首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In closed magma systems SiO2 approximately measures differentiation progress and oxygen isotopes can seem to obey Rayleigh fractionation only as a consequence of the behaviour of SiO2. The main role of 18O is as a sensitive indicator of contamination, either at the start of differentiation ( 18Oinit) or as a proportion of fractionation in AFC. Plots of 18O vs SiO2-allow to determine initial 18O values for different sequences for source comparison. For NBS-28=9.60, the 18O at 48% SiO2-varies between a high 6.4 for Kiglapait (Kalamarides 1984), 5.9 for Transhimalaya, 5.8 for Hachijo-Jima (Matsuhisa 1979), 5.6 for Koloula (Chivas et al. 1982) and a low 5.3 for the Darran Complex, New Zealand. The Transhimalayan batholiths (Gangdese belt) were emplaced in the Ladakh-Lhasa terrane, between the present-day Banggong-Nujiang, and Indus-Yarlung Tsangbo suture zones, after its accretion to Eurasia. The gradient of the least contaminated continuous ( 18O vs SiO2-igneous trend line is similar to that of Koloula, and AFC calculations suggest a low secondary assimilation rate of less than 0.05 times the rate of crystallisation. Outliers enriched in 18O are frequent in the Lhasa, and apparently rare in the Ladakh transsect. Low- 18O (5.0–0) granitoids and andesites on the Lhasa-Yangbajain axis are the result of present day or recent near-surface geothermal activity; their quartzes still trace the granitoids to the Transhimalaya 18O trend line, but the distribution of low total rock or feldspar 18O values could be a guide to more recent heat flow and thermally marked tectonic lineaments. Two ignimbrites from Maqiang show hardly any 18O-contamination by crustal material.  相似文献   

2.
New sulphur and sulphate-oxygen isotope measurements for the main discordant and stratiform lead-zinc-barite orebodies at Silvermines Co. Tipperary, allow reappraisal of previously offered differing interpretations (Graham, 1970; Greig et al., 1971) of the bearing of sulphur isotopes on the genesis of this important Irish deposit. The following aspects of the data are confirmed: barite 34 S-values range from 17–21, similar to lower Carboniferous seawater sulphate: stratiform sulphide lens pyrites have 34 S-values ranging from –13 to –36; vein sulphide 34 S-values range from –8 to 4; sulphide 34 S-values increase upwards and outwards respectively in the related discordant and stratiform G orebodies; galena-sphalerite isotope palaeotemperatures are not too consistent, ranging from 40 to 430°C (using the calibration of Czamanske and Rye (1974). New facts are as follows: barite 18O-values range from –13 to –17, stratiform barites ranging from 13 to 14.5; sulphides separated from a single stratiform ore lens hand specimen usually have 34 Ssl > 34 Sga > 34 Spy; the outward decrease in 34 S-values in the stratiform G orebody is confined to the first few hundred feet only; pyrite 34 S-values progressively increase downwards through one stratiform sulphide orebody; yet variations of 13 occur within a single colloform pyrite structure from another stratiform orebody. It is concluded that there were at least two sources of sulphur, seawater sulphate and deep-seated sulphur. The former was the dominant source of all sulphate and, via biogenic reduction, of the sulphur in the bulk of the stratiform sulphide. The latter was the source of the sulphur in the vein sulphides. There was minimal isotopic interaction between the cool seawater sulphate and the warm unwelling ore fluid sulphur species, even though the latter precipitated under near isotopic equilibrium conditions when the temperature dropped and/or the pH and Eh increased. The lack of isotopic equilibrium between pyrite and ore sulphides in the stratiform ore lenses may result from the latter having precipitated slightly later than the former because of solubility relationships. Overall the present isotopic evidence supports considerable geological evidence favoring a syngenetic origin for the stratiform Silvermines orebodies.  相似文献   

3.
Sulfur isotope ratios have been determined in 27 selected volcanic rocks from Iceland together with their whole rock chemistry. The 34S of analyzed basalts ranges from –2.0 to +0.4 with an average value of –0.8 Tholeiitic and alkaline rocks exhibit little difference in 34S values but the intermediate and acid rocks analyzed have higher 34S values up to +4.2 It is suggested that the overall variation in sulfur isotope composition of the basalts is caused by degassing. The small range of the 34S values and its similarity to other oceanic and continental basalts, suggest that the depleted mantle is homogeneous in its sulfur isotope composition. The 34S of the depleted mantle is estimated to be within the range for undegassed oceanic basalts, –0.5 to +1.0  相似文献   

