首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In two companion papers a simplified non‐linear analysis procedure for infilled reinforced concrete frames is introduced. In this paper a simple relation between strength reduction factor, ductility and period (R–µ–T relation) is presented. It is intended to be used for the determination of inelastic displacement ratios and of inelastic spectra in conjunction with idealized elastic spectra. The R–µ–T relation was developed from results of an extensive parametric study employing a SDOF mathematical model composed of structural elements representing the frame and infill. The structural parameters, used in the proposed R–µ–T relation, in addition to the parameters used in a usual (e.g. elasto‐plastic) system, are ductility at the beginning of strength degradation, and the reduction of strength after the failure of the infills. Formulae depend also on the corner periods of the elastic spectrum. The proposed equations were validated by comparing results in terms of the reduction factors, inelastic displacement ratios, and inelastic spectra in the acceleration–displacement format, with those obtained by non‐linear dynamic analyses for three sets of recorded and semi‐artificial ground motions. A new approach was used for generating semi‐artificial ground motions compatible with the target spectrum. This approach preserves the basic characteristics of individual ground motions, whereas the mean spectrum of the whole ground motion set fits the target spectrum excellently. In the parametric study, the R–µ–T relation was determined by assuming a constant reduction factor, while the corresponding ductility was calculated for different ground motions. The mean values proved to be noticeably different from the mean values determined based on a constant ductility approach, while the median values determined by the different procedures were between the two means. The approach employed in the study yields a R–µ–T relation which is conservative both for design and performance assessment (compared with a relation based on median values). Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents pseudo‐dynamic test results on the in‐plane seismic behaviour of infilled frames. Thirteen single‐storey, single‐bay, half‐size‐scale, reinforced concrete‐frame specimens, most of which infilled with non‐structural masonry made of perforated bricks and cement mortar are tested. The infills are in contact with frames, without any connector; openings are not covered. The frames are different in their strength and details, reinforcement grade, and aspect ratio. Seismic input is the 1976 Tolmezzo (Friuli, Italy) ground acceleration, to which specimens are subjected two times: virgin and damaged by the previous test. The global seismic response of initially virgin infilled specimens considerably differs from that of bare specimens. This follows a dramatic change of properties: compared to a bare frame, the initial stiffness increases by one order of magnitude, and the peak strength more than doubles. The peak drift lessens; however, the displacement ductility demand does not. The energy demand is greater. Nevertheless, the influence of infill decreases as damage proceeds. Displacement time histories of damaged specimens are quite similar. At the local level, infill causes asymmetry and concentration of the frame deformation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
Two models of masonry infilled reinforced concrete frame buildings were tested at the shaking table. Models were built in the reduced scale 1:4 using the materials produced in accordance to modelling demands of true replica modelling technique. The first model represented a one‐storey box‐like building and the second one the two‐stories building with plan shaped in the form of a letter H. Models were shaken with the series of horizontal sine dwell motions with gradually increasing amplitude. Masonry infills of tested models were constructed of relatively strong bricks laid in weak mortar. Therefore, typical cracks developed and propagated along mortar beds without cracking of bricks or crushing of infill corners. Data collected from tests will be used in future evaluation, verification and development of computational models for prediction of in‐plane and out‐of‐plane behaviour of masonry infills. The responses of tested models can be well compared with global behaviour of real structures using the modelling rules. The similarity of local behaviour of structural elements, e.g. reinforced concrete joints, is less reliable due to limitations in modelling of steel reinforcement properties. The model responses showed that buildings designed according to Eurocodes are able to sustain relatively high dynamic excitations due to a significant level of structural overstrength. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
