首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The MS 6.9 Menyuan earthquake in Qinghai Province, west China is the largest earthquake by far in 2022. The earthquake occurs in a tectonically active region, with a background b-value of 0.87 within 100 ?km of the epicenter that we derived from the unified catalog produced by China Earthquake Networks Center since late 2008. Field surveys have revealed surface ruptures extending 22 ?km along strike, with a maximum ground displacement of 2.1 ?m. We construct a finite fault model with constraints from InSAR observations, which showed multiple fault segments during the Menyuan earthquake. The major slip asperity is confined within 10 ?km at depth, with the maximum slip of 3.5 ?m. Near real-time back-projection results of coseismic radiation indicate a northwest propagating rupture that lasted for ~10 ?s. Intensity estimates from the back-projection results show up to a Mercalli scale of IX near the ruptured area, consistent with instrumental measurements and the observations from the field surveys. Aftershock locations (up to January 21, 2022) exhibit two segments, extending to ~20 ?km in depth. The largest one reaches MS 5.3, locating near the eastern end of the aftershock zone. Although the location and the approximate magnitude of the mainshock had been indicated by previous studies based on paleoearthquake records and seismic gap, as well as estimated stressing rate on faults, significant surface-breaching rupture leads to severe damage of the high-speed railway system, which poses a challenge in accurately assessing earthquake hazards and risks, and thus demands further investigations of the rupture behaviors for crustal earthquakes.  相似文献   

2.
地震应急是减轻地震灾害的重要途径之一。地震应急工作具有时间紧迫、事关重大的特点。2017年8月8日四川九寨沟MS7.0级地震发生后,为快速、准确地提供地震引发的滑坡灾害分布,本研究基于震后第一天获取到的高分辨率遥感影像(高分二号卫星影像、北京二号卫星影像),通过人工目视解译的方法初步建立了四川九寨沟地震滑坡编目。结果表明,该地震至少触发了622处同震滑坡,分布在沿使用影像边界框定的面积为3919km2的区域内。本研究还利用这个地震滑坡编目,统计了九寨沟地震滑坡数量和滑坡点密度(LND)与地形(坡度、坡向)、地震(地震烈度、震中距)等因素的关系。结果表明九寨沟地震滑坡多发生在坡度为20°—50°的区域内,滑坡的易发性随着坡度的增加而增加。受地震波传播方向的影响,E、SE向是地震滑坡较易发生的坡向。滑坡的易发程度和地震烈度呈正相关,即随着烈度的增大,滑坡易发性增大。滑坡易发性还随着震中距增加而降低,这是由于地震波能量随震中距的增加而衰减导致的。  相似文献   

3.
We modeled a tsunami from the West Papua, Indonesia earthquakes on January 3, 2009 (M w?=?7.7). After the first earthquake, tsunami alerts were issued in Indonesia and Japan. The tsunami was recorded at many stations located in and around the Pacific Ocean. In particular, at Kushimoto on Kii Peninsula, the maximum amplitude was 43?cm, larger than that at Manokwari on New Guinea Island, near the epicenter. The tsunami was recorded on near-shore wave gauges, offshore GPS sensors and deep-sea bottom pressure sensors. We have collected more than 150 records and used 72 stations?? data with clear tsunami signals for the tsunami source modeling. We assumed two fault models (single fault and five subfaults) which are located to cover the aftershock area. The estimated average slip on the single fault model (80?×?40?km) is 0.64?m, which yields a seismic moment of 1.02?×?1020?Nm (M w?=?7.3). The observed tsunami waveforms at most stations are well explained by this model.  相似文献   