4.
Preliminary studies have been made on the distributions of oxygen and sulphur isotopes in the Rosebery, Mount Farrell, and Mount Lyell ores. These ores lie in Cambrian geosynclinal volcanic rocks in West Tasmania. At each locality the sulphur of the sulphide minerals has a distinctive degree of enrichment in 34S in relation to sulphur in meteorites and a narrow range of 34S values. The dominant ore at Mount Lyell (mainly pyrite-chalcopyrite) has an average 34S value of +7.0, the main lode at Rosebery (pyrite-sphalerite-galenachalcopyrite) averages +10.9, and the Mount Farrell ore (galena-sphalerite) averages +14.1. The degree of enrichment does not appear to be related to local, near-surface geological factors. Other ores of geosynclinal volcanic type with similar mineralogy also show narrow ranges in 34S and varying enrichments in 34S. Barite from a concordant sulphide-barite-carbonate lode at Rosebery has an average 34S of +38.1 and an average 18O of +10.7. Barite from veins at Mount Lyell has an average 34S of +25.3 and an average 18O of +10.6.
Die Verteilung von Sauerstoff- und Schwefel-Isotopen in den Erzkörpern von Rosebery, Mount Farrell und Mount Lyell wurde untersucht. Die Erzkörper sind in kambrische, geosynklinale vulkanische Gesteine Westtasmaniens eingebettet. An jeder dieser Lagerstätten zeigt der Schwefel der Sulfiderze einen charakteristischen Anreicherungsgrad an 34S im Verhältnis zum Meteoritenschwefel und einen eng begrenzten Bereich der 34S-Werte. Die Erze des Mount Lyell-Lagers (hauptsächlich Pyrit-Chalkopyrit) zeigen überwiegend einen 34S-Durchschnittswert von +7.0, das Hauptlager von Rosebery (Pyrit-Sphalerit-Galenit-Chalkopyrit) +10.9, und des Mount Farrell-Erz (Galenit-Sphalerit) +14.1. Der Anreicherungsgrad scheint nicht mit den lokalen geologischen Faktoren verbunden zu sein. Auch andere Erzkörper geosynklinaler vulkanischer Art von ähnlicher mineralogischer Struktur zeigen eng begrenzte 34S-Werte und 34S-Anreicherungsvariationen. Der Baryt des konkordant aufgebauten Sulfid-Baryt-Carbonat-Lagers bei Rosebery hat einen 34S-Durchschnitt von +38.1 und einen 18O-Durchschnitt von +10.7. Der Baryt aus den Erzgängen von Mount Lyell ist durch einen 34S-Durchschnitt von +25.3 und einen 18O-Durchschnitt von +10.6 charakterisiert.
  相似文献   

5.
The S-isotopic compositions of sulfide deposits from Steinmann, granitoid and felsic volcanic associations have been examined. Ores of Steinmann association have 34S values close to zero per mil (34S=+0.3±3.1) it appears they are of mantle origin. Isotopically, ores of granitoid association regularly show a variable enrichment in 32S relative to meteoritic (34S=–2.7±3.3). The composition is in accord with an upper mantle/lower crustal source. Two stratiform accumulations of felsic volcanic association show a narrow spread of 34S values (+0.2 to 2.4); a mantle origin for the sulfur in these deposits is favored. In contrast, vein, stockwork and cement ores are moderately enriched in 32S relative to meteoritic (34S=–4.0±6.4). These ores are polygenetic; sulfur and metals appear to have been leached from local country rocks where volcanogenic and biogenic sulfur predominate.  相似文献   

6.
Temperatures of the formation of mud-volcanic waters are determined based on concentrations of some temperature-dependent components (Na–Li, Mg–Li). Estimates obtained for the Taman and Kakhetia regions are similar and range from 45 to 170°, which correspond to depths of 1–4.5 km. The calculated temperatures correlate with the chemical (Li, Rb, Cs, Sr, Ba, B, I, and HCO3) composition of water and 13 (2) and 13 (CH4) values in spontaneous gases. The isotope values indicate that mechanisms of the formation of 13-rich gases, i.e., gases with high 13 values (up to +16.0 in 2 and –23.4 in CH4) in mud-volcanic systems of Taman and Kakhetia are governed by fluid-generation temperatures rather than the supply of abyssal gases. The 11 value was determined for the first time in mud-volcanic products of the Caucasus region. This value ranges from +22.5 to +39.4 in the volcanic water of Georgia, from –1.2 to +7.4 in the clayey pulp of Georgia, and from –7.6 to +13.2 in the clayey pulp of Taman. It is shown that the 11 value in clay correlates with the fluid-generation temperature and 11 correlates with 13 in carbon-bearing gases. These correlations probably testify to the formation of different phases of mud-volcanic emanations in a single geochemical system and suggest the crucial role of temperature in the development of isotope-geochemical features.  相似文献   

