首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Probabilistically controlled design values of the nonlinear seismic response of reinforced concrete frames are obtained using a method previously proposed by the authors. The method allows to calculate conservative design values characterized by a predefined non‐exceedance probability, using a limited number of spectrum‐fitting generated accelerograms. Herein the method is applied to elastic‐strain hardening single degree of freedom systems representative of RC framed structures and is then assessed with reference to four reinforced concrete model frames designed according to EC8. The frames are characterized by different natural periods and aspect ratios. The results, compared with those obtained applying current EC8 recommendations, show the effectiveness of the proposed method. EC8 provides for design values of the seismic response of a structure with a nonlinear behavior computed as the mean value of the responses to seven accelerograms or as the maximum value of the responses to three accelerograms. These two criteria lead to design values characterized by very different and uncontrolled non‐exceedance probability levels, while the proposed method allows the analyst to directly control the non‐exceedance probability level of the calculated design values. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
A displacement-based design (DBD) procedure aiming to proportion hysteretic damped braces (HYDBs) in order to attain, for a specific level of seismic intensity, a designated performance level of a structure is proposed for the retrofitting of framed buildings. A key step for the reliability of the DBD procedure is the selection of the equivalent viscous damping in order to account for the energy dissipated by the damped braced frame. In this paper, expressions of the equivalent damping are obtained considering the energy dissipated by the HYDBs and the framed structure. To this end, dynamic analyses of an equivalent single degree of freedom system, whose response is idealized by a trilinear model, are carried out considering real accelerograms matching, on the average, Eurocode 8 (EC8) response spectrum for a medium subsoil class. Then, a three-storey reinforced concrete (r.c.) framed structure of a school building, designed in a medium-risk seismic region according to the Italian code in force in 1975, is supposed as retrofitted as if in a high-risk seismic region of the current seismic code (NTC08) by the insertion of HYDBs. Nonlinear static analyses are carried out to evaluate the vulnerability of the primary structure, characterized by the lack of interior girders along the floor slab direction, and to select optimal properties of the HYDBs. The effectiveness of the retrofitting solutions is checked referring to nonlinear dynamic analyses, considering artificially generated accelerograms whose response spectra match those adopted by NTC08 for the earthquake design levels corresponding to the serviceability and ultimate limit states.  相似文献   

3.
The seismic response of single‐degree‐of‐freedom (SDOF) systems incorporating flag‐shaped hysteretic structural behaviour, with self‐centring capability, is investigated numerically. For a SDOF system with a given initial period and strength level, the flag‐shaped hysteretic behaviour is fully defined by a post‐yielding stiffness parameter and an energy‐dissipation parameter. A comprehensive parametric study was conducted to determine the influence of these parameters on SDOF structural response, in terms of displacement ductility, absolute acceleration and absorbed energy. This parametric study was conducted using an ensemble of 20 historical earthquake records corresponding to ordinary ground motions having a probability of exceedence of 10% in 50 years, in California. The responses of the flag‐shaped hysteretic SDOF systems are compared against the responses of similar bilinear elasto‐plastic hysteretic SDOF systems. In this study the elasto‐plastic hysteretic SDOF systems are assigned parameters representative of steel moment resisting frames (MRFs) with post‐Northridge welded beam‐to‐column connections. In turn, the flag‐shaped hysteretic SDOF systems are representative of steel MRFs with newly proposed post‐tensioned energy‐dissipating connections. Building structures with initial periods ranging from 0.1 to 2.0s and having various strength levels are considered. It is shown that a flag‐shaped hysteretic SDOF system of equal or lesser strength can always be found to match or better the response of an elasto‐plastic hysteretic SDOF system in terms of displacement ductility and without incurring any residual drift from the seismic event. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
Best estimate seismic analysis are generally based on time‐domain simulations of structural responses. The seismic load is then modeled by a stochastic process representing ground motion. For this purpose, the analyst can use recorded accelerograms or work with synthetically generated ones. The number of ground motion time‐histories available for a given scenario and site condition is limited and generally not sufficient for carrying out more advanced probabilistic structural response analysis. It is then necessary to have at our disposal methods that allow for generating synthetic accelerograms that realistically characterize earthquake ground motions. However, most of the methods proposed in literature for generating synthetic accelerograms do not accurately reproduce the natural variability of ground motion parameters (such as PGA, cumulative absolute velocity, and Arias intensity) observed for recorded time histories. In this paper, we introduce a new method for generating synthetic ground motion, based on Karhunen‐Loève decomposition and a non‐Gaussian stochastic model. The proposed method enables the structural analyst to simulate ground motion time histories featuring the properties mentioned above. To demonstrate its capability, we study the influence of the simulation method on different ground motion parameters and on soil response spectra. We finally compute fragility curves to illustrate the practical application of the proposed method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
耐震时程法(ETM)是一种基于动力时程的结构抗震分析方法,其典型表征在于随着持续时间的增加,地震动强度逐渐增大。本文合成了基于中国抗震反应谱的耐震时程曲线,并以此作为输入,对一个8层3跨钢框架结构的抗震性能进行了分析和评估。采用增量动力分析方法(IDA)对结构在不同耐震持时下的整体响应进行了评估;以大震下天然地震动分析结果为标准,对比了结构在耐震时程曲线(ETA)作用下的塑性铰分布概率、形成顺序和延性分布。研究结果表明:耐震时程法能较好地预测钢框架结构的非线性动力响应及破坏过程,且分析次数少,这为钢框架结构的抗震性能快速分析与评估提供了一种新的手段。  相似文献   

