochemical arc sectors with boundaries that correlate with major changes in regional tectonic setting and geological history. From west to east, the West Java, Bali and Flores arc sectors each comprise volcanoes which become progressively more K-rich eastwards, culminating in the leucitite volcanoes Muriah, Soromundi and Sangenges, and Batu Tara, respectively. In the most easterly Banda sector, the volcanics vary from high- to low-K eastwards around the arc.Correlations between geochemistry and 87Sr/86Sr values show separate trends for each of the four arc sectors, believed to be the result of involvement of at least three geochemically and isotopically distinct components in the source regions of the arc magmatism.A dominant source component with a low K content and a low 87Sr/86Sr value, and common to all sectors, is probably peridotitic mantle. A second component, with low K content but high 87Sr/86Sr value, appears to be crustal material. This component is most apparent in the Banda sector, in keeping with that sector's tectonic setting close to Precambrian Australian continental crust, but it is also present to lesser extents in the West Java and Flores sectors.However, the most marked geochemical and isotopic variations shown by the arc volcanics are primarily due to the involvement of a third component, which is rich in K-group elements but has relatively low 87Sr/86Sr values. This component appears to be mantle-derived and is least overprinted by crustal material in the Bali sector volcanics where the Pb, Be, U-Th and O isotope characteristics of the rocks support the suggestion that their genesis has not involved incorporation of recently subducted, continent-derived sialic material.The high, regionally persistent, Th/U value (about 4.3) of the Sunda subarc mantle, obtained from U-Th isotopic data, suggests a close association could exist between the K-rich component and the southern hemisphere ‘DUPAL’ mantle isotopic anomaly.  相似文献   

16.
Carriacou is small volcanic island located near the southern end of the Lesser Antillean chain. Field relationships, petrography and geochemistry of the Tertiary lavas, outcropping in the southern half of the island, are used to identify the rocks present and to determine their petrogenesis and assess their significance within the island arc.Six main volcanic units are present. From oldest to youngest, these are the clinopyroxene-phyric basalt (CPB) sequence, the amphibole-phyric andesite (APA) sequence, the clinopyroxene-megaphyric basalt (CMB) sequence, the olivine-microphyric basalt (OMB) sequence, the clinopyroxene phyric andesite (CPA) sequence, and the amphibole-megaphyric andesite (AMA) sequence. Volcaniclastic deposits are associated with the APA, CMB, and AMA sequences. The APA sequence is calcalkaline, whereas the other five sequences are tholeiitic.Sr isotope and rare earth element (REE) data suggest that these volcanic rocks were derived from partial melts of garnet-peridotite generated deep within the mantle. The OMB lavas have the highest temperature assemblages of intratelluric minerals and the least evolved chemical characteristics, and are considered to be closest in composition to a parental melt. Phenocryst assemblages and chemical variation suggest that the andesite sequences have been derived from the mafic melts by low pressure fractional crystallization of approximately 20% clinopyroxene and 20% olivine, plus smaller amounts of plagioclase and amphibole. The high concentrations of incompatible and compatible elements and the high87Sr/86Sr ratios may indicate that subduction is slower in the southern part of the arc, and fluids released during slab dehydration rich in Incompatible trace elements, in Radiogenic strontium, and in Silica (IRS), have modified the parental melts.  相似文献   

17.
Nisyros island is a calc-alkaline volcano, built up during the last 100 ka. The first cycle of its subaerial history includes the cone-building activity with three phases, each characterized by a similar sequence: (1) effusive and explosive activity fed by basaltic andesitic and andesitic magmas; and (2) effusive andextrusive activity fed by dacitic and rhyolitic magmas. The second eruptive cycle includes the caldera-forming explosive activity with two phases, each consisting of the sequence: (1) rhyolitic phreatomagmatic eruptions triggering a central caldera collapse; and (2) extrusion of dacitic-rhyolitic domes and lava flows. The rocks of this cycle are characteized by the presence of mafic enclaves with different petrographic and chemical features which testify to mixing-mingling processes between variously evolved magmas. Jumps in the degree of evolution are present in the stratigraphic series, accompanied by changes in the porphyritic index. This index ranges from 60% to about 5% and correlates with several teochemical parameters, including a negative correlation with Sr isotope ratios (0.703384–0.705120). The latter increase from basaltic andesites to intermediate rocks, but then slightly decrease in the most evolved volcanic rocks. The petrographic, geochemical and isotopic characteristics can be largely explained by processes occurring in a convecting, crystallizing and assimilating magma chamber, where crystal sorting, retention, resorption and accumulation take place. A group of crystal-rich basaltic andesites with high Sr and compatible element contents and low incompatible elements and Sr isotope ratios probably resulted from the accumulation of plagioclase and pyroxene in an andesitic liquid. Re-entrainment of plagioclase crystals in the crystallizing magma may have been responsible for the lower 87Sr/86Sr in the most evolved rocks. The gaps in the degree of evolution with time are interpreted as due to liquid segregation from a crystal mush once critical crystallinity was reached. At that stage convection halted, and a less dense, less porphyritic, more evolved magma separated from a denser crystal-rich magma portion. The differences in incompatible element enrichment of pre-and post-caldera dacites and the chemical variation in the post-caldera dome sequence are the result of hybridization of post-caldera dome magmas with more mafic magmas, as represented by the enclave compositions. The occurrence of the quenched, more mafic magmas in the two post-caldera units suggests that renewed intrusion of mafic magma took place after each collapse event.  相似文献   