7.
Kyser, O'Neil, and Carmichael (1981, 1982) measured the 18O values of coexisting minerals from peridotite nodules in alkali basalts and kimberlites, interpreting the nodules as equilibrium assemblages. Using Ca-Mg-Fe element-partition geothermometric data, they proposed an empirical18O/16O geothermometer: T(°C)=1,151–173–68 2, where is the per mil pyroxene-olivine fractionation. However, this geothermometer has an unusual crossover at 1,150 °C, and in contrast to what might be expected during closed-system equilibrium exchange, the most abundant mineral in the nodules (olivine) shows a much greater range in 18O (+4.4 to +7.5) than the much less abundant pyroxene (all 50 pyroxene analyses from spinel peridotites lie within the interval +5.3 to +6.5). On 18O-olivinevs. 18O-pyroxene diagrams, the mantle nodules exhibit data arrays that cut across the 18O=zero line. These arrays strongly resemble the non-equilibrium quartzfeldspar and feldspar-pyroxene 18O arrays that we now know are diagnostic of hydrothermally altered plutonic igneous rocks. Thus, we have re-interpreted the Kyser et al. data as non-equilibrium phenomena, casting doubt on their empirical geothermometer. The peridotite nodules appear to have been open systems that underwent metasomatic exchange with an external, oxygen-bearing fluid (CO2, magma, H2O, etc.); during this event, the relatively inert pyroxenes exchanged at a much slower rate than did the coexisting olivines and spinels, in agreement with available exchange-rate and diffusion measurements on these minerals. This accounts for the correlation between 18O pyroxene-olivine and the whole-rock 18O of the peridotites, which is a major difficulty with the equilibrium interpretation.Contribution No. 3978, Publications of the Division of Geological and Planetary Sciences, California Institute of Technology  相似文献   

8.
The Mount Lofty Ranges comprises interlayered marbles, metapsammites, and metapelites that underwent regional metamorphism during the Delamarian Orogeny at 470–515 Ma. Peak metamorphic conditions increased from lowermost biotite grade (350–400°C) to migmatite grade (700°C) over 50–55 km parallel to the lithological strike of the rocks. With increasing metamorphic grade, 18O values of normal metapelites decrease from 14–16 to as low as 9.0, while 18O values of calcite in normal marbles decrease from 22–24 to as low as 13.2 These isotopic changes are far greater than can be accounted for by devolatilisation, implying widespread fluid-rock interaction. Contact metamorphism appears not to have affected the terrain, suggesting that fluid flow occurred during regional metamorphism. Down-temperature fluid flow from synmetamorphic granite plutons (18O=8.4–8.6) that occur at the highest metamorphic grades is unlikely to explain the resetting of oxygen isotopes because: (a) there is a paucity of skarns at granite-metasediment contacts; (b) the marbles generally do not contain low-XCO2 mineral assemblages; (c) there is insufficient granite to provide the required volumes of water; (d) the marbles and metapelites retain a several permil difference in 18O values, even at high metamorphic grades. The oxygen isotope resetting may be accounted for by along-strike up-temperature fluid flow during regional metamorphism with time-integrated fluid fluxes of up to 5x109 moles/m2 (105 m3/m2). If fluid flow occurred over 105–106 years, estimated intrinsic permeabilities are 10-20 to 10-16m2. Variations in 18O at individual outcrops suggest that time-integrated fluid fluxes and intrinsic permeabilities may locally have varied by at least an order of magnitude. A general increase in XCO2 values of marble assemblages with metamorphic grade is also consistent with the up-temperature fluid-flow model. Fluids in the metapelites may have been derived from these rocks by devolatilisation at low metamorphic grades; however, fluids in the marbles were probably derived in part from the surrounding siliceous rocks. The marble-metapelite boundaries preserve steep gradients in both 18O and XCO2 values, suggesting that across-strike fluid fluxes were much lower than those parallel to strike. Up-temperature fluid flow may also have formed orthoamphibole rocks and caused melting of the metapelites at high grades.This paper is a contribution to IGCP Project 304 Lower Crustal Processes  相似文献   

