首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
If a satellite orbit is described by means of osculating Jacobi α's and β's of a separable problem, the paper shows that a perturbing forceF makes them vary according to $$\dot \alpha _\kappa = {\text{F}} \cdot \partial {\text{r/}}\partial \beta _k {\text{ }}\dot \beta _k = {\text{ - F}} \cdot \partial {\text{r/}}\partial \alpha _k ,{\text{ (}}k = 1,2,3).{\text{ (A1)}}$$ Herer is the position vector of the satellite andF is any perturbing force, conservative or non-conservative. There are two special cases of (A1) that have been previously derived rigorously. If the reference orbit is Keplerian, equations equivalent to (A1), withF arbitrary, were derived by Brouwer and Clemence (1961), by Danby (1962), and by Battin (1964). IfF=?gradV 1(t), whereV 1 may or may not depend explicitly on the time, Equations (A1) reduce to the well known forms (e.g. Garfinkel, 1966) $$\dot \alpha _\kappa = {\text{ - }}\partial V_1 {\text{/}}\partial \beta _k {\text{ }}\dot \beta _k = \partial V_1 {\text{/}}\partial \alpha _k ,{\text{ (}}k = 1,2,3).{\text{ (A2)}}$$ holding for all separable reference orbits. Equations (A1) can of course be guessed from Equations (A2), if one assumes that \(\dot \alpha _k (t)\) and \(\dot \beta _k (t)\) depend only onF(t) and thatF(t) can always be modeled instantaneously as a potential gradient. The main point of the present paper is the rigorous derivation of (A1), without resort to any such modeling procedure. Applications to the Keplerian and spheroidal reference orbits are indicated.  相似文献   

2.
The new analysis of radar observations of inner planets for the time span 1964–1989 is described. The residuals show that Mercury topography is an important source of systematic errors which have not been taken into account up to now. The longitudinal and latitudinal variations of heights of Mercury surface were found and an approximate map of equatorial zone |?|≤120° was constructed. Including three values characterizing global nonsphericity of Mercury surface into the set of parameters under determination allowed to improve essentially all estimates. In particular, the variability of the gravitational constantG was evaluated: $$\dot G/G = (0.47 \pm 0.47) \times 10^{ - 11} yr^{ - 1} $$ . The correction to Mercury perihelion motion: $$\Delta \dot \pi = - 0''.017 \pm 0''.052 cy^{ - 1} $$ and linear combination of the parameters of PPN formalism: $$\upsilon = (2 + 2\gamma - \beta )/3 = 0.9995 \pm 0.0013$$ were determined; they are in a good agreement with General Relativity predictions. The obtained values Δ.π and ν correspond to the negligible solar oblateness, the estimate of solar quadrupole moment being: $$J_2 = ( - 0.13 \pm 0.41) \times 10^{ - 6} $$ .  相似文献   

3.
For an autonomous, conservative, two degree-of-freedom dynamical system, vorticity (the curl of velocity) is constant along the orbit if the velocity field is divergence-free such that: $$u\left( {x, v} \right) - \psi _y , v\left( {x, y} \right) = - \psi _x .$$ Isovortical orbits in configuration space are level curves of a scalar autonomous function Ψ (x, v) satisfying a second-order, non-linear partial differential equation of the Monge-Ampere type: $$2\left( {\psi _{xx} \psi _{yy} - \psi _{xy}^2 } \right) + U_{xx} + U_{yy} = 0,$$ where U(x. y) is the autonomous potential function. The solution Soc the time variable is reduced to a quadrature following determinatio of Ψ. Self-similar solutions of the Monge-Ampere equation under Birkhoff's one-parameter transformation group are derived for homogeneous (power-law) potential functions. It is shown that Keplerian orbits belong to the class of planar isovortical flows.  相似文献   