4.
Timely response to earthquake characterization can facilitate earthquake emergency rescue and further scientific investigations. On June 1, 2022, MW 5.9 earthquake occurred in the southern area of the Longmenshan fault zone. This event also happened at the south end of the Dayi seismic gap and is the largest earthquake that has occurred in this seismic gap since the 1970 M 6.2 event. The slip-distribution model constrained by the seismic waveforms suggests a thrust-dominated faulting mechanism. The main slip occurs at a depth of ~14 ?km, and the cumulative energy is released in the first 6 ?s. The variations of Coulomb stress caused by the mainshock show a positive change in the southwest area of the Dayi seismic gap, indicating possible activation of future earthquakes. In addition, we emphasize the importance of rapid estimation of deformation for near-field hazard delineation, especially when interferometric radar fails to image coseismic deformation in a high relief terrain.  相似文献   

5.
—?An M 7.2 earthquake took place 67?km southeast of an abandoned mine containing flooded, vertical ore veins at depth of 1?km. Multidisciplinary monitoring of the unweathered country rock within the mine was carried out for a distance of about one kilometer. The M 7.2 earthquake was followed by significant post-seismic changes in strain and tilt of ~10?6, with a self-potential of ~10?mV, and an increase in the water level in the mine of about 10?cm/day. These phenomena continued for several months before returning to pre-earthquake levels. Coseismic elastic deformations were too small to account for the observed post-seismic changes, and have different senses in strain and tilt from the observed post-seismic changes. The contractions in strain and the changes in the electric self-potential and water-elevation rate strongly suggest an increase in pore pressure. An increase in microseismic activity (M?M 7.2 earthquake.  相似文献   

6.
2014年9月12日至2014年10月31日,在浙江文成-泰顺交界的珊溪水库区域发生了最大震级M4.2地震。珊溪水库地区曾在2002、2006年分别发生过最大震级为ML3.9、ML4.6的地震序列,受这2次地震作用影响,震区房屋已经遭受了一定程度的破坏。2014年地震现场调查发现,震区震感明显,房屋受损现象较为普遍,震害具有叠加效应,出现了"小震致灾"的现象。另外,在震中附近的一些道路边坡上,地震还引发了规模较小的崩塌、滑坡等地质灾害。  相似文献   

7.
The interpretation of the nature and parameters of the source for the earthquake that occurred in Sumatra on December 26, 2004 is suggested. Our study relies on a variety of data on the geological structure of the region, long-term seismicity, spatial distribution of the foreshocks and aftershocks, and focal mechanisms; and the pattern of shaking and tsunami, regularities in the occurrence of the earthquakes, and the genetic relationship between the seismic and geological parameters inherent in various types of seismogenic zones including island arcs. The source of the Sumatran earthquake is a steep reverse fault striking parallel to the island arc and dipping towards the ocean. The length of the fault is ~450 km, and its probable bedding depth is ~70–100 km. The magnitude of this seismic event corresponding to the length of its source is 8.9–9.0. The vertical displacement in the source probably reached 9–13 m. The fault is located near the inner boundary of the Aceh Depression between the epicenter of the earthquake and the northern tip of the depression. The strike-slip and strike-slip reverse the faults cutting the island arc form the northern and southern borders of the source. The location and source parameters in the suggested interpretation account quite well for the observed pattern of shaking and tsunami. The Aceh Depression and its environs probably also host other seismic sources in the form of large reverse faults. The Sumatran earthquake, which was the culmination of the seismogenic activation of the Andaman-Sumatra island arc in the beginning of XXI century, is a typical tsunamigenic island-arc earthquake. By its characteristics, this event is an analogue to the M W = 9 Kamchatka earthquake of November 4, 1952. The spatial distribution of the epicenters and the focal mechanisms of the aftershocks indicate that the repeated shocks during the Sumatran event were caused by the activation of a complex system of geological structures in various parts of the island arc and Andaman Sea instead of the slips on a single rupture (a subduction thrust about 1200–1300 km in length).  相似文献   