9.
Oxygen-isotope compositions have been measured for whole-rock and mineral samples of host and hydrothermally altered rocks from three massive sulfide deposits, Centennial (CL), Spruce Point (SP), and Anderson Lake (AL), in the Flin Flon — Snow Lake belt, Manitoba. Wholerock 18O values of felsic metavolcanic, host rocks (+8.5 to +16.1) are higher than those of altered rocks from the three deposits. The 18O values of altered rocks are lower in the chlorite zone and muscovite zone-I (CL=+ 5.3; SP=+5.4 to +8.3; AL= +3.7 to +5.9) than in the gradational zone (CL= +9.9 to +11.7; SP= +8.4 to +9.8; AL= + 6.6 to +7.7). Muscovite schist (Muscovite Zone-II) enveloping the Anderson Lake ore body has 18O values of +7.2 to +8.3. Quartz, biotite, muscovite, and chlorite separated from the altered rocks have lower 18O values compared to the same minerals separated from the host rocks. However, isotopic fractionation between mineral-pairs is generally similar in both host and altered rocks.It is interpreted that differences in the oxygen-isotope compositions of the altered and host rocks were produced prior to metamorphism, during hydrothermal alteration related to ore-deposition. Isotopic homogenization during metamorphism occurred on a grain-to-grain scale, over no more than a few meters. The whole-rock 18O values did not change significantly during metamorphism. The generally lower 18O values of altered rocks, the Cu-rich nature of the ore and the occurrence of the muscovite zone-II at Anderson Lake are consistent with the presence of higher temperature hydrothermal fluids at Anderson Lake than at the Centennial and Spruce Point deposits.  相似文献   

10.
Stable isotope compositions have been determined for serpentinites from between Davos (Arosa-Platta nappe, Switzerland) and the Valmalenco (Italy). D and 18O values (–120 to –60 and 6–10, respectively) in the Arosa-Platta nappe indicate that serpentinization took place on the continent at relatively low temperatures in the presence of limited amounts of metamorphic fluids that contained a component of meteoric water. One sample of chrysotile has a 18O value of 13 providing evidence of high W/R ratios and low formation temperature of lizardite-chrysotile in this area. In contrast, relatively high D values (–42 to –34) and low 18O values (4.4–7.4) for serpentine in the eastern part of the Valmalenco suggest a serpentinization process that took place at moderate temperatures in fluids that were dominated by ocean water. The antigorite in the Valmalenco is the first reported example of continental antigorite with an ocean water signature. An amphibole sample from a metasomatically overprinted contact zone to metasediments (D=-36) indicates that the metasomatic event also took place in the presence of ocean water. Lower D values (–93 to –60) of serpentines in the western part of the Valmalenco suggest a different alteration history possibly influenced by fluids associated with contact metamorphism. Low water/rock ratios during regional metamorphism (and metasomatism) have to be assumed for both regions.  相似文献   

11.
The aim of the present communication is to emphasize that some variations of the measured 13C and 18O values are apparent, and due to analytical interferences caused by the presence of sulfur and organosulfur compounds in the analyzed carbonates. This is particularly relevant for isotopic studies on carbonate-hosted mineral deposits, where the nearly ubiquitous association of the host carbonates with organic matter and sulfides can certainly affect the metallogenetic interpretations. In this work two methods were used to overcome the disturbing effects of sulfides and organic matter: (1) sample pretreatment following the method proposed by Charef and Sheppard (1984), combining the oxidation of organic matter with sodium hypochlorite and trapping of the sulfur species with silver phosphate; and (2) laser-based microprobe extraction. Apparent isotopic variations in sparry dolomite from a single hand sample of zebra ore from the MVT Zn-Pb deposit, San Vicente, central Peru, are as large as 6 13C and 4 18O. These variations are reduced to several tenths of a per mil when the samples are pretreated. A careful examination of the effects of treatment with NaOCl and/or Ag3PO4 in relation to the concentration of sulfide inclusions indicates that the main disturbing effects for 13C values are the presence of sulfur species and organic matter, whereas the 18O values are mainly affected by the presence of sulfides. Fine- and medium-grained replacement carbonates from MVT and other sediment-hosted base metal deposits are potentially the most affected during isotope analysis, due to the common presence of organic matter and sulfides. Using in situ laser microprobe techniques, it is possible to determine isotopic variations at a sub-millimeter scale. Our results show that laser extraction analysis allows a more precise sampling of the carbonate minerals, and minimizes contamination of the sample with sulfides and to some extent with intergrown organic matter. However, there is an isotopic shift associated with the laser extraction technique, of the order of 0.5–1 for 13C and 18O values.  相似文献   