4.
This paper summarises an investigation of chaos in a toy potential which mimics much of the behaviour observed for the more realistic triaxial generalisations of the Dehnen potentials, which have been used to model cuspy triaxial galaxies both with and without a supermassive black hole. The potential is the sum of an anisotropic harmonic oscillator potential, ${\text{V}}_{\text{0}} = \frac{1}{2}\left( {a^2 x^2 + b^2 y^2 + c^2 z^2 } \right)$ , and aspherical Plummer potential, ${\text{V}}_{\text{P}} = M_{BH} /\sqrt {r^2 + \varepsilon ^2 } $ , with $r^2 = x^2 + y^2 + z^2$ . Attention focuses on three issues related tothe properties of ensembles of chaotic orbits which impact on chaotic mixing and the possibility of constructing self-consistent equilibria:(1) What fraction of the orbits are chaotic? (2) How sensitive are the chaotic orbits, that is, how large are their largest (short time) Lyapunov exponents? (3) To what extent is the motion of chaotic orbits impeded by Arnold webs, that is, how 'sticky' are the chaotic orbits? These questions are explored as functions of the axis ratio a: b: c, black hole mass M BH, softening length ε, and energy E with the aims of understanding how the manifestations of chaos depend onthe shape of the system and why the black hole generates chaos. The simplicity of the model makes it amenable to a perturbative analysis. That it mimics the behaviour of more complicated potentials suggests that much of this behaviour should be generic.  相似文献   

5.
The fact that the energy density ρg of a static spherically symmetric gravitational field acts as a source of gravity, gives us a harmonic function \(f\left( \varphi \right) = e^{\varphi /c^2 } \) , which is determined by the nonlinear differential equation $$\nabla ^2 \varphi = 4\pi k\rho _g = - \frac{1}{{c^2 }}\left( {\nabla \varphi } \right)^2 $$ Furthermore, we formulate the infinitesimal time-interval between a couple of events measured by two different inertial observers, one in a position with potential φ-i.e., dt φ and the other in a position with potential φ=0-i.e., dt 0, as $${\text{d}}t_\varphi = f{\text{d}}t_0 .$$ When the principle of equivalence is satisfied, we obtain the well-known effect of time dilatation.  相似文献   

6.
Some useful results and remodelled representations ofH-functions corresponding to the dispersion function $$T\left( z \right) = 1 - 2z^2 \sum\limits_1^n {\int_0^{\lambda r} {Y_r } \left( x \right){\text{d}}x/\left( {z^2 - x^2 } \right)} $$ are derived, suitable to the case of a multiplying medium characterized by $$\gamma _0 = \sum\limits_1^n {\int_0^{\lambda r} {Y_r } \left( x \right){\text{d}}x > \tfrac{1}{2} \Rightarrow \xi = 1 - 2\gamma _0< 0} $$   相似文献   