8.
Coseismic deformation fields of the 6 October 2008 M w6.3 Damxung earthquake were obtained from interferometric synthetic aperture radar by using three descending and two ascending Envisat images. Significant coseismic surface deformation occurred within 20?km?×?20?km of the epicenter with a maximum displacement of ~0.3?m along the satellite line of sight. We model a linear elastic dislocation in a homogeneous half space and use a nonlinear constraint optimized algorithm to estimate the fault location, geometry and slip distribution. The results indicate a moment magnitude M w6.3, and the earthquake is dominated by oblique normal and right-lateral slip with a maximum slip of 2.86?m at depth of 8?km. The rupture plane is about 15?km?×?14?km with strike S190°W and dip 55° to NW, located at a secondary fault of the Southeastern Piedmont of the Nyainqentanglha Mountains. Slip on normal faults in the Tibetan Plateau contributes to the rift evolution.  相似文献   

9.
Aftershock locations, source parameters and slip distribution in the coupling zone between the overriding North American and subducted Rivera and Cocos plates were calculated for the 22 January 2003 Tecomán earthquake. Aftershock locations lie north of the El Gordo Graben with a northwest-southeast trend along the coast and superimposed on the rupture areas of the 1932 (M w?=?8.2) and 1995 (M w?=?8.0) earthquakes. The Tecomán earthquake ruptured the northwest sector of the Colima gap, however, half of the gap remains unbroken. The aftershock area has a rectangular shape of 42?±?2 by 56?±?2?km with a shallow dip of roughly 12° of the Wadati-Benioff zone. Fault geometry calculated with the Náb??lek (1984) inversion procedure is: (strike, dip, rake)?=?(277°, 27°, 78°). From the teleseimic body wave spectra and assuming a circular fault model, we estimated source duration of 20?±?2?s, a stress drop of 5.4?±?2.5?MPa and a seismic moment of 2.7?±?.7?×?1020?Nm. The spatial slip distribution on the fault plane was estimated using new additional near field strong motion data (54?km from the epicenter). We confirm their main conclusions, however we found four zones of seismic moment release clearly separated. One of them, not well defined before, is located toward the coast down dip. This observation is the result of adding new data in the inversion. We calculated a maximum slip of 3.2?m, a source duration of 30?s and a seismic moment of 1.88?×?1020?Nm.  相似文献   

10.
On February 27, 2010 an earthquake of magnitude Mw=8.8, with epicenter in Cobquecura, Maule region, hit the central part of Chile. After the earthquake, a tsunami occurred that caused heavy casualties and damage to buildings and infrastructure. In particular, 4.5% of the overpasses located in the affected region suffered some type of damage and 25 bridges and several pedestrian bridges collapsed. At that time, there were about a dozen bridges with seismic isolation bearings in Chile, two of which were instrumented with accelerometer networks: the Marga Marga Bridge, located in Viña del Mar, and an elevated section of the Metro Line 5 in Santiago, at approximately 300 km and 400 km from the epicenter, respectively. This paper analyzes the acceleration records obtained at these instrumented structures and studies the effect of the seismic isolation on their dynamic response. The beneficial effect of the isolation system, especially in the longitudinal direction, is apparent. In addition, some flaws in the collapsed bridges are described.  相似文献   

11.
An interpretation of the type, size, and interrelations of sources is proposed for the three large Aleutian earthquakes of March 9, 1957, May 7, 1986, and June 10, 1996, which occurred in structures of the Andreanof Islands. According to our interpretation, the earthquakes were caused by steep reverse faults confined to different structural units of the southern slope of the Andreanof Islands and oriented along the strike of these structures. An E-W reverse fault that generated the largest earthquake of 1957 is located within the Aleutian Terrace and genetically appears to be associated with the development of the submarine Hawley Ridge. The western and eastern boundaries of this source are structurally well expressed by the Adak Canyon in the west (~177°W) and an abrupt change in isobaths in the east (~173°W). The character of the boundaries is reflected in the focal mechanisms. The source of the earthquake of 1957 extends for about 300 km, which agrees well with modern estimates of its magnitude (M w = 8.6). Because the earthquake of 1957 caused, due to its high strength, seismic activation of adjacent areas of the Aleutian island arc, its aftershock zone appreciably exceeded in size the earthquake source. Reverse faults that activated the seismic sources of the earthquakes of 1986 and 1996 were located within the southern slope of the Andreanof Islands, higher than the Aleutian Terrace, outside the seismic source of the 1957 earthquake. The boundaries of these sources are also well expressed in structures and focal mechanisms. According to our estimate, the length of the 1986 earthquake source does not exceed 130–140 km, which does not contradict its magnitude (M w = 8). The length of the 1996 earthquake source is ~100 km, which also agrees with the magnitude of the earthquake (M w = 7.8).  相似文献   