12.
Oxygen and carbon isotope compositions were determined for calcites from the Green Tuff formations of Miocene age in Japan. Values of 18O from 24 calcites in altered rocks from 5 districts range from –2 to +16SMOW, in most cases from 0 to +8SMOW. The low 18O values rule out the possibility of their low-temperature origin or any significant contribution of magmatic fluid in the calcite precipitation. These values, coupled with their mineral assemblages, suggest that the calcites formed from meteoric hydrothermal solutions which caused propylitic alteration after the submarine strata became emergent.Values of 13C from the calcites show a wide variation from –17 to 0PDB. Calcites from different districts have different ranges of 13C values, indicating that there was no homogeneous reservoir of carbon at the time the calcite formed, and that the carbon had local sources. Carbon isotopic compositions of calcite within ore deposits in the Green Tuff formations range from –19 to 0PDB, similar to those of calcite in the altered rocks in the same district, suggesting that the carbon in ore calcites was likely supplied from the surrounding rocks through activity of meteoric hydrothermal solutions.  相似文献   

13.
The carbon and oxygen isotopic composition of Fe-carbonate ore and its calcitic to dolomitic Devonian host rocks at the Steirischer Erzberg siderite deposit (Greywacke zone, Upper Austroalpine Unit) were determined in order to constrain the source and nature of the Fe-rich mineralizing fluid. The 18O-values obtained for various Fe-carbonate generations and the carbonate host lie within a similar range between + 14.6 and + 21.6 (V-SMOW). No good correlation exists between the relative ages of the carbonate phases and their O isotopic composition. The variation in 18O-values is due to metamorphic recrystallization with locally variable fluid/rock ratios. The average 13C-value of the carbonate host is +0.5 ± 1.2 (PDB) which corresponds well to worldwide Phanerozoic marine carbonate values. The first Fecarbonate generation has slightly lower 13C-values, on average -1.4 ± 0.8 (PDB). Recrystallization of both the carbonate host minerals and the ankerite/siderite led to significantly lower 13C-values of -4.2 ± 0.6 and-4.7 ± 0.7, respectively. Within the basal breccia of the post-Hercynian transgression series matrix calcite/ dolomite shows an average 13C-value of -2.9 ± 0.7, and matrix siderite/ankerite an average value of-4.1 ± 0.4. These data, together with Sr isotope data published previously, strongly support a late-diagenetic or epigenetic first Fe-mineralization from convecting formation waters. They ascended along extension faults and were driven by an increased heat flow caused by crustal thinning during a Devonian rifting phase that initiated the separation of the Noric terrane from Africa. A potential source of the Fe could have been the underlying Ordovician acid volcanics. Regional metamorphism related to collision tectonics in the Late Carboniferous (Hercynian) and later during the Alpine orogeny, caused intensive recrystallization and partial mobilization of the various carbonate phases.  相似文献   

14.
18O values of unaltered olivine and pyroxene phenocrysts in boninites from several areas range from 5.8 to 7.4 and indicate that the source for most boninites is more 18O-rich than MORBs and other oceanic basalts. The source for oxygen and other major elements is most likely a refractory portion of the mantle having a 18O value of up to 7.0 to which must be added a small amount of H2O-rich fluid to induce partial melting. This fluid, which is derived from subducted crust, is the vehicle for LREEs including Nd. The variable, normally low Nd values typical of boninites do not correlate with the 18O values.Post eruptive exchange of oxygen in the glass of boninites with that of sea water at low temperatures (<150° C) produces 18O values of >10 in optically fresh glass. Hydration of the glass has increased the water contents of most boninites from estimated magmatic values of 1–2 wt% to 2–4 wt% and produced D values of < –80, which may be lower than the original magmatic D values. In contrast to most submarine pillow basalts, the magmatic volatile composition of boninite lavas has been extensively modified as a result of post eruptive interaction with seawater.  相似文献   

15.
The 620 M.y.-old in Hihaou (In Zize) magmatic complex located at the north-western boundary of the Archaean In Ouzzal block (western Ahaggar), is composed of massive alkaline rhyo-ignimbrites and rhyolitic domes, which are intruded by a granophyric and granitic body. The whole is preserved in a cauldron structure. Extrusive rocks are strongly 18O-depleted, with -values as low as –1.5/SMOW, while granophyres are less depleted (minimum -18O value=+2.0/SMOW. The granite has values around + 6/SMOW. D/H compositions are rather low, with D–90 to –110/SMOW. Isotopic zoning of quartz phenocrysts, 18O/16O fractionation among coexisting phases, and heterogeneity of the whole-rock -18O values, suggest that the volcanic rocks have interacted with meteoric water after the eruption. Several mechanisms of isotopic alteration are discussed. The hydrothermal alteration does not seem to have been controlled by the granitic intrusion, but rather seems to have followed the deposition of thick pyroclastic deposits on permeable arkosic sandstones and fluvio-glacial conglomerates. Pervasive circulation of water through the cooling volcanic deposits could have produced the observed 18O depletion.  相似文献   