7.
Several authors (Basano and Hughes, 1979; ter Haar and Cameron, 1963, Dermott, 1968; Prentice, 1976) give the revised Titius-Bode law in the form $$r_n = r_o C^n ,$$ wherer n stands for the distance of thenth planet from the Sun;r o andC are constant. They pointed out, in addition, that regular satellites systems around major planets obey also that law. It is now generally thought that the Kant-laplace primeval nebula accounts for the origin and evolution of the solar system (Reeves, 1976). Furthermore, it is shown (Prentice, 1976) that rings, which obey the Titius-Bode law, are formed through successive contractions of the solar nebula. Among difficulties encountered by Prentice's theory, the formation of regular satellites similar to the planatery system is the most important one. Indeed, the starting point of the planetary system is a rotating flattened circular solar nebula, whereas a gaseous ring must be the starting point of satellites systems. As far as the Titius-Bode law is concerned, we have the feeling that orbits of planets around the Sun and of satellites around their primaries do not depend on starting conditions. That law must be inherent to gravitation, in the same manner that electron orbits depend only on the atomic law instead of the starting conditions under which an electron is captured. If it is correct, then one may expect to formulate similarity between the T-B law and the Bohr law in the early quantum theory. Such a similarity is found (Louise, 1982) by using a postulate similar to the Bohr-Sommerfeld one — i.e., $$\int_{r_o }^{r_n } {U(r) dr = nk,}$$ whereU(r)=GM /r is the potential created by the Sun,k is a constant, andn a positive integer. This similarity suggests the existence of an unknown were process in the solar system. The aim of the present paper is to investigate the possibility of such a process. The first approach is to study a steady wave encountered in special membrane, showing node rings similar to the Prentice's rings (1976) which obey the T-B law. In the second part, we try to apply the now classical Lindblad-Lin density wave theory of spiral galaxies to the solar nebula case. This theory was developed since 1940 (Lindblad, 1974) in order to account for the persistence of spiral structure of galaxies (Lin and Shu, 1964; Lin, 1966; Linet al., 1969; Contopoulos, 1973). Its basic assumption concerns the potential functionU expressed in the form $$U = U_0 + \tilde U,$$ whereU o stands for the background axisymmetric potential due to the disc population, and ?«U o is responsible of spiral density wave. Then, the corresponding mass-density distribution is \(\rho = \rho _o + \tilde \rho\) , with \(\tilde \rho \ll \rho _o\) . Both quantities ? and \(\tilde \rho\) must satisfy the Poisson's equation $$\nabla ^2 \tilde U + 4\pi G\tilde \rho = 0.$$ It is shown by direct observations that most spiral arms fit well with a logarithmic spiral curve (Danver, 1942; Considère, 1980; Mulliard mand Marcelin, 1981). From the physical point of view, they are represented by maxima of ? (or \(\tilde \rho\) ) which is of the form $$\tilde U = cte cos (q log_e r - m\theta ),$$ wherem is an integer (number of arms),q=cte, andr and θ are polar coordinates. The distancer is expressed in an arbitrary unit (r=d/do). In the case of an axisymmetric solar nebula (m=0), successive maxima of \(\tilde U\) are rings showing similar T-B law $$d = d_o C^n ,$$ withC=e 2 π/q constant, andn is a positive integer. It is noted, in addition, that the steady wave equation within the special membrane quoted above and the new expression of the Poisson's equation derived from (5) are quite similar and expressed in the form $$\nabla ^2 \tilde U + cte\tilde U/r^2 = 0.$$ This suggests that both spiral structure of galaxies and Prentice's rings system result from a wave process which is investigated in the last section. From Equation (2) it is possible to derive the wavelength of the assumed wave ‘χ’, by using a procedure similar to the one by L. De Broglie (1923). The velocity of the wave ‘χ’ process is discussed in two cases. Both cases lead to a similar Planck's relation (E=hv).  相似文献   

8.
The ratio between the Earth's perihelion advance (Δθ) E and the solar gravitational red shift (GRS) (Δø s e)a 0/c 2 has been rewritten using the assumption that the Newtonian constant of gravitationG varies seasonally and is given by the relationship, first found by Gasanalizade (1992b) for an aphelion-perihelion difference of (ΔG)a?p . It is concluded that $$\begin{gathered} (\Delta \theta )_E = \frac{{3\pi }}{e}\frac{{(\Delta \phi _{sE} )_{A_0 } }}{{c^2 }}\frac{{(\Delta G)_{a - p} }}{{G_0 }} = 0.038388 \sec {\text{onds}} {\text{of}} {\text{arc}} {\text{per}} {\text{revolution,}} \hfill \\ \frac{{(\Delta G)_{a - p} }}{{G_0 }} = \frac{e}{{3\pi }}\frac{{(\Delta \theta )_E }}{{(\Delta \phi _{sE} )_{A_0 } /c^2 }} = 1.56116 \times 10^{ - 4} . \hfill \\ \end{gathered} $$ The results obtained here can be readily understood by using the Parametrized Post-Newtonian (PPN) formalism, which predicts an anisotropy in the “locally measured” value ofG, and without conflicting with the general relativity.  相似文献   