18.
Mesozoic volcanic rocks are widespread throughout the Great Xing'an Range of northeastern China. However, there has been limited investigation into the age and petrogenesis of the Mesozoic volcanics in the eastern Great Xing'an Range. According to our research, the volcanic rocks of the Dayangshu Basin, eastern Great Xing'an Range are composed mainly of trachybasalt, basaltic andesite, and basaltic trachyandesite, with minor intermediate–basic pyroclastic rocks. In this study, the geochemistry and geochronology of the Mesozoic volcanic rocks are presented in order to discuss the petrogenesis and tectonic setting of the Ganhe Formation in the Dayangshu Basin. Zircon U–Pb dating by laser ablation inductively coupled plasma–mass spectrometry indicates that the Mesozoic lavas formed during the late Early Cretaceous (114.3–108.8 Ma). This suite of rocks exhibits a range of geochemical signatures indicating subduction‐related genesis, including: (i) calc‐alkaline to high‐K calc‐alkaline major element compositions; (ii) enrichment of large ion lithophile elements (e.g. Rb, Ba, K) and light rare earth elements (LREEs/HREEs =7.33–9.85); and (iii) weak depletion in high field strength elements (e.g. Nb, Ta, Ti). Furthermore, Sr–Nd–Pb isotopic data yield initial 87Sr/86Sr values of 0.70450–0.70463, positive εNd(t) values of +1.8 to +3.3, and a mantle‐derived lead isotope composition. Combined with the regional tectonic evolution, the results of this study suggest that the Ganhe Group lavas are derived from decompression melting of a metasomatized (enriched) lithospheric mantle, related to asthenospheric upwelling, which resulted from lithospheric mantle delamination and produced extension of the continental margin following the subduction of the Paleo‐Pacific Plate.  相似文献   

19.
Early Yanshanian magmatic suites predominate absolutely in the Nanling granite belt. They consist mainly of monzogranite and K-feldspar granite. There occur associations of early Yanshanian A-type granitoids (176 Ma-178 Ma) and bimodal volcanic rocks (158 Ma-179 Ma) in southern Jiangxi and southwestern Fujian in the eastern sector of the granite belt and early Yanshanian basalts (177 Ma-178 Ma) in southern Hunan in the central sector of the belt. Both the acid end-member rhyolite in the bimodal volcanic rock association and A-type granitoids in southern Jiangxi have the geochemical characteristics of intraplate granitic rocks and the basic end-member basalt of the association is intraplate tholeiite, while the basaltic rocks in southern Hunan include not only intraplate tholeiite but also intraplate alkali basalt. Therefore the early Yanshanian magmatic suites in the Nanling region are undoubtedly typical post-orogenic rock associations. Post-orogenic suites mark the end of a post-collision or late orogenic event and the initiation of Pangaea break-up, indicating that a new orogenic Wilson cycle is about to start. Therefore it may be considered that the early Yanshanian geodynamic settings in the Nanling region should be related to post-orogenic continental break-up after the Indosinian orogeny and the break-up did not begin in the Cretaceous.  相似文献   

20.
Early Yanshanian magmatic suites predominate absolutely in the Nanling granite belt.They consist mainly of monzogranite and K-feldspar granite.There occur associations of early Yanshanian A-type granitoids(176 Ma-178 Ma) and bimodal volcanic rocks(158 Ma-179 Ma) in southern Jiangxi and southwestern Fujian in the eastern sector of the granite belt and early Yanshanian basalts(177 Ma-178 Ma) in southern Hunan in the central sector of the belt.Both the acid end-member rhyolite in the bimodal volcanic rock association and A-type granitoids in southern Jiangxi have the geochemical characteristics of intraplate granitic rocks and the basic end-member basalt of the association is intraplate tholeiite,while the basaltic rocks in southern Hunan include not only intraplate tholeiite but also intraplate alkali basalt.Therefore the early Yanshanian magmatic suites in the Nanling region are undoubtedly typical post-orogenic rock associations.Post-orogenic suites mark the end of a post-collision or late orogenic event and the initiation of Pangaea break-up,indicating that a new orogenic Wilson cycle is about to start.Therefore it may be considered that the early Yanshanian geodynamic settings in the Nanling region should be related to post-orogenic continental break-up after the Indosinian orogeny and the break-up did not begin in the Cretaceous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号