The objective of the study presented in this paper is to investigate the effects of masonry infills on the shear demand and failure of columns for the case when reinforced concrete frames with such infills are modeled by means of simplified nonlinear models that are not capable of the direct simulation of these effects. It is shown that an approximate simulation of the shear failure of columns can be achieved through an iterative procedure that involves pushover analysis, post‐processing of the analysis results using limit‐state checks of the components, and model adaptation if shear failure of columns is detected. The fragility parameters and the mean annual frequency of limit‐state exceedance are computed on the basis of nonlinear dynamic analysis by using an equivalent SDOF model. The proposed methodology is demonstrated by means of two examples. It was shown that the strength of the four‐story and seven‐story buildings and their deformation capacity are significantly overestimated if column shear failure due to the effects of masonry infills is neglected, whereas the mean annual frequency of limit‐state exceedance for the analyzed limit states is significantly larger than that estimated for the case if the shear failure of columns is neglected. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
本文通过对现有能力谱法的研究,在吸收前人研究成果的基础上,探讨了一种简化的能力谱方法。该方法不是根据需求谱与能力谱有无交点(性能点)为评估依据,而是以能力谱为根据求出不同延性状态下既有建筑物相应的抗震能力,并与需求谱相应的谱加速度比较,判断结构的抗震能力是否满足要求。该方法不需要复杂的迭代计算来求结构的性能点,计算过程简单;同时,可以考虑既有建筑物的老化及损伤。最后,本文应用自行编制的计算程序,通过一个工程实例说明了该方法的应用及其特点。  相似文献   

6.
钢筋混凝土框架结构抗震超强系数分析   总被引:1,自引:0,他引:1  
基于我国建筑抗震规范要求设计的14栋代表不同抗震特征要求的多高层规则钢筋混凝土框架,通过静力弹塑性分析详细地评估了框架结构的体系超强能力。分析中采用与抗震规范等效静力地震作用效应分布模式相同的单调递增侧向荷载,以二维平面框架为分析对象。分析结果表明地震分区对超强系数的影响较大;有填充墙框架比无填充墙框架的超强能力明显要大;内框架的超强能力比外框架的超强能力大;超强系数随框架楼层数的增加而减小。  相似文献   

7.
Predictors (or estimates) of seismic structural demands that are less computationally time‐consuming than non‐linear dynamic analysis can be useful for structural performance assessment and for design. In this paper, we evaluate the bias and precision of predictors that make use of, at most, (i) elastic modal vibration properties of the given structure, (ii) the results of a non‐linear static pushover analysis of the structure, and (iii) elastic and inelastic single‐degree‐of‐freedom time‐history analyses for the specified ground motion record. The main predictor of interest is an extension of first‐mode elastic spectral acceleration that additionally takes into account both the second‐mode contribution to (elastic) structural response and the effects of inelasticity. This predictor is evaluated with respect to non‐linear dynamic analysis results for ‘fishbone’ models of steel moment‐resisting frame (SMRF) buildings. The relatively small number of degrees of freedom for each fishbone model allows us to consider several short‐to‐long period buildings and numerous near‐ and far‐field earthquake ground motions of interest in both Japan and the U.S. Before doing so, though, we verify that estimates of the bias and precision of the predictor obtained using fishbone models are effectively equivalent to those based on typical ‘full‐frame’ models of the same buildings. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
Nonlinear pushover analysis of infilled concrete frames   总被引:1,自引:1,他引:0  
Six reinforced concrete frames with or without masonry infills were constructed and tested under horizontal cyclic loads. All six frames had identical details in which the transverse reinforcement in columns was provided by rectangular hoops that did not meet current ACI specifications for ductile frames. For comparison purposes, the columns in three of these frames were jacketed by carbon-fiber-reinforced-polymer (CFRP) sheets to avoid possible shear failure. A nonlinear pushover analysis, in which the force-deformation relationships of individual elements were developed based on ACI 318, FEMA 356, and Chen's model, was carried out for these frames and compared to test results. Both the failure mechanisms and impact of infills on the behaviors of these frames were examined in the study. Conclusions from the present analysis provide structural engineers with valuable information for evaluation and design of infilled concrete frame building structures.  相似文献   

9.
