首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shallow water platform limestones of the Chadian–Asbian Milverton Group are restricted to the north-eastern part of the Lower Carboniferous (Dinantian) Dublin Basin. Here, they are confined to two granite-cored fault blocks, the Kentstown and Balbriggan Blocks, known to have been active during the late Dinantian. Three areas of platform sedimentation are delimited (the Kentstown, Drogheda and Milverton areas), although in reality they probably formed part of a single carbonate platform. Resedimented submarine breccias and calciturbidites (Fingal Group) composed of shallow water allochems and intraclasts sourced from the platform accumulated, along with terrigenous muds, in the surrounding basinal areas. Sedimentological evidence suggests that the Kentstown and Balbriggan Blocks possessed tilt-block geometries and developed during an episode of basin-wide extensional faulting in late Chadian time. Rotation of the blocks during extension resulted in the erosion of previously deposited sequences in footwall areas and concomitant drowning of distal hangingwall sequences. Antithetic faults on the northern part of the Balbriggan Block aided the preferential subsidence of the Drogheda area and accounts for the anomously thick sequence of late Chadian platform sediments present there. Continued subsidence and/or sea-level rise in the late Chadian–early Arundian resulted in transgression of the Kentstown and Balbriggan Blocks; carbonate ramps developed on the hangingwall dip slopes and transgressed southward with time. Subsequent progradation and aggradation of shallow water sediments throughout the Arundian to Asbian led to the development of carbonate shelves. Several coarse conglomeratic intervals within the contemporaneous basinal sequences of the Fingal Group attest to periodic increases of sediment influx associated with the development of the shelves. Sedimentological processes controlled the development of the carbonate platforms on the hangingwall dip slopes of the Kentstown and Balbriggan Blocks, though periodic increases of sediment flux into the basinal areas may have been triggered by eustatic falls in sea level. In contrast, differential subsidence along the bounding faults of these blocks exerted a strong control on the margins of the late Dinantian shelves, maintaining relatively steep slopes and inhibiting the progradation of the shelves into the adjacent basins. Tectonically induced collapse and retreat of the platform margins occurred in the late Asbian–early Brigantian. Platform sediments are overlain by coarse-grained proximal basinal facies which fine upwards before passing into a thick shale sequence, indicating that by the late Brigantian carbonate production had almost stopped as the platforms were drowned.  相似文献   

2.
A number of carbonate buildups in north Co. Dublin, long assigned to the late Viséan (Asbian), are shown on the basis of coral, foraminiferal and algal evidence to be early to mid-Viséan (late Chadian to Holkerian) in age. They are equivalent in age to beds ranging from the upper part of the Lane Formation to the top of the Holmpatrick Formation. The buildups are poorly exposed and relatively small, probably only a few tens of metres across at most. Buildup sediments are massive to crudely bedded and dominated by peloidal, clotted and dense uniform micrites displaying lime mudstone and bioclastic wackestone textures. Dasycladacean algae are common in the buildups and cryptalgal fabrics are locally important. Cavities in the buildups are generally small (< 5 cm) and lined with inclusion-rich radiaxial calcite cements. Micritization of bioclasts and cements is ubiquitous. Enclosing off-buildup limestones are skeletal and intraclastic grainstones possessing sedimentary structures indicative of deposition in moderate to high energy environments. Fossil and petrographic evidence from the buildups also indicate a shallow water origin for the north Co. Dublin buildups. Compared with the slightly older Tournaisian (Courceyan to early Chadian) Waulsortian buildups which developed extensively in the Dublin Basin, these younger platform buildups are smaller and more isolated and possess a diverse suite of algal components and cryptalgal fabrics. Nevertheless, components in the north Co. Dublin buildups most closely resemble the shallowest phase D Waulsortian buildups, particularly in the presence of abundant peloids and micritized cements. The north Co. Dublin buildups developed on a carbonate platform (the Milverton Platform), adjacent to the Dublin Basin, whereas the Waulsortian developed in a deeper ramp setting. Following the demise of the Waulsortian in early Chadian time carbonate buildups established themselves on the shallow platforms. It is suggested that the microbial communities responsible for these buildups may have ‘evolved’ from older phase D Waulsortian communities and that he north Co. Dublin platform buildups represent the shallow water end of a spectrum of Viséan buildups.  相似文献   