12.
This study constructs a preliminary inventory of landslides triggered by the MS 6.8 Luding earthquake based on field investigation and human-computer interaction visual interpretation on optical satellite images. The results show that this earthquake triggered at least 5 007 landslides, with a total landslide area of 17.36 ?km2, of which the smallest landslide area is 65 ?m2 and the largest landslide area reaches 120 747 ?m2, with an average landslide area of about 3 500 ?m2. The obtained landslides are concentrated in the IX intensity zone and the northeast side of the seismogenic fault, and the area density and point density of landslides are 13.8%, and 35.73 ?km?2 peaks with 2 ?km as the search radius. It should be noted that the number of landslides obtained in this paper will be lower than the actual situation because some areas are covered by clouds and there are no available post-earthquake remote sensing images. Based on the available post-earthquake remote sensing images, the number of landslides triggered by this earthquake is roughly estimated to be up to 10 000. This study can be used to support further research on the distribution pattern and risk evaluation of the coseismic landslides in the region, and the prevention and control of landslide hazards in the seismic area.  相似文献   

13.
Using the seismic records of 83 temporary and 17 permanent broadband seismic stations deployed in Tangshan earthquake region and its adjacent areas (39°N–41.5°N, 115.5°E–119.5°E), we conducted a nonlinear joint inversion of receiver functions and surface wave dispersion. We obtained some detailed information about the Tangshan earthquake region and its adjacent areas, including sedimentary thickness, Moho depth, and crustal and upper mantle S-wave velocity. Meanwhile, we also obtained the vP/vS structure along two sections across the Tangshan region. The results show that: (1) the Moho depth ranges from 30 km to 38 km, and it becomes shallower from Yanshan uplift area to North China basin; (2) the thickness of sedimentary layer ranges from 0 km to 3 km, and it thickens from Yanshan uplift region to North China basin; (3) the S-wave velocity structure shows that the velocity distribution of the upper crust has obvious correlation with the surface geological structure, while the velocity characteristics of the middle and lower crust are opposite to that of the upper crust. Compared with the upper crust, the heterogeneity of the middle and lower crust is more obvious; (4) the discontinuity of Moho on the two sides of Tangshan fault suggests that Tangshan fault cut the whole crust, and the low vS and high vP/vS beneath the Tangshan earthquake region may reflect the invasion of mantle thermal material through Tangshan fault.  相似文献   

14.
Inversion of local earthquake travel times and joint inversion of receiver functions and Rayleigh wave group velocity measurements were used to derive a simple model for the velocity crustal structure beneath the southern edge of the Central Alborz (Iran), including the seismically active area around the megacity of Tehran. The P and S travel times from 115 well-located earthquakes recorded by a dense local seismic network, operated from June to November 2006, were inverted to determine a 1D velocity model of the upper crust. The limited range of earthquake depths (between 2 km and 26 km) prevents us determining any velocity interfaces deeper than 25 km. The velocity of the lower crust and the depth of the Moho were found by joint inversion of receiver functions and Rayleigh wave group velocity data. The resulting P-wave velocity model comprises an upper crust with 3 km and 4 km thick sedimentary layers with P wave velocities (Vp) of ~5.4 and ~5.8 km s?1, respectively, above 9 km and 8 km thick layers of upper crystalline crust (Vp ~6.1 and ~6.25 km s?1 respectively). The lower crystalline crust is ~34 km thick (Vp  6.40 km s?1). The total crustal thickness beneath this part of the Central Alborz is 58 ± 2 km.  相似文献   