9.
In the now classical Lindblad-Lin density-wave theory, the linearization of the collisionless Boltzmann equation is made by assuming the potential functionU expressed in the formU=U 0 + \(\tilde U\) +... WhereU 0 is the background axisymmetric potential and \(\tilde U<< U_0 \) . Then the corresponding density distribution is \(\rho = \rho _0 + \tilde \rho (\tilde \rho<< \rho _0 )\) and the linearized equation connecting \(\tilde U\) and the component \(\tilde f\) of the distribution function is given by $$\frac{{\partial \tilde f}}{{\partial t}} + \upsilon \frac{{\partial \tilde f}}{{\partial x}} - \frac{{\partial U_0 }}{{\partial x}} \cdot \frac{{\partial \tilde f}}{{\partial \upsilon }} = \frac{{\partial \tilde U}}{{\partial x}}\frac{{\partial f_0 }}{{\partial \upsilon }}.$$ One looks for spiral self-consistent solutions which also satisfy Poisson's equation $$\nabla ^2 \tilde U = 4\pi G\tilde \rho = 4\pi G\int {\tilde f d\upsilon .} $$ Lin and Shu (1964) have shown that such solutions exist in special cases. In the present work, we adopt anopposite proceeding. Poisson's equation contains two unknown quantities \(\tilde U\) and \(\tilde \rho \) . It could be completelysolved if a second independent equation connecting \(\tilde U\) and \(\tilde \rho \) was known. Such an equation is hopelesslyobtained by direct observational means; the only way is to postulate it in a mathematical form. In a previouswork, Louise (1981) has shown that Poisson's equation accounted for distances of planets in the solar system(following to the Titius-Bode's law revised by Balsano and Hughes (1979)) if the following relation wasassumed $$\rho ^2 = k\frac{{\tilde U}}{{r^2 }} (k = cte).$$ We now postulate again this relation in order to solve Poisson's equation. Then, $$\nabla ^2 \tilde U - \frac{{\alpha ^2 }}{{r^2 }}\tilde U = 0, (\alpha ^2 = 4\pi Gk).$$ The solution is found in a classical way to be of the form $$\tilde U = cte J_v (pr)e^{ - pz} e^{jn\theta } $$ wheren = integer,p =cte andJ v (pr) = Bessel function with indexv (v 2 =n 2 + α2). By use of the Hankel function instead ofJ v (pr) for large values ofr, the spiral structure is found to be given by $$\tilde U = cte e^{ - pz} e^{j[\Phi _v (r) + n\theta ]} , \Phi _v (r) = pr - \pi /2(v + \tfrac{1}{2}).$$ For small values ofr, \(\tilde U\) = 0: the center of a galaxy is not affected by the density wave which is onlyresponsible of the spiral structure. For various values ofp,n andv, other forms of galaxies can be taken into account: Ring, barred and spiral-barred shapes etc. In order to generalize previous calculations, we further postulateρ 0 =kU 0/r 2, leading to Poisson'sequation which accounts for the disc population $$\nabla ^2 U_0 - \frac{{\alpha ^2 }}{{r^2 }}U_0 = 0.$$ AsU 0 is assumed axisymmetrical, the obvious solution is of the form $$U_0 = \frac{{cte}}{{r^v }}e^{ - pz} , \rho _0 = \frac{{cte}}{{r^{2 + v} }}e^{ - pz} .$$ Finally, Poisson's equation is completely solvable under the assumptionρ =k(U/r 2. The general solution,valid for both disc and spiral arm populations, becomes $$U = cte e^{ - pz} \left\{ {r^{ - v} + } \right.\left. {cte e^{j[\Phi _v (r) + n\theta ]} } \right\},$$ The density distribution along the O z axis is supported by Burstein's (1979) observations.  相似文献   

10.
For the conservative, two degree-of-freedom system with autonomous potential functionV(x,y) in rotating coordinates; $$\dot u - 2n\upsilon = V_x , \dot \upsilon + 2nu = V_y $$ , vorticity (v x -u y ) is constant along the orbit when the relative velocity field is divergence-free such that: $$u(x,y,t) = \psi _y , \upsilon (x,y,t) = - \psi _x $$ . Unlike isoenergetic reduction using the Jacobi, integral and eliminating the time,non-singular reduction from fourth to second-order occurs when (u,v) are determined explicitly as functions of their arguments by solving for ψ (x, y, t). The orbit function ψ satisfies a second-order, non-linear partial differential equation of the Monge Ampere type: $$2(\psi _{xx} \psi _{yy} - \psi _{xy}^2 ) - 2(\psi _{xx} + \psi _{yy} ) + V_{xx} + V_{yy} = 0$$ . Isovortical orbits in the rotating frame arenot level curves of ψ because it contains time explicitly due to coriolis effects. Rather, (x, y) coordinates along the orbit are obtained, from (u, v) either by numerical integration of the kinematic equations, or by partial differentiation of the Legendre transform ? of ψ. In the latter case, ? is shown to satisfy a non-linear, second-order partial differential equation in three independent variables, derived from the Monge-Ampere Equation. Complete reduction to quadrature is possible when space-time symmetries exist, as in the case of central force motion.  相似文献   