Most of the finite element analyses of reinforced concrete structures are restricted to two‐dimensional elements. Three‐dimensional solid elements have rarely been used although nearly all reinforced concrete structures are under a triaxial stress state. In this work, a three‐dimensional solid element based on a smeared fixed crack model that has been used in the past mainly for monotonic static loading analysis is extended to cater for dynamic analysis. The only material parameter that needs to be input for this model is the uniaxial compressive strength of concrete. Steel bars are modelled as uniaxial elements and an embedded formulation allows them to have any orientation inside the concrete elements. The proposed strategy for loading or unloading renders a numerical procedure which is stable and efficient. The whole process is applied to two RC frames and compared against existing experiments in the literature. Results show that the proposed approach may adequately be used to predict the dynamic response of a structure. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
This paper proposes a non‐iterative time integration (NITI) scheme for non‐linear dynamic FEM analysis. The NITI scheme is constructed by combining explicit and implicit schemes, taking advantage of their merits, and enables stable computation without an iteration process for convergence even when used for non‐linear dynamic problems. Formulation of the NITI scheme is presented and its stability is studied. Although the NITI scheme is not unconditionally stable when applied to non‐linear problems, it is stable in most cases unless stiffness hardening occurs or the problem has a large velocity‐dependent term. The NITI scheme is applied to dynamic analysis of the non‐linear soil–structure system and computation results are compared with those by the central difference method (CDM). Comparison shows that the stability of the NITI scheme is superior to that of the CDM. Accuracy of the NITI scheme is verified because its results are identical with those by the CDM in which the time step is set as 1/10 of that for the NITI scheme. The application of the NITI scheme to the mesh‐partitioned FEM is also proposed. It is applied to dynamic analysis of the linear soil–structure system. It yields the same results as a conventional single‐domain FEM analysis using the Newmark β method. This result verifies the usability of mesh‐partitioned FEM analysis using the NITI scheme. Copyright © 2003 John Wiley& Sons, Ltd.  相似文献   

11.
A wall‐type friction damper is newly proposed in this paper to improve the performance of reinforced concrete (RC) framed structures under earthquake loads. Traditionally, the damper was generally invented as a brace‐type member. However, it has been seen to cause problems in the RC frame structures in that concrete is apt to be damaged in the connection regions of the RC member and the brace‐type damper under earthquake loads. The proposed wall‐type damper has an advantage in the retrofit of RC structures. The system consists of a Teflon® slider and a RC wall. The damper is also designed to control normal pressures acting on a frictional slider. The numerical applications show that the proposed damper can be effective in mitigating the seismic responses of RC frame structures and reducing the damage to RC structural members. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Alternative non‐linear dynamic analysis procedures, using real ground motion records, can be used to make probability‐based seismic assessments. These procedures can be used both to obtain parameter estimates for specific probabilistic assessment criteria such as demand and capacity factored design and also to make direct probabilistic performance assessments using numerical methods. Multiple‐stripe analysis is a non‐linear dynamic analysis method that can be used for performance‐based assessments for a wide range of ground motion intensities and multiple performance objectives from onset of damage through global collapse. Alternatively, the amount of analysis effort needed in the performance assessments can be reduced by performing the structural analyses and estimating the main parameters in the region of ground motion intensity levels of interest. In particular, single‐stripe and double‐stripe analysis can provide local probabilistic demand assessments using minimal number of structural analyses (around 20 to 40). As a case study, the displacement‐based seismic performance of an older reinforced concrete frame structure, which is known to have suffered shear failure in its columns during the 1994 Northridge Earthquake, is evaluated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Nonlinear static procedures, which relate the seismic demand of a structure to that of an equivalent single‐degree‐of‐freedom oscillator, are well‐established tools in the performance‐based earthquake engineering paradigm. Initially, such procedures made recourse to inelastic spectra derived for simple elastic–plastic bilinear oscillators, but the request for demand estimates that delve deeper into the inelastic range, motivated investigating the seismic demand of oscillators with more complex backbone curves. Meanwhile, near‐source (NS) pulse‐like ground motions have been receiving increased attention, because they can induce a distinctive type of inelastic demand. Pulse‐like NS ground motions are usually the result of rupture directivity, where seismic waves generated at different points along the rupture front arrive at a site at the same time, leading to a double‐sided velocity pulse, which delivers most of