15.
A MS6.8 earthquake occurred on 5th September 2022 in Luding county, Sichuan, China, at 12: 52 Beijing Time(4:52 UTC). We complied a dataset of PGA, PGV, and site vS30 of 73 accelerometers and 791 Micro-Electro-Mechanical System(MEMS)sensors within 300 km of the epicenter. The inferred vS30 of 820 recording sites were validated. The study results show that:(1)The maximum horizontal PGA and PGV reaches 634.1 Gal and 71.1 cm/s respectively.(2) Over 80% of records ar...  相似文献   

16.
The crustal structure in Myanmar can provide valuable information for the eastern margin of the ongoing Indo-Eurasian collision system. We successively performed H–k stacking of the receiver function and joint inversion of the receiver function and surface wave dispersion to invert the crustal thickness (H), shear wave velocity (VS), and the VP/VS ratio (k) beneath nine permanent seismic stations in Myanmar. H was found to increase from 26 ?km in the south and east of the study area to 51 ?km in the north and west, and the VP/VS ratio was complex and high. Striking differences in the crust were observed for different tectonic areas. In the Indo-Burma Range, the thick crust (H ?~ ?51 ?km) and lower velocities may be related to the accretionary wedge from the Indian Plate. In the Central Myanmar Basin, the thin crust (H ?= ?26.9–35.5 ?km) and complex VP/VS ratio and VS suggest extensional tectonics. In the Eastern Shan Plateau, the relatively thick crust and normal VP/VS ratio are consistent with its location along the western edge of the rigid Sunda Block.  相似文献   

17.
On August 3, 2014, an MW6.5 earthquake occurred in Ludian County, Yunnan Province, which triggered significant landslides and caused serious ground damages and casualties. Compared with the existing events of earthquake-triggered landslides, the spatial distribution of co-seismic landslides during the Ludian earthquake showed a special pattern. The relationship between the co-seismic landslides and the epicenter or the known faults is not obvious, and the maximum landslide density doesn't appear in the area near the epicenter. Peak ground acceleration (PGA), which usually is used to judge the limit boundary of co-seismic landslide distribution, cannot explain this distribution pattern. Instead of correlating geological and topographic factors with the co-seismic landslide distribution pattern, this study focuses on analyzing the influence of seismic landslide susceptibility on the co-seismic distribution. Seismic landslide susceptibility comes from a calculation of critical acceleration values using a simplified Newmark block model analysis and represents slope stability under seismic loading. Both DEM (SRTM 90m)and geological map (1 ︰ 200000)are used as inputs to calculate critical acceleration values. Results show that the most susceptible slopes with the smallest critical accelerations are generally concentrated along the banks of rivers. The stable slopes, which have the larger critical accelerations and are comparably stable, are in the places adjacent to the epicenter. Comparison of the distribution of slope stability and the real landslides triggered by the 2014 MW6.1 Ludian earthquake shows a good spatial correlation, meaning seismic landslide susceptibility controls the co-seismic landslide distributions to a certain degree. Moreover, our study provides a plausible explanation on the special distribution pattern of Ludian earthquake triggered landslides. Also the paper discusses the advantages of using the seismic landslide susceptibility as a basic map, which will offer an additional tool that can be used to assist in post-disaster response activities as well as seismic landslides hazards zonation.  相似文献   

