首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
桥梁通常是线路中的控制工程,其抗震性能显得尤为重要。作为梁桥重要组成部分的桥墩,往往是地震作用下容易受到损伤的构件。结合西部山区梁桥的典型桥墩结构形式,基于纤维模型的有限元方法建立桥墩的非线性数值分析模型。采用MPA方法对不同高度桥墩的地震响应进行分析,以非线性时程分析方法的计算结果为基准研究MPA方法的适用性。计算表明MPA方法在分析高阶模态参与程度较高的高墩构件时适用性较差。  相似文献   

2.
为讨论利用纤维梁柱单元进行钢筋混凝土桥墩地震反应分析的建模方法,分别以4个悬臂式单柱墩和1个双柱墩拟静力加载试验,以及1个悬臂式单柱墩的振动台试验结果为依据,基于OpenSees数值分析平台建立了桥墩的地震反应分析模型。通过改变单元数量,分析了基于力的纤维梁柱单元和基于位移的纤维梁柱单元对桥墩地震反应的模拟精度。结果表明:对悬臂式单柱墩的拟静力和振动台试验,可沿墩高仅建立1个基于力的纤维梁柱单元,并在墩底串联1个考虑纵筋塑性渗透和粘结滑移的转动弹簧单元,即可获得很好的模拟结果。当采用基于位移的纤维梁柱单元时,应沿墩高至少建立2个单元,且塑性铰区至少有1个,才能保证获得较高的模拟精度。对双柱墩拟静力试验,采用基于力的纤维梁柱单元建模,沿每个墩高建立2个单元即可;以基于位移的纤维梁柱单元建模,建议沿每个墩高建立3个单元,且其中2个单元布置在塑性铰区。当数值模型可对静力滞回曲线取得很好的模拟结果后,该模型一般可对动力作用下墩顶最大位移和墩底最大剪力进行较为准确的模拟,但对墩顶残余位移的模拟精度无法保证。  相似文献   

3.
Concentrated plasticity (CP) models are frequently used in static and dynamic building analysis and have been implemented in available commercial software. This investigation deals with three different CP‐models, a simplified macroelement model (SEM) for a complete building story, a frame element with elasto‐plastic interaction hinges (PH), and a frame element with fiber hinges (FB). The objectives of this work are to evaluate the quality of the earthquake responses predicted by these models and to identify important aspects of their implementation and limitations for their use in dynamic analysis. The three elements are tested in a single‐story asymmetric plan building and in a three‐story steel building. Results show that base shear and global response values are usually computed with better accuracy than interstory deformations and local responses. Besides, the main limitation of elasto‐plastic CP models is to control the displacement offsets that result from perfect elasto‐plastic behavior. On the other hand, calibration of the SEM‐model shows that global responses in steel structures may be computed within 20% error in the mean at a computational cost two orders of magnitude smaller than that of the other CP elements considered. However, the three element models considered lead to increasing levels of accuracy in the dynamic response and their use depends on the refinement of the analysis performed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
夏玉超  李振 《地震工程学报》2020,42(5):1310-1316
针对考虑动水压力作用下桥墩内部钢筋锈蚀后抗震力学性能变化规律的问题,通过力学推导和abaqus有限元模拟研究了桥墩的力学性能,首先依托塑性铰区域高度计算公式,构建桥墩动水压力计算简化模型,通过改进有限元计算模型,提出了优化后的考虑钢筋锈蚀的桥墩计算公式。计算结果表明:动水压力作用下桥墩底部钢筋锈蚀与混凝土损伤对桥墩主压应力影响最大,其他区域钢筋锈蚀影响较小,并对桥梁承载力计算公式进行修正,为后期同类工程计算提供了理论依据。  相似文献   