3.
Logging of 55 recent boreholes, together with remapping, has resulted in a fundamental reassessment of the stratigraphy and sedimentology of the Dinantian Kingscourt Outlier. Despite the present isolated position of the outlier within the Longford-Down Massif, the Kingscourt rocks are an integral part of the Dublin Basin succession. The newly defined Ardagh Platform marks the most northerly limit to basinal sedimentation in the Dinantian Dublin Basin. The Courceyan is a typical but thinner, north Dublin Basin succession with two new formal units: the Rockfield Sandstone Member and the Kilbride Formation. The latter, a coarse-grained, well washed limestone of latest Courceyan to early Chadian (late Tournaisian) age is the shallow water equivalent of the Feltrim Formation (Waulsortian facies), which is absent in the outlier. The Courceyan interval in the north of the outlier is markedly attenuated. In the succeeding Chadian-Brigantian interval basinal facies predominate in the south, but on the Ardagh Platform an almost complete coeval Viséan shallow water sequence is found. A new platform unit (Deer Park Formation) of latest Asbian to Brigantian age is defined in the Ardagh area. The Dee Member (Chadian) is newly defined for the lower part of the basinal Tober Colleen Formation and the Altmush Shale Member is formally defined for the upper part of the Loughshinny Formation. Two major structures dominate the Kingscourt Outlier: the NE-SW trending Moynalty Syncline in the south and the N-S trending Kingscourt Fault. Both are Hercynian structures, but probably represent reactivated Caledonide basement-controlled structures. Dinantian syn-depositional faulting is indicated in both the Courceyan (‘Kingscourt Sag’) and Chadian-Asbian. The latter period of faulting in the Ardagh area separates platform facies in the north from basinal facies to the south. In the late Asbian, platform facies with carbonate build-ups prograded south into the basin as far south as Nobber, but in the latest Asbian to Brigantian, basinal facies extended northwards over the collapsed platform margin.  相似文献   

4.
The 2-km deep Athboy Borehole (1439/2) together with the lower part of boreholes EP30 and N915 form a standard type section for strata of Dinantian (Courceyan to Asbian) age in west Co. Meath. Above a thin basal red-bed siliciclastic sequence, the marine Courceyan shelf succession is almost 600 m thick. It comprises the Liscartan, Meath, and Moathill Formations of the Navan Group and the Slane Castle Formation of the succeeding Boyne Group. The shallow-water limestones include micrites, oolites, and sandy bioclastic packstones and grainstones with subordinate skeletal wackestones and shales. Lateral facies changes from north to south in the Navan area suggest deepening across a shelf towards a depocentre further to the south around Trim. The deeper-water Waulsortian Limestones of late Courceyan to Chadian age (Feltrim Formation, ca. 213 m thick) form a series of five sheet-like mudbanks, interbedded with generally thin units of nodular crinoidal limestones and shales. The mudbanks are formed of bryozoan-rich peloidal wackestones and lime-mudstones with phase C and D components. Rare soft-sediment breccias occur at the bottom and top of banks. The succeeding Fingal Group commences with a thin interval (3–20 m) of black shales, laminated packstones, and micritic limestones of Chadian age, the Tober Colleen Formation. This is followed by the Lucan Formation (Chadian to Asbian) predominantly of laminated and graded calciturbidites, laminated sandstones, cherts, and black shales, which is over 1300 m thick. Ten sedimentary units have been informally defined, based on lithofacies and facies associations. The oldest unit, the Tara Member, is characterized by proximal debris-flow breccia deposits and nodular mudstones. A thick bioturbated micrite and shale unit (Ardmulchan Member) in the middle of the formation is overlain directly by a coarse oolitic and crinoidal grainstone unit (Beauparc Member). Near the top of the formation is a distinctive unit of coarse-grained laminated sandstones and shales (Athboy Member). The highest rocks in the Borehole are clean thickly-bedded limestones of the Asbian Naul Formation (>90 m thick). The youngest Dinantian strata in the area, the Brigantian Loughshinny Formation, marks a return to shale-dominant basin sedimentation. The significance of this work lies in the fact that the Athboy borehole is the longest continuously cored borehole in the Carboniferous of Ireland and provides a continuous sedimentary and biostratigraphic record for the northern part of the Dublin Basin. Foraminiferal biozones (Cf2–Cf6) have been recognized in this and in borehole N915, and Stage boundaries identified, which can be applied throughout the Basin. The sedimentary record for the Lucan Formation indicates four tectonic pulses during the Viséan, in the late Chadian/early Arundian, mid-Arundian, Holkerian, and late Holkerian/early Asbian.  相似文献   