6.
An integrated approach for addressing the problem of synthesizing artificial seismic accelerograms compatible with a given displacement design/target spectrum is presented in conjunction with aseismic design applications. Initially, a stochastic dynamics solution is used to obtain a family of simulated non-stationary earthquake records whose response spectrum is on the average in good agreement with the target spectrum. The degree of the agreement depends significantly on the adoption of an appropriate parametric evolutionary power spectral form, which is related to the target spectrum in an approximate manner. The performance of two commonly used spectral forms along with a newly proposed one is assessed with respect to the elastic displacement design spectrum defined by the European code regulations (EC8). Subsequently, the computational versatility of the family of harmonic wavelets is employed to modify iteratively the simulated records to satisfy the compatibility criteria for artificial accelerograms prescribed by EC8. In the process, baseline correction steps, ordinarily taken to ensure that the obtained accelerograms are characterized by physically meaningful velocity and displacement traces, are elucidated. Obviously, the presented approach can be used not only in the case of the EC8, for which extensive numerical results/examples are included, but also for any code provisions mandated by regulatory agencies. In any case, the presented numerical results can be quite useful in any aseismic design process dominated by the EC8 specifications.  相似文献   

7.
Estimation of design forces in ductility‐based earthquake‐resistant design continues to be carried out with the application of response modification factors on elastic design spectra, and it remains interesting to explore how best to estimate strength reduction factors (SRFs) for a design situation. This paper considers the relatively less explored alternative of modelling SRF spectrum via a given response spectrum. A new model is proposed to estimate the SRF spectrum in terms of a pseudo‐spectral acceleration (PSA) spectrum and ductility demand ratio with the help of two coefficients. The proposed model is illustrated for an elasto‐plastic oscillator, in case of 10 recorded accelerograms and three ductility ratios. The proposed model is convenient and is able to predict SRF spectrum reasonably well, particularly at periods up to 1.0 s. Coefficients of the proposed model may also be determined in case of a given design spectrum when there is uncertainty in SRF spectrum due to uncertainty in temporal characteristics of the ground motion. This is illustrated with the help of 474 accelerograms recorded in western U.S.A. and different scaled PSA spectra. It is shown that probabilistic estimates may be obtained in this situation for SRF spectrum by assuming the error residuals to be log normally distributed with period‐dependent parameters. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents a statistical performance analysis of a semi‐active structural control system for suppressing the vibration response of building structures during strong seismic events. The proposed semi‐active mass damper device consists of a high‐frequency mass damper with large stiffness, and an actively controlled interaction element that connects the mass damper to the structure. Through actively modulating the operating states of the interaction elements according to pre‐specified control logic, vibrational energy in the structure is dissipated in the mass damper device and the vibration of the structure is thus suppressed. The control logic, categorized under active interaction control, is defined directly in physical space by minimizing the inter‐storey drift of the structure to the maximum extent. This semi‐active structural control approach has been shown to be effective in reducing the vibration response of building structures due to specific earthquake ground motions. To further evaluate the control performance, a Monte Carlo simulation of the seismic response of a three‐storey steel‐framed building model equipped with the proposed semi‐active mass damper device is performed based on a large ensemble of artificially generated earthquake ground motions. A procedure for generating code‐compatible artificial earthquake accelerograms is also briefly described. The results obtained clearly demonstrate the effectiveness of the proposed semi‐active mass damper device in controlling vibrations of building structures during large earthquakes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
The inelastic (design) spectra characterizing a seismic hazard are generally obtained by the scaling‐down of the elastic (design) spectra via a set of response modification factors. The component of these factors, which accounts for the ductility demand ratio, is known as the strength reduction factor (SRF), and the variation of this factor with initial period of the oscillator is called an SRF spectrum. This study considers scaling of the SRF spectrum in the case of an elasto‐plastic oscillator with strength and stiffness degradation characteristics. Two models are considered: one depending directly on the characterization of source and site parameters and the other depending on the normalized design spectrum characterization of the seismic hazard. The first model is the same as that proposed earlier by the second author, and is given in terms of earthquake magnitude, strong‐motion duration, predominant period, geological site conditions, ductility demand ratio, and ductility supply‐related parameter. The second model is a new model proposed here in terms of the normalized pseudo‐spectral acceleration values (to unit peak ground acceleration), ductility demand ratio and ductility supply‐related parameter. For each of these models, least‐square estimates of the coefficients are obtained through regression analyses of the data for 956 recorded accelerograms in western U.S.A. Parametric studies carried out with the help of these models confirm the dependence of SRFs on strong‐motion duration and earthquake magnitude besides predominant period and site conditions. It is also seen that degradation characteristics make a slight difference for high ductility demands and may lead to lower values of SRFs, unless the oscillators are very flexible. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
The effects of soil‐structure interaction on the seismic response of multi‐span bridges are investigated by means of a modelling strategy based on the domain decomposition technique. First, the analysis methodology is presented: kinematic interaction analysis is performed in the frequency domain by means of a procedure accounting for radiation damping, soil–pile and pile‐to‐pile interaction; the seismic response of the superstructure is evaluated in the time domain by means of user‐friendly finite element programs introducing suitable lumped parameter models take into account the frequency‐dependent impedances of the soil–foundation system. Second, a real multi‐span railway bridge longitudinally restrained at one abutment is analyzed. The input motion is represented by two sets of real accelerograms: one consistent with the Italian seismic code and the other constituted by five records characterized by different frequency contents. The seismic response of the compliant‐base model is compared with that obtained from a fixed‐base model. Pile stress resultants due to kinematic and inertial interactions are also evaluated. The application demonstrates the importance of performing a comprehensive analysis of the soil–foundation–structure system in the design process, in order to capture the effects of soil‐structure interaction in each structural element that may be beneficial or detrimental. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
A mathematical model for the response spectra is determined using statistical analysis. The form of the model is first established using fifty computer simulated accelerograms. The final form is then used on twenty-five accelerograms from fifteen past United States earthquakes. This model smooths out peaks and valleys which are characteristic of the response spectrum of any single earthquake. Thus it serves as a ‘smooth design spectrum’ and can be used to approximate structural response to a future seismic event.  相似文献   