5.
目的是解析地预测钢筋混凝土桥墩在反复荷载作用下的非线性滞回特性。使用实验中得到的力一位移滞回曲线,对随轴压比,配筋率和配箍率的变化而变化的刚度和强度折减系数,进行了回归分析,并提出了其表达式。按照提出的理论力一位移滞回模型,能够预测现存钢筋混凝土桥墩的刚度和强度折减情况。  相似文献   

6.
The present paper proposes equivalent stiffness and energy dissipation properties of reinforced concrete hollow bridge piers to be used in the context of response spectrum performance based assessment and design. The work is carried out by performing parametric numerical analysis using a 2D fibre model calibrated against experimental results and by varying the longitudinal steel reinforcement ratio, height over width ratio, normalised axial force, level of confinement and concrete class of a rectangular hollow section reinforced with Tempcore B500C steel. The results of the analysis are given in the form of charts and closed form expressions for the yield curvature and moment, ultimate ductility, post yielding stiffness ratio and energy dissipated of the section, and are translated to the member level through the plastic hinge length approach. Likewise, the parameters of a Takeda model derived from the parametric analysis are given for use in nonlinear time history analysis.  相似文献   

7.
为克服利用OpenSEES进行预制拼装桥墩纤维模型分析时干接缝区域模拟困难的问题,提出一种由刚性单元、非线性梁柱单元、零长度单元配合ENT单压材料组成的干接缝单元。通过基于干接缝单元的纤维模型数值模拟结果与文献中的1:3.5缩尺桥墩拟静力试验结果对比发现:该干接缝单元不仅解决了墩身混凝土压溃带来的模型不收敛问题,而且考虑了墩身节段宽度对干接缝区域的影响,使预制拼装桥墩干接缝处的力学性能更接近实际的力学性能;数值模拟结果与试验结果吻合较好证明了该干接缝单元用于模拟预制拼装桥墩干接缝区域的可行性。在此基础上设置耗能钢筋、外包钢管和墩底橡胶支承垫层作为桥墩附加耗能装置,对预制拼装桥墩进行拟静力循环加载模拟,研究不同耗能装置对预制拼装桥墩的滞回能力、预应力筋内力、累积耗能、残余位移以及等效刚度等性能参数的影响。结果表明:设置耗能钢筋和外包钢管可以显著提高预制拼装桥墩的耗能能力、水平承载力和刚度,降低预应力损失;设置墩底橡胶支承垫层也能提高预制拼装桥墩的耗能能力,但会降低桥墩的水平承载力和刚度,应根据桥墩自身刚度谨慎选择橡胶垫层的刚度。  相似文献   

8.
The biaxial response of two bridge piers is experimentally investigated. A post‐tensioned precast bridge pier with external replaceable mild‐steel dissipaters is tested under biaxial loading. The performance of the post‐tensioned bridge pier is compared with a conventionally reinforced monolithic bridge pier. The experimental biaxial response is then compared with previous uniaxial experimental testing of identical bridge piers to understand the influence of biaxial loading, specifically concerning post‐tensioned rocking sections. A 3‐dimensional moment–curvature and moment–rotation analysis program is created to generate the monotonic section response of a conventional and post‐tensioned bridge pier. After comparing the accuracy of the section analysis program to the experimental testing of the monolithic pier, the program is validated against the experimental testing of the post‐tensioned bridge pier. This section analysis program is then used in the calibration of a macro‐model to capture the entire cyclic response of the post‐tensioned bridge pier. The macro‐model adopts multiple linear‐elastic compression‐only springs at the rocking interface, combined with non‐linear inelastic springs for each of the mild‐steel dissipaters and returns encouraging results at both local and global levels. The paper concludes with a number of biaxial moment‐interaction design charts for monolithic and post‐tensioned bridge piers as a function of mechanical and geometric section properties. The design charts define the biaxial yield surface at nominal yield and at the design section capacity defined by one of three material limit states. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
桥梁高墩合理计算模型探讨   总被引:12,自引:0,他引:12  
采用弹塑性梁柱单元和弹塑性纤维梁柱单元分别建立桥梁墩柱的两种计算模型,深入讨论了桥梁墩柱在地震作用下,塑性铰形成、塑性区扩展以及塑性转角、墩顶位移等结构需求,针对弹塑性梁柱单元模型中不同单元划分数量对墩柱地震需求的影响也进行了比较分析。计算结果表明,高阶振型对桥梁高墩地震响应贡献较大,其塑性转角、墩顶位移等地震需求的变化规律与中、低墩明显不同。桥梁高墩在墩身中部及墩底同时形成塑性铰,且塑性区随地震激励的增强而扩展。单元划分数量对桥梁墩柱的塑性转角、墩顶位移等地震需求均有较大影响,最后讨论了两种计算模型在墩柱地震需求计算时的适用性。  相似文献   