5.
The Dinantian Edale Basin is located to the north of the Derbyshire carbonate platform and underlies the Upper Carboniferous of the central Pennines. The Edale Basin was thought to be part of a large basin which extended from the Derbyshire carbonate platform to the Askrigg Block. The presence of aggregate grains and ooids in the Alport Borehole suggests that a carbonate platform, possibly located on the Holme structural high, was present underneath the central Pennines. This platform is called the Holme Platform. The Arundian to early Asbian section of the Alport Borehole represents deposition of resedimented shallow-water carbonates with occasional bioturbated periplatform carbonates and basinal shales on the middle part of a carbonate ramp. Volcaniclastic sediments may have been derived from a volcanic centre within the Edale Basin. A change in sedimentation during the mid-Asbian to the deposition of basinal shales and distal carbonate turbidites is attributed to starvation of the basin. This may have been caused by a combination of the development of accretionary rimmed carbonate shelves and the repeated emergence of shelf carbonates deposited on surrounding carbonate platforms. The late Asbian/early Brigantian section of the Edale Borehole is interpreted as a distal equivalent of the ‘Beach Beds’ which outcrop at the north margin of the Derbyshire carbonate platform. The ‘Beach Beds’ represent bioclastic turbidites derived from the Derbyshire carbonate platform. Throughout the Brigantian, sedimentation in the Edale Basin was dominated by the deposition of distal carbonate turbidites and basinal shales. Variation of dip through the Alport Borehole indicates the common occurrence of slumps throughout the sequence and the presence of either an angular unconformity or a fault within the early Brigantian section.  相似文献   

6.
The Carboniferous succession in southeast County Limerick, on the southeastern margin of the Shannon Trough, is Courceyan to mid-Namurian in age and over 1900 m thick. The lithostratigraphy is described in detail. Its most important aspect is the presence of two thick volcanic sequences, a Chadian one of the alkali basalt to trachyte suite and one of Asbian age dominated by limburgites and ankaramites. The associated Dinantian carbonates are of shelf or ramp facies throughout, and no fundamental division into shelf and basin facies occurs as in the Dublin and Craven Basins in early Viséan times. Rapid differential subsidence between this area and the Shannon Estuary began during deposition of the late Courceyan to early Chadian Waulsortian facies but was less marked in the remaining Viséan when much of the volcanic topography was preserved by rapid basinal subsidence. There was basinal inversion in the late Dinantian to lower Namurian, followed by renewed subsidence in mid-Namurian times. This contrasts with the continuous rapid subsidence of the area further west on the Shannon Estuary. This behaviour, together with a comparison of that of nearby Carboniferous basins such as the Dublin, South Munster, and Craven Basins, which lack substantial volcanic sequences, suggests an origin in a transtensional regime rather than one of simple crustal stretching.  相似文献   

7.
Rocks of Courceyan to Brigantian age are exposed in the Limerick Syncline. However, a complete Courceyan succession is known only from two boreholes which correlate closely, both faunally and lithologically, with a standard Limerick Province succession in the Pallaskenry Borehole on the Shannon estuary. This is followed by a thick Waulsortian sequence (the newly defined Limerick Limestone Formation) of late Courceyan to early Chadian age and overlying cherty micrites (the newly defined Lough Gur Formation) of early to late Chadian age, whose top is younger to the east. The Lough Gur Formation is succeeded by lavas and tuffs of the Knockroe Volcanic Formation whose upper part is interbedded with and overlain by shallow water oolites and algal-rich bioclastic limestones of the Herbertstown Limestone Formation. The higher part of the latter is in turn interbedded with lavas and tuffs of the Knockseefin Volcanic Formation. The Herbertstown Limestone has rich and diverse coral/brachiopod and foraminiferal assemblages of late Chadian to Asbian age. Its base is markedly diachronous: late Chadian in the west of the syncline and Holkerian in the east. Both the base and top of the Knockroe Volcanic Formation are thus shown to be markedly diachronous and volcanism extends from the Chadian to early Asbian. The Knockseefin Volcanic Formation is entirely of Asbian age. The highest limestones (Dromkeen Limestone Formation) have a diagnostic late Asbian–early Brigantian fauna and are overstepped by mid-Namurian shales.  相似文献   