11.
The development of the post-nova light curve of V1500 Cyg inUBV andHβ, for 15 nights in September and October 1975 are presented. We confirm previous reports that superimposed on the steady decline of the light curve are small amplitude cyclic variations. The times of maxima and minima are determined. These together with other published values yield the following ephemerides from JD 2 442 661 to JD 2 442 674: $$\begin{gathered} {\text{From}} 17 {\text{points:}} {\text{JD}}_{ \odot \min } = 2 442 661.4881 + 0_{^. }^{\text{d}} 140 91{\text{n}} \hfill \\ \pm 0.0027 \pm 0.000 05 \hfill \\ {\text{From}} 15 {\text{points:}} {\text{JD}}_{ \odot \max } = 2 442 661.5480 + 0_{^. }^{\text{d}} 140 89{\text{n}} \hfill \\ \pm 0.0046 \pm 0.0001 \hfill \\ \end{gathered} $$ with standard errors of the fits of ±0 . d 0052 for the minima and ±0 . d 0091 for the maxima. Assuming V1500 Cyg is similar to novae in M31, we foundr=750 pc and a pre-nova absolute photographic magnitude greater than 9.68.  相似文献   

12.
Non-linear stability of the libration point L 4 of the restricted three-body problem is studied when the more massive primary is an oblate spheroid with its equatorial plane coincident with the plane of motion, Moser's conditions are utilised in this study by employing the iterative scheme of Henrard for transforming the Hamiltonian to the Birkhoff's normal form with the help of double D'Alembert's series. It is found that L 4 is stable for all mass ratios in the range of linear stability except for the three mass ratios: $$\begin{gathered} \mu _{c1} = 0.0242{\text{ }}...{\text{ }}{}^{{\text{\_\_}}}0.1790{\text{ }}...{\text{ }}A_1 , \hfill \\ \mu _{c2} = 0.0135{\text{ }}...{\text{ }}{}^{{\text{\_\_}}}0.0993{\text{ }}...{\text{ }}A_1 , \hfill \\ \mu _{c3} = 0.0109{\text{ }}...{\text{ }}{}^{{\text{\_\_}}}0.0294{\text{ }}...{\text{ }}A_1 . \hfill \\ \end{gathered} $$   相似文献   

13.
A solution of the transfer equation for coherent scattering in stellar atmosphere with Planck's function as a nonlinear function of optical depth, viz. $$B{\text{ }}_v (T) = b_0 + b_1 {\text{ }}e^{ - \beta \tau } $$ is obtained by the method developed by Busbridge (1953).  相似文献   

14.
The Ideal Resonance Problem, defined by the Hamiltonian $$F = B(y) + 2\mu ^2 A(y)\sin ^2 x,\mu \ll 1,$$ has been solved in Garfinkelet al. (1971). As a perturbed simple pendulum, this solution furnishes a convenient and accurate reference orbit for the study of resonance. In order to preserve the penduloid character of the motion, the solution is subject to thenormality condition, which boundsAB" andB' away from zero indeep and inshallow resonance, respectively. For a first-order solution, the paper derives the normality condition in the form $$pi \leqslant max(|\alpha /\alpha _1 |,|\alpha /\alpha _1 |^{2i} ),i = 1,2.$$ Herep i are known functions of the constant ‘mean element’y', α is the resonance parameter defined by $$\alpha \equiv - {\rm B}'/|4AB\prime \prime |^{1/2} \mu ,$$ and $$\alpha _1 \equiv \mu ^{ - 1/2}$$ defines the conventionaldemarcation point separating the deep and the shallow resonance regions. The results are applied to the problem of the critical inclination of a satellite of an oblate planet. There the normality condition takes the form $$\Lambda _1 (\lambda ) \leqslant e \leqslant \Lambda _2 (\lambda )if|i - tan^{ - 1} 2| \leqslant \lambda e/2(1 + e)$$ withΛ 1, andΛ 2 known functions of λ, defined by $$\begin{gathered} \lambda \equiv |\tfrac{1}{5}(J_2 + J_4 /J_2 )|^{1/4} /q, \hfill \\ q \equiv a(1 - e). \hfill \\ \end{gathered}$$   相似文献   