10.
Distributed plasticity beam elements are commonly used to evaluate limit state demands for performance‐based analysis of reinforced concrete (RC) structures. Strain limits are often preferred to drift limits because they directly relate to damage and are therefore less dependent on member geometry and boundary conditions. However, predicting accurately strain demands still represents a major simulation challenge. Tension shift effects, which induce a linear curvature profile in the plastic hinge region of RC columns and walls, are one of the main causes for the mismatch between experimental and numerical estimates of local level quantities obtained through force‐based formulations. Classical displacement‐based approaches are instead suitable to simulate such linear curvature profile. Unfortunately, they verify equilibrium only on an average sense due to the wrong assumption on the axial displacement field, leading to poor deformation and force predictions. This paper presents a displacement‐based element in which axial equilibrium is strictly verified along the element length. The assumed transversal displacement field ensures a linear curvature profile, connecting accurately global displacement and local strain demands. The proposed finite element is validated against two sets of quasi‐static cyclic tests on RC bridge piers and walls. The results show that curvature and strain profiles for increasing ductility demands are significantly improved when axially equilibrated rather than classical displacement‐based or force‐based elements are used to model the structural members. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
为研究不同加固方式对钢筋混凝土(RC)圆截面桥墩抗震性能的影响,利用OpenSees有限元软件建立了普通RC桥墩以及分别采用钢套管、碳纤维增强聚合物(CFRP)、体外预应力筋进行加固的桥墩数值分析模型,对模型输入远断层地震动,进行增量动力分析。以墩顶峰值位移角与震后残余位移角为指标,对比分析了桥墩加固前后的地震响应。结果表明:采用钢套管、体外预应力筋和CFRP加固后,RC桥墩的峰值位移与震后残余位移均减小,钢套管加固方式对桥墩峰值位移的降低幅度最大,体外预应力筋加固方式对抑制桥墩震后残余位移的效果最好;随着剪跨比的增大,3种加固方式对桥墩在地震动作用下位移响应的抑制作用均逐步减小;随着轴压比的增大,3种加固方式对RC桥墩峰值位移的抑制作用逐步降低。  相似文献   

12.
本文基于在MSC.Marc中加入纤维模型编制的THUFIBER程序的基础上,分别采用纤维模型和三维实体单元模型模拟桥墩和上部结构,建立高墩大跨连续刚构桥有限元模型。同时,采用2008年汶川地震波,分析了行波效应对四川某高墩大跨连续刚构桥非线性地震反应的影响。结果表明:行波效应对高墩桥的墩顶位移和墩底剪力影响较大,墩顶位移减小了20%—50%;而墩底剪力增大了20%—30%。  相似文献   