12.
强震近场加速度峰值比和反应谱统计分析   总被引:12,自引:3,他引:12  
本文对国内外数十次强地震的近场加速度记录进行了统计分析,给出了近场加速度峰值比及反应谱的统计结果,并将统计反应谱与设计反应谱进行了比较。  相似文献   

13.
In the present study the combined influence of seismic orientation and a number of parameters characterizing the structural system of Reinforced Concrete (R/C) buildings on the level of expected damages are examined. For the purposes of the above investigation eight medium‐rise buildings are designed on the basis of the current seismic codes. The structural characteristics examined are the ratio of the base shear received by the structural walls, the ratio of horizontal stiffness in two orthogonal directions and the structural eccentricity. Then, the buildings are analyzed by nonlinear time response analysis using 100 bidirectional earthquake ground motions. The two horizontal accelerograms of each ground motion are applied along horizontal orthogonal axes, forming 72 different angles with the structural axes. The structural damage is expressed in terms of the Park and Ang damage index. The results of the analyses revealed that the damage level of the buildings is strongly affected by the incident angle of the ground motion. The extent at which the orientation of the seismic records influences the damage response depends on the structural system and the distance of the record to the fault rupture. As a consequence, the common practice of applying the earthquake records along the structural axes can lead to significant underestimation of structural damage. Also, it was shown that the structural eccentricity can significantly differentiate the seismic damage level, as well as the impact of the earthquake orientation on the structural damage. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
With the recent emergence of wavelet‐based procedures for stochastic analyses of linear and non‐linear structural systems subjected to earthquake ground motions, it has become necessary that seismic ground motion processes are characterized through statistical functionals of wavelet coefficients. While direct characterization in terms of earthquake and site parameters may have to wait for a few more years due to the complexity of the problem, this study attempts such characterization through commonly available Fourier and response spectra for design earthquake motions. Two approaches have been proposed for obtaining the spectrum‐compatible wavelet functionals, one for input Fourier spectrum and another for input response spectrum, such that the total number of input data points are 30–35% of those required for a time‐history analysis. The proposed methods provide for simulating ‘desired non‐stationary characteristics’ consistent with those in a recorded accelerogram. Numerical studies have been performed to illustrate the proposed approaches. Further, the wavelet functionals compatible with a USNRC spectrum in the case of 35 recorded motions of similar strong motion durations have been used to obtain the strength reduction factor spectra for elasto‐plastic oscillators and to show that about ±20% variation may be assumed from mean to 5 and 95% confidence levels due to uncertainty in the non‐stationary characteristics of the ground motion process. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
目前的既有钢混结构地震损伤研究没有同时考虑不同抗震设计规范差异和耐久性两个因素对结构抗震性能的影响,且损伤指标较简单,在动力损伤分析中也存在局限。基于云模型的特点,提出了包括弹塑性耗能差率、刚度损伤指数、层间位移角和顶点位移角的多元结构损伤状态综合评估方法,能够同时考虑结构各损伤指数的随机性和模糊性。考虑不同版本抗震设计规范造成的结构性能差异和耐久性下降对结构性能的影响,设计3个典型五层钢混框架结构,进行增量动力分析,验证损伤评估方法的准确性。结果表明:随着抗震规范版本的更新,结构的损伤程度有适当减轻;同一结构的损伤程度因混凝土碳化作用先减轻后加重;采用弹塑性耗能差率表征既有结构的地震损伤效果优于刚度损伤指数;基于多指标云模型损伤评估方法获得的云模型综合隶属度和综合损伤值能够更加细化和精确地描述结构损伤状态。  相似文献   