8.
浙江江山寒武纪为一套深色海相碳酸盐沉积,包含了湖相和台地相组成的海进相序。本文在江山一带沉积相研究的基础上,结合区域地质资料,探讨了浙皖海盆东南缘的区域古地理格局的演变规律及其构造意义  相似文献   

9.
The depositional history of the Dinantian on the Derbyshire Dome can be divided into three phases: (1) pre-Holkerian: onlap of an irregular basement surface by evaporite and carbonate sediments, (2) Holkerian to Asbian: sedimentation on a carbonate shelf formed by the merging of early Dinantian depocentres following burial of the basement topography, and (3) Brigantian: formation of intrashelf basins and the development of a carbonate ramp on part of the pre-existing shelf. A model of the basement structure underlying the Derbyshire Dome is presented to explain the location of the Brigantian intrashelf basins and carbonate ramp. The basement consists of two main tilted fault blocks separated by a smaller tilt block. Movement on faults bounding the tilt blocks caused the development of intrashelf basins. The basin margins were controlled by structures which developed in the cover sediments. The carbonate ramp present during the late Brigantian developed in response to an eastward tilting of the basement.  相似文献   

10.
During the Late Tortonian, platform‐margin‐prograding clinoforms developed at the south‐western margin of the Guadix Basin. Large‐scale wedge‐shaped deposits here comprise 26 rhythms of mixed carbonate–siliciclastic bedset packages and marl beds. These sediments were deposited on a shallow‐water, temperate‐carbonate distally steepened ramp. A downslope‐migrating sandwave field developed in this ramp, with sandwaves moving progressively down the ramp to the ramp‐slope, where they destabilized, folded and occasionally collapsed. Downslope sandwave migration was induced by currents flowing basinwards. During the Late Tortonian, the Guadix Basin was open north to the Atlantic Ocean via the Dehesas de Guadix Strait and connected east to the Mediterranean Sea through the Almanzora Corridor. According to the proposed current circulation model for the Guadix Basin for this time, surface marine currents from the Atlantic entered the basin from the northern seaway. These currents moved counter‐clockwise and shifted the sediment on the ramp, forming sandwaves that migrated downslope. The development of platform‐margin prograding clinoforms by the basinward sediment‐transport mechanisms inferred here is known relatively poorly in the ancient sedimentary record. Moreover, these wedge‐shaped geometries are similar to those found in some shelves in the Western Mediterranean Sea and could represent an outcrop analogue to (sub)‐recent, platform‐margin clinoforms revealed by high‐resolution seismic studies.  相似文献   

11.
The Bowland Basin (northern England) contains a series of carbonates and terrigenous mudstones deposited during the Ivorian to early Brigantian. Two regional depositional environments are indicated by facies and facies associations. Wackestone/packstone and calcarenite facies indicate deposition in a carbonate ramp environment, while lime mudstone/wackestone, calcarenite and limestone breccia/conglomerate facies, often extensively slumped, represent a carbonate slope environment. Stratigraphic relations suggest that the depositional environment evolved from a ramp into a slope through the Dinantian. Two main sediment sources are indicated by the sequence; an extra-basinal terrigenous mud source and a supply of carbonate from the margins of the basin. Deposition from suspension and from sediment gravity flows, in situ production and remobilization of sediment during sedimentary sliding were important processes operating within the basin. Periods of enhanced tectonic activity in the late Chadian to early Arundian and late Asbian to early Brigantian are indicated by basin-wide horizons of sedimentary slide and mass flow deposits. Both intervals were marked by a decline in carbonate production resulting from inundation and uplift/emergence. The first of these intervals separates deposition on a seafloor with gentle topography (carbonate ramp) from a situation where major lateral thickness and facies variations were present and deposition took place in a carbonate slope environment. The second interval marks the end of major carbonate deposition within the Bowland Basin and the onset of regional terrigenous sedimentation.  相似文献   

12.
For the first time Arundian and Holkerian faunas have been recognized from the lower part of the Dinantian succession in North Wales. These limestones and sandstones, hitherto regarded as Asbian, have a macrofauna and microfauna confirming their older age, and this discovery' has necessitated a revision of the palaeogeography in the North Wales region. Biostratigraphical correlations have been made with contemporaneous platform successions in the Central, Northern, and Southwest Provinces of Britain. A new genus and species of foraminifer, Groessensella moldensis, is described.  相似文献   