18.
Stochastic modelling is applied to the analysis of local earthquake recordings, which are usually extremely rich in random incident-wave trains that are chaotically superimposed because of scattering effects in the Earth's crust. The presence in the seismic signal of effects connected with the scale of inhomogeneity in the lithosphere cannot be deterministically described in detail. The application of a stochastic second-order autoregressive model to accelerometric records for the higher magnitude (ML ? 6) Friuli earthquakes and to short-period seismometric records for the aftershocks of the strong earthquake of 6 May 1976 has allowed inferences to be drawn about the spectral properties of seismic signals and the propagation mechanisms of seismic waves. These inferences are based on an extremely small number of parameters of a mathematical model suitable for simultaneously describing the random sequence of scattered wave trains in the time and frequency domains. Useful physical information has been obtained about the dynamic characteristic correlation times and the predominant frequency of the seismic signals; moreover, the strength, σ2e(t), of the innovation of the stochastic process fitting the real digital data set has been estimated. From the envelopes of σ2e(t), the quantity heuristically used in the stochastic approach to describe seismic excitation, the·mean free-path between successive scatterings (l), or the equivalent diffusivity coefficient (d) and turbidity (g), and their dependence on seismic wave frequency have been investigated. For Friuli, using seismometric data at an epicentral distance of ~ 20 km and earthquakes with a magnitude just under 2, mean free-path estimates obtained by means of autoregressive parameters vary from ~ 5 km for the strong interaction model to ~ 30 km for the single scattering model. Furthermore, by means of accelerometric records for the strongest earthquakes in Friuli during May and September 1976, the dependence for the maximum of the seismic excitation on the epicentral distance R was estimated as (σ2e)maxR?ν (with ν 1.94 ± 0.13), which is in good agreement with results obtained for the same region using standard methods by means of acceleration peaks versus R. Lastly, stochastic modelling provides a method of estimating change versus time for the predominant frequency and characteristic correlation time of narrow band digital recordings. These two parameters were computed by means of autoregressive parameters in different physical situations and were found to be functions of the earthquake source, the instrumentation frequency response, and the Earth's filtering effects.  相似文献   

19.
An interpretation of the parameters of earthquake sources is proposed for the two large earthquakes in the Rat Islands of February 4, 1965 (M W = 8.7), and November 17, 2003 (M W = 7.7–7.8), based on the analysis of focal mechanisms, the manifestation of aftershocks, and the specific features of the geological structure of the island slope of the Rat Islands. The source of the earthquake of 1965 is a reverse fault of longitudinal strike, with a length of ~350 km. It is located in the lower part of the Aleutian Terrace and probably is genetically connected with the development of the Rat submarine ridge. The westward boundary of the earthquake source is determined by the Heck Canyon structures, and the eastward boundary is determined by the end of Rat Ridge in the region of λ ~ 179°E–179.5°E. The source of the earthquake of 2003 is a steep E-W reverse fault extending for about 100 km. It is located in the eastern part of the Rat Islands, higher on the slope than the source of the earthquake of 1965. The westward end of the earthquake source is determined by Rat Canyon structures, and the eastward end is an abrupt change in isobaths in the region of λ ~ 179°E. According to the aftershock hypocenters, the depth of occurrence of the reverse fault could reach ~60 km. According to our interpretation, on the southern slope of the Rat and Near islands, there is a complex system of seismogenic faults that is caused by tectonic development of different structural elements. The dominant types of faults here are reverse faults, as in other island arcs. During earthquakes, reverse faults oriented along the island arc and also faults that intersect it exhibit themselves. The reverse faults of northeastern strike that intersect the arc characterize the type of tectonic motions in a series of canyons of the western part of the Aleutian Islands.  相似文献   

20.
针对汶川大地震中产生的在反倾巨厚层状岩体中滑坡的特征,以甘肃武都寨子崖滑坡为实例,通过详细的野外地质调查,结合滑坡区的工程地质环境和面波测试成果,综合分析反倾巨厚层状岩质边坡中形成滑坡的条件,研究其特征和演化机制。不发育结构面、尤其不发育缓倾坡外结构面时此类边坡不具备产生重力滑坡的条件;此类斜坡在仅有水平地震力时同样不易形成滑坡,双向地震力共同作用时易产生地震滑坡。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号