16.
For the first time 18O and 13C values from carbonates and D values of individual n-alkanes were used to reconstruct palaeohydrological conditions in a lagoon at the southern margin of the Central European Zechstein Basin (CEZB). A 12-m core covering the complete Ca2 interval and adjacent anhydrites (A1 and A2) was analyzed for 18O and 13C values of dolomitized carbonates and D values of individual n-alkanes. 18Ocarb values (+2 to +5 vs. VPDB) were strongly influenced by evaporation and temporal freshwater input into the lagoon. The 13Ccarb values (–1 to +4 vs. VPDB) were controlled mainly by changes in primary production. Both isotopic ratios show an inverse relationship throughout most of the core, contradicting diagenetic alteration, since 13Ccarb values are not altered significantly during dolomitization. Assuming a temperature range of 35–40 °C in the lagoon, 18Ocarb values of +2.5 to +8 (vs. VSMOW) for the lagoonal water can be reconstructed. The lagoon may have desiccated twice during the Ca2 interval, as indicated by very high 18Ocarb and low 13Ccarb values, coinciding with increasing amount of anhydrite in the analyzed sample. These events seem to reflect not just local but a regional intra-Ca2 cyclicity. Measured D values of the short-chain n-alkanes, namely n-C16 and n-C18 which are widely used as indicators for photosynthetic bacterial and algal input, reflect the isotopic composition of the lagoonal water. Assuming constant fractionation during incorporation of hydrogen into lipids of –160, an average D value of +70 (vs. VSMOW) can be reconstructed for the lagoonal water, accounting for very arid conditions. The long-chain n-alkanes n-C27, n-C28, n-C29 and n-C30, thought to be derived from the leaf waxes of terrestrial higher plants, were shown to be depleted in D relative to the short-chain alkanes, therefore indicating a different hydrogen source. Terrestrial plants in arid areas mainly use water supplied by precipitation. By using a smaller fractionation of –120 due to evaporation processes in the leaves, reconstructed values vary between –74 and –9 (vs. VSMOW). These values are not indicating extremely arid conditions, implying that the long-chain n-alkanes were transported trough wind and/or rivers into the lagoon at the Zechstein Sea coast. Dwater values, reconstructed using the n-C16 alkane and 18O water values, independently reconstructed on the same sample using the temperature dependant fractionation for dolomites are good agreement and suggest high amounts of evaporation affecting the coastal lagoon. Altogether, our results indicate that hydrogen isotopic ratios of n-alkanes give information on their origin and are a useful proxy for palaeoclimatic reconstruction.  相似文献   

17.
Late Cretaceous, granitic pegmatite-aplite dikes in southern California have been known for gem-quality minerals and as a commercial source of lithium. Minerals, whole-rock samples, and inclusion fluids from nine of these dikes and from associated wall rocks have been analyzed for their oxygen, hydrogen, and carbon isotope compositions to ascertain the origins and thermal histories of the dikes. Oxygen isotope geothermometry used in combination with thermometric data from primary fluid inclusions enabled the determination of the pressure regime during crystallization.Two groups of dikes are evident from their oxygen isotope compositions (18Oqtz+10.5 in Group A, and +8.5 in Group B). Prior to the end of crystallization, Group A pegmatites had already extensively exchanged oxygen with their wall rocks, while Group B dikes may represent a closer approximation to the original isotopic composition of the pegmatite melts. Oxygen isotope fractionations between minerals are similar in all dikes and indicate that the pegmatites were emplaced at temperatures of about 730 ° to 700 ° C. Supersolidus crystallization began with the basal aplite zone and ended with formation of quench aplite in the pocket zone, nearly to 565 ° C. Subsolidus formation of gem-bearing pockets took place over a relatively narrow temperature range of about 40 ° C (approximately 565–525 ° C). Nearly closed-system crystallization is indicated.Hornblende in gabbroic and noritic wall rocks (Dw.r. = –90 to –130) in the Mesa Grande district crystallized in the presence of, or exchanged hydrogen with, meteoric water (D –90) prior to the emplacement of the pegmatite dikes. Magmatic water was subsequently added to the wall rocks adjacent to the pegmatites.Groups A and B pegmatites cannot be distinguished on the basis of their hydrogen isotope compositions. A decrease in D of muscovite inward from the walls of the dikes reflects a decrease in temperature. D values of H2O from fluid inclusions are: –50 to –73 (aplite and pegmatite zones); –62 to –75 (pocket quartz: Tourmaline Queen and Stewart dikes); and –50 ± 4 (pocket quartz from many dikes). The average 13C of juvenile CO2 in fluid inclusions in Group B pegmatites is –7.9. In Group A pegmatities, 13C of CO2 is more negative (–10 to –15.6), due to exchange of C with wall rocks and/or loss of 13C-enriched CO2 to an exsolving vapor phase.Pressures during crystallization of the pockets were on the order of 2,100 bars, and may have increased slightly during pocket growth. A depth of formation of at least 6.8 km (sp. gr. of over burden = 3.0, and P fiuid=P load) is indicated, and a rate of uplift of 0.07 cm/yr. follows from available geochronologic data.  相似文献   