13.
Barremian-Lower Aptian platform carbonates (“Urgonian limestones”) of the northern margin of the Istanbul zone extend from Zonguldak to the Kurucasile area along the Black Sea coast. New stratigraphic data on the “Inpiri” Formation of the Inpiri-Kurucasile area are based on the identification of calcareous algae, foraminifera, and rudists. They show that this lithostratigraphic unit is stratigraphically and lithologically equivalent to the Ökü?medere Formation from Zonguldak. Some of the biostratigraphic markers are reported for the first time in Anatolia. Foraminifera are represented by several forms with a significant biostratigraphic potential used to distinguish the Barremian from the lower Aptian. Lower Aptian beds also yield relatively advanced caprinid rudists.The Ökü?medere Formation is relatively thin, terrigeneous-rich, and rudist-free or rudist-poor in the Kurucasile sector, and thick, terrigeneous-poor, and rudist-rich from Amasra to Zonguldak, with a set of marker beds including either charophytes or Palorbitolina and capped by a coral unit underlying ammonite bearing marls. Terrigeneous-rich carbonates from the eastern sector are interpreted as marginal marine coastal, infralittoral environments and grade distally, northward, to marly basinal sediments. By contrast “Urgonian type” limestones from the Zonguldak-Amasra region possess a wide extent and no transition to coastal or basinal sediments has been observed. A transition from a typical platform westward to a mixed siliciclastic-carbonate ramp eastward was controlled by both the nature of the adjacent exposed area and tectonic factors affecting the overall continental margin that is a northward downwarping. The exposed area was flanked southward by a belt of coastal siliciclastics grading southward and eastward to deep water sediments of the Ulus basin. In mid-Bedoulian time, carbonate platform demise from the western region was drowned below deeper marly sediments whereas the eastern siliscilastic-carbonate ramp was buried below coastal clastics.  相似文献   

14.
The Taltheilei, Utsingi, McLean and Blanchet formations form a 175–390 m thick carbonate platform-to-basin succession in the lower part of the PaleoProterozoic Pethei Group, preserved in the eastern arm of Great Slave Lake. Carbonates accumulated along the south-east margin of the Slave Craton within a foredeep formed during the collision of the Slave and Churchill Cratons. The rocks include eight, predominantly microbial, carbonate facies that comprise five facies associations representing (1) shallow-water rimmed shelf, (2) shallow-water open shelf, (3) shallow-water ramp, (4) upper slope and deep ramp, and (5) lower slope and basin plain environments. Microbialite facies grew by organically mediated precipitation of spar and micritic cement and trapping and binding of lime mud. These wholly subtidal facies typically reflect progressive shallowing and changing geometry of the lower Pethei sea floor, from ramp, to open shelf, to shallow rimmed shelf, with associated slope and basin plain deposition. Repeated relative sea-level changes influenced platform growth. This resulted in five shallowing upward packages; each separated by an incipient drowning event of varying magnitude. Antecedent topography and the size of the preceding drowning event strongly influenced the initial growth of each interval. This repeated pattern is attributed to interaction between (a) the inherent tendency of microbial carbonates to aggrade vertically, (b) changing sedimentation rates and (c) readjustments of relative base level. The lower Pethei succession is one of few PaleoProterozoic examples of carbonate platform growth within a foreland basin. It has (1) a low gradient profile, (2) extensive slope and basin plain carbonate production and sedimentation, (3) no ooids, (4) minor terrigenous clastic sediments, and (4) a mobile, submergent shelf rim lacking substantial carbonate sand shoals.  相似文献   