13.
The seismic behavior of steel bridge piers partially filled with concrete under actual earthquake conditions was investigated by using 20 square section specimens subjected to static cyclic loading tests and single‐directional and bidirectional hybrid loading tests. Acceleration records of two horizontal NS and EW directional components for hard (GT1), medium (GT2), and soft grounds (GT3), obtained during the 1995 Kobe earthquake, were adopted in dynamic tests. Experimental results clearly showed that maximum and residual displacements under actual earthquake conditions cannot be accurately estimated by conventional single‐directional loading tests, especially for GT2 and GT3. A modified admissible displacement was proposed on the basis of bidirectional loading test results. The concrete fill can effectively improve the seismic resistance performance if the concrete inside the steel bridge piers is sufficiently high in quantity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
高墩桥梁的地震响应与传统的中低墩桥梁有很大差别,我国现行桥梁抗震规范对此没有规定。为了合理评估高墩大跨桥梁的抗震性能,以一座连续刚构桥为研究对象,采用OpenSees建立弹塑性有限元动力分析模型,从PEER地震数据库中选取了15条地震记录进行增量动力分析(Incre-mental dynamic analysis,IDA),利用Ramberg-Osgood函数对控制参数进行统计,从而得到了结构概率分位值为10%、50%和90%的IDA曲线,结合定义的损伤状态对结构的抗震性能进行了评估;根据墩身最大曲率分布得到了塑性区域长度,提出了根据最大曲率分布估算墩顶目标位移的方法。结果表明:利用R-O函数统计得到的IDA概率分位曲线能很好地体现桥梁抗震性能,并能给出满足相应性能水准的可靠等级。在强震作用下,高墩结构塑性区域长度与各国规范计算结果吻合,按墩身最大曲率分布估算墩顶位移与IDA分析结果吻合较好,弥补了规范的不足。  相似文献   

15.
Unstiffened steel plate shear walls (SPSWs) are used as lateral load‐resisting systems in building structures. The energy dissipation mechanism of SPSWs consists of the tension yielding of web plates and the formation of plastic hinges at the ends of horizontal boundary elements. However, vertical boundary elements (VBEs) of high‐rise SPSWs may experience high axial forces under lateral loading. This study explores the effectiveness of staggering of web plates on the reduction of VBE forces and drift response of SPSWs during an earthquake event. An analytical study has been conducted to determine the base shear reduction factor so as to match the overstrength of staggered systems with conventional SPSWs. A design methodology has been proposed for staggered SPSWs. Six‐, 9‐, and 20‐storey staggered and conventional SPSWs with varying aspect ratios are considered in this study to compare their seismic response. These study frames are modelled and analysed in OpenSEES platform. Nonlinear static and dynamic analyses are performed to compare the drift response, hinge mechanisms, and steel tonnage. Staggered SPSWs showed uniform drift distribution and reduction in interstorey drift and axial force demand on the VBEs.  相似文献   

16.
This paper discusses the sensitivity of softening reinforced concrete frame structures to the changes in input ground motion and investigates the possibility of localizations for this type of structure in static and dynamic analysis. A finite element model is used in which the sections resisting force are calculated using a proposed differential hysteretic model. This model is especially developed for modelling softening behaviour under cyclic loading. To obtain parameters of the differential model the moment–curvature of each section is evaluated using a microplane constitutive law for concrete and bi‐linear elasto‐plastic law for reinforcements. The capability of the procedure is verified by comparing results with available experimental data at element level, which shows good accuracy of the procedure. The effect of possible changes in ground motion is assessed using a non‐stationary Kanai–Tajimi process. This process is used to generate ground motions with approximately the same amplitude and frequency content evolution as those of base ground motion. The possibility of localization in static and dynamic loading is investigated using two structures. A measure for the possibility of localization in code‐designed structures is obtained. This study indicates that localization may occur in ordinary moment‐resisting structures located in high seismic zones. Localization may result in substantial drift in global response and instability due to Pδ effect. Also, it is shown that the structure becomes very sensitive to the input ground motion. It is concluded that allowance by some design codes of the use of ordinary moment‐resisting frames in regions with high seismicity should be revised or improvements should be made in the detailing requirements at critical sections of these structures. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
随着高墩大跨桥梁的广泛应用,其抗震问题也越来越突出。本文主要考虑轴压比、长细比的影响,进行了6个钢筋混凝土薄壁箱型高墩缩尺模型的双向拟静力试验,以及反复荷载作用下的非线性分析。研究表明:①钢筋混凝土薄壁箱型高墩柱在多维荷载共同作用下,主要发生典型的弯曲破坏,但剪切作用也不容忽视;②墩枉的破坏受到不同方向耦合作用的显著影响,尤其是抗弯刚度小的一侧受到的影响更大,较早就出现开裂,提前进入塑性发展阶段;③非线性有限元计算的滞回曲线、骨架曲线等与试验结果基本吻合;④建立了考虑轴压比、长细比影响的钢筋混凝土薄壁箱型高墩的双向荷载一位移恢复力模型,该模型基本能够反映钢筋混凝土薄壁箱型高墩的抗震性能,可供钢筋混凝土箱型高墩柱及高墩桥梁结构的抗震设计和动力计算参考。  相似文献   