18.
Hydrothermally-altered mesozonal synmetamorphic granitic rocks from Maine have whole-rock 18O (SMOW) values 10.7 to 13.8. Constituent quartz, feldspar, and muscovite have 18O in the range 12.4 to 15.2, 10.0 to 13.2, and 11.1 to 12.0, respectively. Mean values of Q–F ( 18Oquartz 18Ofeldspar)=2.4 and Q–M ( 18Oquartz 18Omuscovite)=3.3 are remarkably uniform (standard deviations of both are 0.2). Measured Q–F and Q–M values demonstrate that the isotopic compositions of the minerals are altered from primary magmatic 18O values but that the minerals closely approached oxygen isotope exchange equilibrium at subsolidus temperatures. Analyzed muscovites have D (SMOW) values in the range –65 to –82.Feldspars in the granitic rocks are mineralogically altered to either (a) muscovite+calcite, (b) muscovite+calcite+epidote, (c) muscovite+epidote, or (d) muscovite only. A consistent relation exists between the assemblage of secondary minerals and the oxygen isotope composition of whole rocks, quartz, and feldspar. Rocks with assemblage (a) have whole-rock 18O>12.1 and contain quartz and feldspar with 18O>13.8 and >11.4, respectively. Rocks with assemblages (b), (c), and (d) have whole-rock 18O<11.4 and contain quartz and feldspar with 18O< 13.1 and <11.0, respectively. The correlation suggests that the mineralogical alteration of the rocks was closely coupled to their isotopic alteration.Three mineral thermometers in altered granite suggest that the hydrothermal event occurred in the temperature range 400°–150° C, 100°–150° C below the peak metamorphic temperature inferred for country rocks immediately adjacent to the plutons. Calculations of mineral-fluid equilibria indicate that samples with assemblage (a) coexisted during the event with CO2-H2O fluids of and 18O=10.8 to 12.2 while samples with assemblages (b), (c), or (d) coexisted with fluids of and 18O=9.4 to 10.1. Compositional variations of the hydrothermal fluids were highly correlated: fluids enriched in CO2 were also enriched in 18O. Because CO2 was added to the granites during hydrothermal alteration and because fluids enriched in CO2 were enriched in 18O, some or all of the variation in 18O of altered granites may have been caused by addition of 18O to the rocks during the hydrothermal event. The source of both the CO2 and 18O could have been high-18O metasedimentary country rocks. The inferred change in isotopic composition of the granites is consistent with depletion of the metacarbonate rocks in 18O close to the plutons and with large volumes of fluid that were inferred from petrologic data to have infiltrated the metacarbonate rocks during metamorphism.A close approach of minerals to oxygen isotope exchange equilibrium in altered mesozonal rocks from Maine is in marked contrast to hydrothermally-altered epizonal granites whose mineral commonly show large departures from oxygen isotope exchange equilibrium. The difference in oxygen isotope systematics between altered epizonal granites and altered mesozonal granites closely parallels a differences between their mineralogical systematics. Both differences demonstrate the important control that depth exerts on the products of hydrothermal alteration. Deeper hydrothermal events occur at higher temperature and are longer-lived. Minerals and fluid have sufficient time to closely approach both isotope exchange and heterogeneous chemical equilibrium. Shallower hydrothermal events occur at lower temperatures and are shorter-lived. Generally there is insufficient time for fluid to closely approach equilibrium with all minerals.  相似文献   