15.
LAVOIE  & ASSELIN 《Sedimentology》1998,45(5):817-832
Upper Ordovician (Caradocian) carbonates of eastern North America were deposited along the Iapetus continental margin and record a transition from warm- to cool-water settings despite this margin having been within the southern hemisphere tropical belt. This event has been documented from Virginia (USA) to southern Québec (Canada) although, not previously from areas close to the palaeoequator. Field, petrographic and major element geochemistry data have been gathered from the poorly-known Upper Ordovician carbonate succession outcropping in the Lac Saint-Jean outlier in central Québec. The succession consists of a lower siliciclastic formation (Tremblay) overlain by three limestone formations (Simard, Shipshaw and Galets) and capped by shales (Pointe-Bleue Shale). From macro- and microfaunal evidence, carbonate sedimentation occurred during the late Caradoc and is younger than the early- to mid-Caradoc carbonate succession present farther south. Relative sea level fluctuations recorded in the sediments suggest an overall sea level rise briefly halted by a minor end-Caradocian sea level fall. The lower limestone formation (Simard) consists of muddy sediments with algal-coral-stromatoporoid boundstones; green algae are abundant. This unit reflects low energy sedimentation on a shallow warm-water carbonate ramp colonized by a diverse chlorozoan fauna. The upper limestone formation (Galets) is typified by coarse-grained bioclastic sediments punctuated by numerous phosphate-rich hardgrounds with evidence for high energy shallow marine conditions. Faunas were dominated by crinoids and bryozoans. This unit represents high energy sedimentation on a cool shallow water carbonate ramp colonized by a brynoderm faunal association. Between both units, a deeper marine (outer shelf) limestone formation (Shipshaw) was developed. In the Lac Saint-Jean area, a transition from warm- to cool-water carbonate ramps occurred in latest Caradoc times and is litho- and biofacies-wise, similar to what is documented for lower Caradocian limestones present farther south. Upwelling of nutrient-rich cool bottom oceanic waters was a probable cause for this transition.  相似文献   

16.
The Black River (Upper Ordovician – Sandbian) and Trenton (Upper Ordovician – Katian) groups are traditionally interpreted as a deepening-upward succession deposited in a progressively subsiding Appalachian Basin margin that contained warm-water, marine, photozoan deposits that pass upward into cool-water, marine, heterozoan carbonates. This succession is customarily interpreted to reflect an incursion of cold, high-latitude ocean waters into the area. This view is herein confirmed for coeval carbonates in the northern part of the basin, particularly the St. Lawrence Platform. They are now well explained in this study on the basis of recent studies of cool-water carbonates and calcite–aragonite seas. Overall the succession is one of Sandbian photozoan ramp deposits succeeded by Katian heterozoan ramp carbonates that changed back to photozoan ramp deposits prior to the Hirnantian glaciation. The current interpretation, that deposition took place throughout a calcite sea time, seems at odds with this series of strata. Instead it is herein proposed that deposition took place during an aragonite sea time wherein calcite sea-like sediments accumulated under cold ocean-water temperatures. Such an interpretation is supported by recent experimental data that supports the importance of seawater temperature on CaCO3 polymorph precipitation. If correct, this means that some of the evidence for calcite sea deposition through time brought about by global tectonics, should be re-evaluated to make sure it was not simply cool-water carbonate production.  相似文献   

17.
The sedimentary succession of a Late Jurassic (Oxfordian to basal Kimmeridgian) carbonate ramp is described and interpreted. The study area is located in the central part of the Lower Saxony Basin in NW Germany, which forms part of the Central European Basin. Eight well-exposed and undeformed sections of the study area (Süntel area, Wesergebirge and eastern part of the Wiehengebirge) provide detailed information about lithofacies and lateral thickness variations. Biostratigraphically, the age of these sediments is poorly constrained. Twenty microfacies types are recognized that can be grouped into seven facies associations: (a) strongly bioturbated marlstones deposited near storm wave base (SWB), (b) foraminifera-rich wackestones, (c) wackestones and floatstones with biostromes and (d) bioclastic limestones deposited between SWB and fair-weather wave base (FWWB), (e) oolitic and iron-oolitic limestones and (f) siliciclastic sediments deposited above FWWB, and (g) lagoonal deposits. These facies associations characterize a storm dominated shallow mixed carbonate-siliciclastic ramp. Based on facies changes, quartz content, and gamma ray logs, the Korallenoolith Formation can be subdivided into a lower carbonate-dominated and an upper siliciclastic-dominated part, build up by different scales of small- to large-scale deepening- and shallowing-upward cycles. A preliminary correlation of measured outcrops of this formation is presented.  相似文献   