15.
A solution of the transfer equation for coherent scattering in stellar atmosphere with Planck's function as a nonlinear function of optical depth, viz., $$B_v (T) = b_0 + b_1 {\text{ }}e^{ - \beta \tau } $$ is obtained by the method of discrete ordinates originally due to Chandrasekhar.  相似文献   

16.
Until very recently, there has been no identification of the significant gravitational constraints on the many common artificial earth satellite orbits in shallow resonance. Without them it is difficult to compare results derived for different sets of harmonics from different orbits. With them it is possible to extend these results to any degree without reintegration of the orbits. All such constraints are shown to be harmonic in the argument of perigee with constants determinable from tracking data: $$(C*,S*) = (C_0 ,S_0 ) + \sum\limits_{i = 1}^\infty {(C_{Ci} ,S_{Ci} )\cos i\omega + (C_{Si} ,S_{Si} )\sin i\omega .} $$ The constants are simple linear combinations of geopotential harmonics. Five such constants (lumped harmonics) have been derived for the GEOS-2 orbit (order 13, to 30th degree) whose principal resonant period is 6 days. These five lumped harmonics are shown to account for almost all (>98%) of the resonant information in the tracking. They agree well with recent gravitational models which include substantial amounts of GEOS-2 data.  相似文献   

17.
It is suggested that gravitationally bound systems in the Universe can be characterized by a set of actions ?(s). The actions $$\hbar ^{\left( s \right)} = \left( {{\hbar \mathord{\left/ {\vphantom {\hbar {\frac{1}{{2\pi }}\frac{{C^5 }}{{GH_0^2 }}}}} \right. \kern-\nulldelimiterspace} {\frac{1}{{2\pi }}\frac{{C^5 }}{{GH_0^2 }}}}} \right)^{s/6} \left( {\frac{1}{{2\pi }}\frac{{C^5 }}{{GH_0^2 }}} \right)$$ ,derived from general theoretical consideration, are only determined by the fundamental physical constants (Planck's action ?, the velocity of lightC, gravitational constantG, and Hubble's constantH 0) and a scale parameters. It is shown thats=1, 2, and 3 correspond, respectively, to the scales of galaxies, stars, and larger asteroids. The spectra of the characteristic angular momenta and masses for gravitationally bound systems in the Universe are estimated byJ (s) andM (s) =(? (s) /G)1/2. Taken together, an angular momentum-mass relation is obtained,J (s)=A(M(s))2, where \(A = G/C\alpha ,{\text{ }}\alpha \simeq \tfrac{{\text{1}}}{{{\text{137}}}}\) , for the astronomical systems observed on every scale. ThisJ-M relation is consistent with Brosche's empirical relation (Brosche, 1974).  相似文献   

18.
The equation of transfer for interlocked multiplets has been solved by Laplace transformation and the Wiener-Hopf technique developed by Dasgupta (1978) considering two nonlinear forms of Planck function: i.e., (a) $$B{\text{ }}_{\text{v}} (T) = B(t) = b_0 + b_1 {\text{ }}e^{ - \alpha t} ,$$ (b) $$B{\text{ }}_{\text{v}} (T) = B(t) = b_0 + b_1 t + b_2 E_2 (t).$$ Solutions obtained by Dasgupta (1978) or by Chandrasekhar (1960) may be obtained from our solutions by dropping the nonlinear terms.  相似文献   

19.
An attempt has been made to obtain an expression for the rate of stellar mass loss using dimensional analysis. The best expression for O and B stars is of the form: $$\dot M = A'{\text{ }}\left( {\frac{1}{{G^{1/2} c^4 }}} \right){\text{ }}L^{\text{2}} {\text{ (}}R/M)^{{\text{3/2}}} .$$ It is also found thatA′ increases as one goes from B→O stars and from O→O(f)→O(f)), but is not sensitive to luminosity.  相似文献   

20.
An exact solution of the transfer equation for coherent scattering in stellar atmospheres with Planck's function as a nonlinear function of optical depth, of the form $$B_v (T) = b_0 + b_1 {\text{ }}e^{ - \beta \tau } $$ is obtained by the method of the Laplace transform and Wiener-Hopf technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号