the seismic energy. Recent research has led to a methodology for incorporating this NS effect in the implementation of nonlinear static procedures. Both of the previously mentioned lines of research motivate the present study on the ductility demands imposed by pulse‐like NS ground motions on oscillators that feature pinching hysteretic behaviour with trilinear backbone curves. Incremental dynamic analysis is used considering 130 pulse‐like‐identified ground motions. Median, 16% and 84% fractile incremental dynamic analysis curves are calculated and fitted by an analytical model. Least‐squares estimates are obtained for the model parameters, which importantly include pulse period Tp. The resulting equations effectively constitute an R ? μ ? T ? Tp relation for pulse‐like NS motions. Potential applications of this result towards estimation of NS seismic demand are also briefly discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
A web‐based methodology for the prediction of approximate IDA curves, which consists of two independent processes, is proposed. The result of the first process is a response database of the SDOF model, whereas the second process involves the prediction of approximate IDA curves from the response database by using n‐dimensional linear interpolation. Such an approach enables user‐friendly prediction of the seismic response parameters with high accuracy. In order to demonstrate the capabilities of the proposed methodology, a web application for the prediction of the approximate 16th, 50th and 84th fractile responses of an RC structure was developed. For the presented case study, the response database was computed for a set of 30 ground motion records and the discrete values of six structural parameters. Very good agreement between the computed and the approximated IDA curves of the four‐storey RC building was observed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
A procedure for developing equations that estimate the isolator displacement due to strong ground motion is applied to buildings isolated with the friction pendulum system. The resulting design equations, based on rigorous non‐linear analysis, offer an alternative to the iterative equivalent‐linear methods used by current U.S. building codes. The governing equations of the system are reduced to a form such that the median normalized displacement of the system due to an ensemble of ground motions is found to depend on only the isolation period—a function of the curvature of the isolator—and the friction force at incipient slip normalized by peak ground velocity. The normalization is effective in minimizing the dispersion of the normalized displacement for an ensemble of ground motions, implying that the median normalized displacement is a reliable estimate of response. The design equations reflect the significant (20 to 38%) increase in displacement when the excitation includes two lateral components of ground motion instead of just one component. Equivalent‐linear methods are shown to underestimate by up to 30% the exact median displacement determined by non‐linear response history analysis for one component of ground motion, and building codes include at most a 4.4% increase for a second component. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
This investigation is concerned with the seismic response of one‐story, one‐way asymmetric linear and non‐linear systems with non‐linear fluid viscous dampers. The seismic responses are computed for a suite of 20 ground motions developed for the SAC studies and the median values examined. Reviewed first is the behaviour of single‐degree‐of‐freedom systems to harmonic and earthquake loading. The presented results for harmonic loading are used to explain a few peculiar trends—such as reduction in deformation and increase in damper force of short‐period systems with increasing damper non‐linearity—for earthquake loading. Subsequently, the seismic responses of linear and non‐linear asymmetric‐plan systems with non‐linear dampers are compared with those having equivalent linear dampers. The presented results are used to investigate the effects of damper non‐linearity and its influence on the effects of plan asymmetry. Finally, the design implications of the presented results are discussed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Qu  Zhe  Gong  Ting  Li  Qiqi  Wang  Tao 《地震工程与工程振动(英文版)》2019,18(2):315-330
The fishbone model is a simplified numerical model for moment-resisting frames that is capable of modelling the effects of column-beam strength and stiffness ratios. The applicability of the fishbone model in simulating the seismic responses of reinforced concrete moment-resisting frames of different sets of column-beam strength and stiffness ratios are evaluated through nonlinear static, dynamic and incremental dynamic analysis on six prototype buildings of 4-, 8-and 12-stories. The results show that the fishbone model is practically accurate enough for reinforced concrete frames, although the assumption of equal joint rotation does not hold in all cases. In addition to the ground motion characteristics and the number of stories in the structures, the accuracy of the model also varies with the column-beam stiffness and strength ratios. The model performs better for strong column-weak beam frames, in which the lateral drift patterns are better controlled by the continuous stiffness provided by the strong columns. When the inelastic deformation is large, the accuracy of the model may be subjected to large record-to-record variability. This is especially the case for frames of weak columns.  相似文献   

18.