18.
The isolated outlier of Visean (Mid Mississippian) limestones and sandstones near Corwen, North Wales, UK, provides a critical constraint on regional tectonic and palaeogeographical models. The late Asbian to Brigantian succession comprises a series of shoaling‐upwards cycles (parasequences). These were the product of forced, glacioeustatic regressions and have boundaries that testify to emergence, karstic dissolution and soil formation on a low gradient carbonate platform prior to flooding and the resumption of marine deposition. The recognition of two of the main marker beds within the North Wales Visean succession (Main Shale and Coral Bed) together with a newly applied foraminiferal and algal biozonation allow the outlier succession to be correlated with other Visean outcrops in the region and more widely throughout the British Isles. In revealing regional thickness and facies variations, these comparisons show that the outlier succession was deposited landward of the early Asbian shoreline in a region of enhanced subsidence localized along the Bala Lineament. The Corwen Outlier suggests that, within narrow gulfs associated with the region's major tectonic lineaments, Mississippian carbonate facies extended farther south into the contemporary hinterland of older rocks and that, in response to Brigantian climate change, these topographic features likely also influenced fluvial catchments supplying siliciclastic sediment to the platform's landward margin and, subsequently, Namurian deltas. Contrary to earlier suggestions, Visean outcrop patterns, facies distributions and thicknesses in the vicinity of the Bala Lineament can be explained without the need to invoke extensive post‐depositional lateral displacements. BGS © NERC 2013. Geological Journal © John Wiley & Sons Ltd.  相似文献   

19.
引言自Ahr(1973)提出第一个碳酸盐缓坡模式以来,沉积学家通过对现代或古代地层沉积相分析,相继发现了一系列各种类型的现代或古代的碳酸盐缓坡(Read,1980,1985,1989;Ahr,1989;Grotzinger,1989;Bechstadt,1989;Wright,1986;Gawthorpe,1986)。尽管这些缓坡各自都具有与陆架碳酸盐台地截然不同的共同特征,但它们在沉积学上都各具特色,特别是它们都是在某一特定的构造背景(如热沉降、前陆负荷绕曲或海平面上升)下开始生长发育的。我国南方早古生代初期扬子碳酸盐缓坡具有浅水缓坡带宽广,具远岸加积障壁;深水缓坡具加积碳酸盐建隆等特征。它是继晚前寒武纪我国南方大陆裂谷作用之后,扬子陆块  相似文献   

20.
The Burren region in western Ireland contains an almost continuous record of Viséan (Middle Mississippian) carbonate deposition extending from Chadian to Brigantian times, represented by three formations: the Chadian to Holkerian Tubber Formation, the Asbian Burren Formation and the Brigantian Slievenaglasha Formation. The upper Viséan (Holkerian–Brigantian) platform carbonate succession of the Burren can be subdivided into six distinct depositional units outlined below. (1) An Holkerian to lower Asbian unit of skeletal peloidal and bryozoan bedded limestone. (2) Lower Asbian unit of massive light grey Koninckopora‐rich limestone, representing a shallower marine facies. (3) Upper Asbian terraced limestone unit with minor shallowing‐upward cycles of poorly bedded Kamaenella‐rich limestone with shell bands and palaeokarst features. This unit is very similar to other cyclic sequences of late Asbian age in southern Ireland and western Europe, suggesting a glacio‐eustatic origin for this fourth‐order cyclicity. (4) Lower Brigantian unit with cyclic alternations of crinoidal/bryozoan limestone and peloidal limestone with coral thickets. These cycles lack evidence of subaerial exposure. (5) Lower Brigantian bedded cherty dark grey limestone unit, deposited during the maximum transgressive phase of the Brigantian. (6) Lower to upper Brigantian unit mostly comprising cyclic bryozoan/crinoidal cherty limestone. In most areas this youngest unit is truncated and unconformably overlain by Serpukhovian siliciclastic rocks. Deepening enhanced by platform‐wide subsidence strongly influenced later Brigantian cycle development in Ireland, but localized rapid shallowing led to emergence at the end of the Brigantian. A Cf5 Zone (Holkerian) assemblage of microfossils is recorded from the Tubber Formation at Black Head, but in the Ballard Bridge section the top of the formation has Cf6 Zone (Asbian) foraminiferans. A typical upper Asbian Rugose Coral Assemblage G near the top of the Burren Formation is replaced by a lower Brigantian Rugose Coral Assemblage H in the Slievenaglasha Formation. A similar change in the foraminiferans and calcareous algae at this Asbian–Brigantian formation boundary is recognized by the presence of upper Asbian Cf6γ Subzone taxa in the Burren Formation including Cribrostomum lecomptei, Koskinobigenerina sp., Bradyina rotula and Howchinia bradyana, and in the Slievenaglasha Formation abundant Asteroarchaediscus spp., Neoarchaediscus spp. and Fasciella crustosa of the Brigantian Cf6δ Subzone. The uppermost beds of the Slievenaglasha Formation contain a rare and unusual foraminiferal assemblage containing evolved archaediscids close to tenuis stage indicating a late Brigantian age. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号