16.
Selecting, scaling and matching accelerograms are critically important to engineering design and assessment, enabling structural response to be determined with greater confidence and through fewer analyses than if unscaled accelerograms are employed. This paper considers the response of an 8‐storey multiple‐degree‐of‐freedom reinforced concrete structure to accelerograms selected, linearly scaled or spectrally matched using five different techniques. The first method consists of selecting real records on the basis of seismological characteristics, while the remaining methods make an initial selection on the basis of magnitude and spectral shape before (1) scaling to the target spectral acceleration at the initial period; (2) scaling to the target spectrum over a range of periods; (3) using wavelet adjustments to match the target spectrum and (4) using wavelet adjustments to match multiple target spectra for multiple damping ratios. The analyses indicate that the number of records required to obtain a stable estimate of the response decreases drastically as one moves through these methods. The exact number varies among damage measures and is related to the predictability of the damage measure. For measures such as peak roof and inter‐storey drift, member end rotation and the Park and Ang damage index, as few as one or two records are required to estimate the response to within ±5% (for a 64% confidence level) if matching to multiple damping ratios is conducted. Bias checks are made using predictive equations of the expected response derived from the results of 1656 nonlinear time‐domain analyses of the structure under the action of unscaled accelerograms. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Earthquake-resistant design and seismic analysis often require the earthquake action to be represented in the form of acceleration time-histories. Real accelerograms can be selected based on matching an earthquake scenario, defined by magnitude and distance, and scaled if necessary. The scaled accelerograms should reflect the hazard in terms of the parameters that characterise the inelastic demand on structures, including response spectral ordinates, duration and energy content. In order to maintain realistic ground motions, the scaling factors should not differ greatly from unity. It is found that in many cases, where the hazard is influenced by more than one seismic source, it is impossible to define a single earthquake scenario that is compatible with the results of probabilistic seismic hazard assessment. Even if a hazard-consistent scenario can be defined, there are difficulties encountered in using the results to select and scale real accelerograms.  相似文献   

18.
19.
The nonlinear response of structures is usually evaluated by considering two accelerograms acting simultaneously along the orthogonal directions. In this study, the infl uence of the earthquake direction on the seismic response of building structures is examined. Three multi-story RC buildings, representing a very common structural typology in Italy, are used as case studies for the evaluation. They are, respectively, a rectangular plan shape, an L plan shape and a rectangular plan shape with courtyard buildings. Nonlinear static and dynamic analyses are performed by considering different seismic levels, characterized by peak ground acceleration on stiff soil equal to 0.35 g, 0.25 g and 0.15 g. Nonlinear dynamic analyses are carried out by considering twelve different earthquake directions, and rotating the direction of both the orthogonal components by 30° for each analysis(from 0° to 330°). The survey is carried out on the L plan shape structure. The results show that the angle of the seismic input motion signifi cantly infl uences the response of RC structures; the critical seismic angle, i.e., the incidence angle that produces the maximum demand, provides an increase of up to 37% in terms of both roof displacements and plastic hinge rotations.  相似文献   

20.
Nonlinear dynamic analysis of existing or planned structures often requires the use of accelerograms that match a target design spectrum. Here, our main concern is to generate a set of motions with a good level of fit to the Eurocode 8 design spectra for France. Synthetic time series are generated by means of a non-stationary stochastic method. To calibrate the input parameters in the stochastic approach, we select a reference set of accelerograms for a Eurocode 8 type B site category from the PEER Ground-Motion Database, which are then adjusted to the target spectrum through wavelet addition. Then, we compute nonlinear seismic responses of a soil column, including pore pressure effects, and brittle and ductile structures to the stochastic time-series, the natural accelerograms and time-series generated using stationary stochastic approaches. The results of these calculations reveal considerable variability in response despite the similarities in terms of spectral acceleration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号