The influence of the structural pounding on the ductility requirements and the seismic behaviour of reinforced concrete structures designed to EC2 and EC8 with non‐equal heights is investigated. Special purpose elements of distributed plasticity are employed for the study of the columns. Two distinct types of the problem are identified: Type A, where collisions may occur only between storey masses; and Type B, where the slabs of the first structure hit the columns of the other (72 Type A and 36 Type B pounding cases are examined). Type A cases yielded critical ductility requirements for the columns in the pounding area mainly for the cases where the structures were in contact from the beginning of the excitation. In both pounding types the ductility requirements of the columns of the taller building are substantially increased for the floors above the highest contact storey level probably due to a whiplash behaviour. The most important issue in the pounding type B is the local response of the column of the tall structure that suffers the hit of the upper floor slab of the adjacent shorter structure. In all the examined cases this column was in a critical condition due to shear action and in the cases where the structures were in contact from the beginning of the excitation, this column was also critical due to high ductility demands. It can be summarized that in situations of potential pounding, neglecting its possible effects leads to non‐conservative building design or evaluation that may become critical in some cases. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
In the paper a simplified nonlinear method has been applied to the analysis of base‐isolated structures. In the first part, a three‐linear idealization of the capacity curve is proposed. The initial stiffness is defined based on the first yielding point in the superstructure, whereas the secondary slope depends on the failure mechanism of the superstructure. A consequence is a much more pronounced secondary slope, which does not correspond to the presumptions used in the originally proposed N2 method. A parametric nonlinear dynamic study of single degree of freedom systems with different hardening slopes and damping has been performed for an ensemble of seven EC8 spectrum‐compatible artificial accelerograms. It was concluded that, in the long‐period range, the equal displacement rule could be assumed also for the proposed systems with non‐zero post‐yield stiffness. In the second part, the proposed idealization was used for the analysis of isolated RC frame buildings that were isolated with different (lead) rubber‐bearing isolation systems. The stiffness of the isolators was selected for three different protection levels and for three different ground motion intensities, which have resulted in elastic as well as moderately and fully damaged superstructure performance levels. Three different lateral load distributions were investigated. It was observed that a triangular distribution, with an additional force at the base, works best in the majority of practical cases. It was concluded that the N2 method can, in general, provide a reasonably accurate prediction of the actual top displacement, as well as of the expected damage to the superstructure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
A procedure based on rigorous non‐linear analysis is presented that estimates the peak deformation among all isolators in an asymmetric building due to strong ground motion. The governing equations are reduced to a form such that the median normalized deformation due to an ensemble of ground motions with given corner period Td depends primarily on four global parameters of the isolation system: the isolation period Tb, the normalized strength η, the torsional‐to‐lateral frequency ratio Ωθ, and the normalized stiffness eccentricity eb/r. The median ratio of the deformations of the asymmetric and corresponding symmetric systems is shown to depend only weakly on Tb, η, and Ωθ, but increases with eb/r. The equation developed to estimate the largest ratio among all isolators depends only on the stiffness eccentricity and the distance from the center of mass to the outlying isolator. This equation, multiplied by an earlier equation for the deformation of the corresponding symmetric system, provides a design equation to estimate the deformations of asymmetric systems. This design equation conservatively estimates the peak deformation among all isolators, but is generally within 10% of the ‘exact’ value. Relative to the non‐linear procedure presented, the peak isolator deformation is shown to be significantly underestimated by the U.S. building code procedures. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号