18.
Energy dissipation devices are necessary for base‐isolated buildings to control the deformation in the isolation system and to dissipate the earthquake‐induced energy. U‐shaped steel dampers (also known as U‐dampers) dissipate energy through plastic deformation of specially designed U‐shaped steel elements. This type of device can be installed at several locations in the isolation system. U‐dampers have been widely used in Japan for different types of isolated structures, such as hospitals, plants and residential buildings, since the 1995 Kobe Earthquake. Previous research has used static tests to estimate the performance of U‐dampers. However, the ultimate plastic deformation capacities and hysteretic behaviors of full‐scale U‐dampers under dynamic excitations still remain unclear. In addition, it is unclear whether the initial temperature has an effect on the hysteretic behavior and plastic deformation capacity of U‐dampers. In this paper, two series of dynamic loading tests of U‐dampers were conducted to evaluate the issues described earlier. The major findings of the study are (i) the loading speed has little effect on the plastic deformation capacity of U‐dampers; (ii) method to evaluate the ultimate plastic deformation capacities of U‐shaped steel dampers of different sizes is established using a Manson–Coffin relation‐based equation that is based on the peak‐to‐peak horizontal shear angle γt, which is defined as the lateral deformation amplitude (peak‐to‐peak amplitude) divided by the height of the dampers; (iii) the loading rate and the initial temperature have a minimal effect on the hysteretic behavior of the U‐dampers; and (iv) a bilinear model is proposed to simulate the force‐deformation relationships of the U‐dampers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
强震作用下超高桥墩动力稳定性理论研究   总被引:4,自引:4,他引:0       下载免费PDF全文
根据平截面假定,考虑超高桥墩大位移变形产生的几何非线性影响,建立超高桥墩的振动控制微分方程,利用变步长的龙格-库塔法进行求解,结合B-R运动判定准则,对超高桥墩在地震作用下的动力失稳机理进行研究。理论分析表明,超高桥墩的动力失稳与桥墩的几何尺寸、质量分布、边界条件有密切关系;桥墩动力失稳时刻随地震波加速度峰值的增大而减小;失稳时刻与失稳加速度荷载有对应关系。算例结果表明:本文方法正确,利用本文理论能够准确计算超高桥墩的失稳时刻及失稳加速度,对超高桥墩动力失稳的理论分析及工程实践有重要指导意义。  相似文献   

20.
This paper presents a three‐dimensional analysis framework, based on the explicit finite element method, for the simulation of reinforced concrete components under cyclic static and dynamic loading. A recently developed triaxial constitutive model for concrete is combined with a material model for reinforcing steel which can account for rupture due to low‐cycle fatigue. The reinforcing bars are represented with geometrically nonlinear beam elements to account for buckling of the reinforcement. The strain penetration effect is also accounted for in the models. The modeling scheme is used in a commercial finite element program and validated with the results of experimental static and dynamic tests on reinforced concrete columns and walls. The analyses are supplemented with a parametric study to investigate the impact of several modeling assumptions on the obtained results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号