19.
Emerald deposits in Swat, northwestern Pakistan, occurring in talc-magnesite and quartz-magnesite assemblages, have been investigated through stable isotope studies. Isotopic analyses were performed on a total of seven emeralds, associated quartz (seven samples), fuchsite (three samples) and tourmaline (two samples) from the Mingora emerald mines. The oxygen isotopic composition ( 18O SMOW) of emeralds shows a strong enrichment in18O and is remarkably uniform at + 15.6 ± 0.4 (1,n = 7). Each of the two components of water in emerald (channel and inclusion) has a different range of hydrogen isotopic composition: the channel waters being distinctly isotopically heavier (D = –51 to –32 SMOW) than the other inclusion waters (D = –96 to –70 SMOW). Similarly the oxygen isotopic compositions of tourmaline and fuchsite are relatively constant ( 18O = + 13 to + 14 SMOW) and show enrichment in18O. The 18O values of quartz, ranging from + 15.1 to + 19.1 SMOW, are also high (+ 16.9 ± 1.4 1, n = 7). The meanD of channel waters measured from emerald (–42 ± 6.6 SMOW) and that of fluid calculated from hydrous mineralsDcalculated (–47 ± 7.1 SMOW) are consistent with both metamorphic and magmatic origin. However, the close similarity between the measuredD values of the hydroxyl hydrogen in fuchsite (–74 to –6 SMOW) and tourmaline (–84 and –69 SMOW) with pegmatitic muscovite and tourmaline suggests that the mineralization was probably caused by modified (18O-enriched) hydrothermal solutions derived from an S-type granitic magma. The variation in the carbon and oxygen isotopic composition of magnesite, locally associated with emerald mineralization, is also very restricted ( 13 –3.2 ± 0.7%, PDB; 18O + 17.9 ± 1.27 SMOW). On the basis of the isotopic composition of fluid ( 13C –1.8 ± 0.7 PDB; 18O + 13.6 ± 1.2 SMOW calculated for the 250-550 °C temperature), it is proposed that the Swat magnesites formed due to the carbonation of previously serpentinized ultramafic rocks by a CO2-bearing fluid of metamorphic origin.  相似文献   

20.
The stable isotope composition of veins, pressure shadows, mylonites and fault breccias in allochthonous Mesozoic carbonate cover units of the Helvetic zone show evidence for concurrent closed and open system of fluid advection at different scales in the tectonic development of the Swiss Alps. Marine carbonates are isotopically uniform, independent of metamorphic grade, where 13C=1.5±1.5 (1 ) and 18O=25.4±2.2 (1 ). Total variations of up to 2 in 13C and 1.5 in 18O occur over a cm scale. Calcite in pre- (Type I) and syntectonic (Type II) vein arrays and pressure shadows are mostly in close isotopic compliance with the matrix calcite, to within ±0.5, signifying isotopic buffering of pore fluids by host rocks during deformation, and closed system redistribution of carbonate over a cm to m scale. This is consistent with microstructural evidence for pressure solution — precipitation deformation.Type III post-tectonic veins occur throughout 5 km of structural section, extend several km to the basement, and accommodate up to 15% extension. Whereas the main population of Type III veins is isotopically undistinguishable from matrix carbonates, calcite in the largest of these veins is depleted in 18O by up to 23 but acquired comparable 13C values. This generation of veins involved geopressurized hydrothermal fluids at 200 to 350° C where 18O H2O=–8 to +20, representing variable mixtures of 18O enriched pore and metamorphic fluids, with 18O depleted meteoric water. Calc-mylonites ( 18O=25 to 11) at the base of the Helvetic units, and syntectonic veins from the frontal Pennine thrust are characterized by a trend of 18O depletion relative to carbonate protoliths, due to exchange with an isotopically variable reservoir ( 18O H2O=20 to 4). The upper limiting value corresponds to carbonate-buffered pore fluid, whereas the lower value is interpreted as 18O-depleted formation brines tectonically expelled at lithostatic pressure from the crystalline basement. Carbonate breccias in one of the large scale late normal faults exchanged with infiltrating 18O-depleted meteoric surface waters ( 18O=–8 to –10).During the main ductile Alpine deformation, individual lithological units and associated tectonic vein arrays behaved as closed systems, whereas mylonites along thrust faults acted as conduits for tectonically expelled lithostatically pressured reservoirs driven over tens of km. At the latest stages, marked by 5 to 15 km uplift and brittle deformation, low 18O meteoric surface waters penetrated to depths of several km under hydrostatic gradients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号