首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
This paper presents a new identification technique for the extraction of modal parameters of structural systems subjected to base excitation. The technique uses output‐only measurements of the structural response. A combined subspace‐maximum likelihood algorithm is developed and applied to a three‐degree‐of‐freedom simulation model. Five ensembles of synthetically generated input signals, representing varying input characteristics, are employed in Monte Carlo simulations to illustrate the applicability of the method. The technique is able to circumvent some of the difficulties arising from short data sets by employing the Expectation Maximization (EM) algorithm to refine the subspace state estimates. This approach is motivated by successful application by previous authors on speech signals. Results indicate that, for certain system characteristics, more accurate pole estimates can be identified using the combined subspace‐EM formulation. In general, the damping ratios of the system are difficult to identify accurately due to limitations on data set length. The applicability of the technique to structural vibration signals is illustrated through the identification of seismic response data from the Vincent Thomas Bridge. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
A procedure to estimate the seismic motion at the base of a building from measured acceleration response at two or more floors is presented. The proposed method is comprised of two steps. In the first step, the dynamic characteristics of the building are inferred by using an output‐only system identification procedure. In the second step, the motion of the base of the building is estimated by using the transfer function of a simplified building model consisting of a shear and flexural continuous beam together with dynamic properties obtained in the first step. The proposed method is validated first with an analytical model subjected to the 1940 El Centro ground motion and then with an instrumented building in California that experienced the 1994 Northridge earthquake, and the ground motions at the base of the building are available. It is shown that the proposed method is capable of providing very good estimates of the motion at the base. The use of the proposed method is finally illustrated on an instrumented building, where the sensor at the base of the building did not function during the 1994 Northridge earthquake. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Output‐only modal identification is needed when only structural responses are available. As a powerful unsupervised learning algorithm, blind source separation (BSS) technique is able to recover the hidden sources and the unknown mixing process using only the observed mixtures. This paper proposes a new time‐domain output‐only modal identification method based on a novel BSS learning algorithm, complexity pursuit (CP). The proposed concept—independent ‘physical systems’ living on the modal coordinates—connects the targeted constituent sources (and their mixing process) targeted by the CP learning rule and the modal responses (and the mode matrix), which can then be directly extracted by the CP algorithm from the measured free or ambient system responses. Numerical simulation results show that the CP method realizes accurate and robust modal identification even in the closely spaced mode and the highly damped mode cases subject to non‐stationary ambient excitation and provides excellent approximation to the non‐diagonalizable highly damped (complex) modes. Experimental and real‐world seismic‐excited structure examples are also presented to demonstrate its capability of blindly extracting modal information from system responses. The proposed CP is shown to yield clear physical interpretation in modal identification; it is computational efficient, user‐friendly, and automatic, requiring little expertise interactions for implementations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
The dynamic behaviour of two curved cable‐stayed bridges, recently constructed in northern Italy, has been investigated by full‐scale testing and theoretical models. Two different excitation techniques were employed in the dynamic tests: traffic‐induced ambient vibrations and free vibrations. Since the modal behaviour identified from the two types of test are very well correlated and a greater number of normal modes was detected during ambient vibration tests, the validity of the ambient vibration survey is assessed in view of future monitoring. For both bridges, 11 vibration modes were identified in the frequency range of 0ndash;10Hz, being a one‐to‐one correspondence between the observed modes of the two bridges. Successively, the information obtained from the field tests was used to validate and improve 3D finite elements so that the dynamic performance of the two systems were assessed and compared based on both the experimental results and the updated theoretical models. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
By identifying changes in stiffness parameters, structural damage can be detected and monitored. Although considerable progress has been made in this research area, many challenges remain in achieving robust structural identification based on incomplete and noisy measurement signals. The identification task is made even more difficult if measurement of input force is to be eliminated. To this end, an output‐only structural identification strategy is proposed to identify unknown stiffness and damping parameters. A non‐classical approach based on genetic algorithms (GAs) is adopted. The proposed strategy makes use of the recently developed GA‐based method of search space reduction, which has shown to be able to accurately and reliably identify structural parameters from measured input and output signals. By modifying the numerical integration scheme, input can be computed as the parameter identification task is in progress, thereby eliminating the need to measure forces. Numerical and experimental results demonstrate the power of the strategy in accurate and efficient identification of structural parameters and damage using only incomplete acceleration measurements. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Dynamic characteristics of structures — viz. natural frequencies, damping ratios, and mode shapes — are central to earthquake‐resistant design. These values identified from field measurements are useful for model validation and health‐monitoring. Most system identification methods require input excitations motions to be measured and the structural response; however, the true input motions are seldom recordable. For example, when soil–structure interaction effects are non‐negligible, neither the free‐field motions nor the recorded responses of the foundations may be assumed as ‘input’. Even in the absence of soil–structure interaction, in many instances, the foundation responses are not recorded (or are recorded with a low signal‐to‐noise ratio). Unfortunately, existing output‐only methods are limited to free vibration data, or weak stationary ambient excitations. However, it is well‐known that the dynamic characteristics of most civil structures are amplitude‐dependent; thus, parameters identified from low‐amplitude responses do not match well with those from strong excitations, which arguably are more pertinent to seismic design. In this study, we present a new identification method through which a structure's dynamic characteristics can be extracted using only seismic response (output) signals. In this method, first, the response signals’ spatial time‐frequency distributions are used for blindly identifying the classical mode shapes and the modal coordinate signals. Second, cross‐relations among the modal coordinates are employed to determine the system's natural frequencies and damping ratios on the premise of linear behavior for the system. We use simulated (but realistic) data to verify the method, and also apply it to a real‐life data set to demonstrate its utility. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Structural identification is the inverse problem of estimating physical parameters of a structural system from its vibration response measurements. Incomplete instrumentation and ambient vibration testing generally result in incomplete and arbitrarily normalized measured modal information, often leading to an ill‐conditioned inverse problem and non‐unique identification results. The identifiability of any parameter set of interest depends on the amount of independent available information. In this paper, we consider the identifiability of the mass and stiffness parameters of shear‐type systems in output‐only situations with incomplete instrumentation. A mode shape expansion‐cum‐mass normalization approach is presented to obtain the complete mass normalized mode shape matrix, starting from the incomplete non‐normalized modes identified using any operational modal analysis technique. An analysis is presented to determine the minimum independent information carried by any given sensor set‐up. This is used to determine the minimum necessary number and location of sensors from the point of view of minimum necessary information for identification. The different theoretical discussions are illustrated using numerical simulations and shake table experiments. It is shown that the proposed identification algorithm is able to obtain reliably accurate physical parameter estimates under the constraints of minimal instrumentation, minimal a priori information, and unmeasured input. The sensor placement rules can be used in experiment design to determine the necessary number and location of sensors on the monitored system. John Wiley & Sons, Ltd.  相似文献   

8.
9.
Structural damage assessment under external loading, such as earthquake excitation, is an important issue in structural safety evaluation. In this regard, appropriate data analysis and feature extraction techniques are required to interpret the measured data and to identify the state of the structure and, if possible, to detect the damage. In this study, the recursive subspace identification with Bona‐fide LQ renewing algorithm (RSI‐BonaFide‐Oblique) incorporated with moving window technique is utilized to identify modal parameters such as natural frequencies, damping ratios, and mode shapes at each instant of time during the strong earthquake excitation. From which the least square stiffness method (LSSM) combined with the model updating technique, called efficient model correction method (EMCM), is used to estimate the first‐stage system stiffness matrix using the simplified model from the previously identified modal parameters (nominal model). In the second stage, 2 different damage assessment algorithms related to the nominal system stiffness matrix were derived. First, the model updating technique, called EMCM, is applied to correct the nominal model by the newly identified modal parameters during the strong motion. Second, the element damage index can be calculated using element damage index method (EDIM) to quantify the damage extent in each element. Verification of the proposed methods through the shaking table test data of 2 different types of structures and a building earthquake response data is demonstrated to specify its corresponding damage location, the time of occurrence during the excitation, and the percentage of stiffness reduction.  相似文献   

10.
Civil engineering structures are often subjected to multidirectional actions such as earthquake ground motion, which lead to complex structural responses. The contributions from the latter multidirectional actions to the response are highly coupled, leading to a MIMO system identification problem. Compared with single‐input, multiple‐output (SIMO) system identification, MIMO problems are more computationally complex and error prone. In this paper, a new system identification strategy is proposed for civil engineering structures with multiple inputs that induce strong coupling in the response. The proposed solution comprises converting the MIMO problem into separate SIMO problems, decoupling the outputs by extracting the contribution from the respective input signals to the outputs. To this end, a QR factorization‐based decoupling method is employed, and its performance is examined. Three factors, which affect the accuracy of the decoupling result, including memory length, input correlation, and system damping, are investigated. Additionally, a system identification method that combines the autoregressive model with exogenous input (ARX) and the Eigensystem Realization Algorithm (ERA) is proposed. The associated extended modal amplitude coherence and modal phase collinearity are used to delineate the structural and noise modes in the fitted ARX model. The efficacy of the ARX‐ERA method is then demonstrated through identification of the modal properties of a highway overcrossing bridge. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
In this study, we formulate an improved finite element model‐updating method to address the numerical difficulties associated with ill conditioning and rank deficiency. These complications are frequently encountered model‐updating problems, and occur when the identification of a larger number of physical parameters is attempted than that warranted by the information content of the experimental data. Based on the standard bounded variables least‐squares (BVLS) method, which incorporates the usual upper/lower‐bound constraints, the proposed method (henceforth referred to as BVLSrc) is equipped with novel sensitivity‐based relative constraints. The relative constraints are automatically constructed using the correlation coefficients between the sensitivity vectors of updating parameters. The veracity and effectiveness of BVLSrc is investigated through the simulated, yet realistic, forced‐vibration testing of a simple framed structure using its frequency response function as input data. By comparing the results of BVLSrc with those obtained via (the competing) pure BVLS and regularization methods, we show that BVLSrc and regularization methods yield approximate solutions with similar and sufficiently high accuracy, while pure BVLS method yields physically inadmissible solutions. We further demonstrate that BVLSrc is computationally more efficient, because, unlike regularization methods, it does not require the laborious a priori calculations to determine an optimal penalty parameter, and its results are far less sensitive to the initial estimates of the updating parameters. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号