首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We evaluate the relationship between the hard X-ray photon spectrum and the flux of iron K emission in a thick-target electron bombardment model. Results are presented for various power-law hard X-ray spectra. We then apply these results to two events observed with the Hard X-Ray Burst Spectrometer and the K channel of the X-Ray Polychromator Bent Crystal Spectrometer on the Solar Maximum Mission satellite. For one of the events, on 29 March, 1980, at 09:18 UT, the K flux predicted for a thick-target non-thermal process is significant compared to the background fluorescent component, and the data are indeed consistent with an enhancement of the predicted amount. For the other event, on 14 October, 1980 at 06:09 UT, the hard X-ray spectrum is so steep that no significant Ka flux is predicted for this process, and no enhancement is seen. We conclude that the agreement between the predicted K flux and the observed magnitude of the K enhancement above the fluorescent background at the time of the large hard X-ray bursts lends support to a thick-target non-thermal interpretation of impulsive hard X-ray emission in solar flares.  相似文献   

2.
Recent spectroscopic data pointing to low heavy-element abundances Z pose a severe problem for solar-structure modeling. The low-Z abundances imply a lower opacity and a relatively shallow convective zone, both of which are in obvious contradiction with the observed helioseismic sound-speed profile. This paper presents a series of solar models with different heavy-element abundances. The SAHA-S equation of state and OPAL opacities properly take into account the respective heavy-element abundances. Diffusion of individual elements is also included in the models. Sound-speed profiles are compared with inversion results and it is shown that the models with low Z are in disagreement with the inversion data. Even combining the effect of diffusion, overshooting and mixing for the sound-speed profile did not lead to a solution of the low-Z problem. Models with varied neon abundance have also been computed. It turned out that a substantial increase of the neon abundance could produce a model in agreement with the sound-speed inversion but the required abundance increase would be unrealistic. The effect of the neon enhancement on the adiabatic exponent profile in the convection zone is also presented.  相似文献   

3.
S. R. Kane  M. Pick 《Solar physics》1976,47(1):293-304
Hard X-ray and radio observations lead to the conclusion that production of non-thermal electrons is a common phenomenon of the active Sun. A preliminary analysis of three hard X-ray bursts observed with the OGO-5 satellite and the radio observations reported in the literature indicates that non-thermal particles are present in the flare region prior to the impulsive (flash) phase and also during the gradual rise and fall (GRF) bursts which are usually explained in terms of purely thermal radiation. The principal difference between the non-thermal electrons observed before the flash phase and during the flash phase appears to be in their total number rather than in the hardness of their energy spectrum. This indicates that the basic characteristics of the two acceleration processes are probably similar although the total energy converted into non-thermal electrons is considerably larger in the flash phase than in the build-up phase. Transient absorbing H features and filament activations are discussed in terms of their ability to produce energetic particle events and magnetic energy release.Presently at the Space Sciences Laboratory, University of California, Berkeley and Institute of Plasma Research, Stanford University, Stanford, California.  相似文献   

4.
Some weak unidentified solar photospheric lines in the wavelength range: (3400–3465) Å may be due to PH lines of the (0, 0) band of the PH(A 3 i - X 3 -)system. These faint PH molecular lines have resulted an excitation temperature of the order of 4500 K. Using experimental lifetime data for PH in the A 3 i state, an absorption oscillator strength f 00 = 0.0075 is derived for the 3410 Å band of the PH (A 3 i - X 3 -)system. Accurate line positions, oscillator strength and transition probability for the 4.4 fundamental rotation-vibration band of the PH molecule are obtained. A comparison of positions of some lines of the 4.4 band with those obtained on new tracings of high resolution solar spectra shows many coincidences with weak solar lines.  相似文献   

5.
I have studied the observational relationship between the location of flare sites in active regions and three other observables, viz., H line width, hard X-ray burst parameters, and peak microwave fluxes. Results suggest that the strength of the magnetic field plays a role in governing the magnitudes of these emissions. Qualitative relationships are derived on the assumption of proportionality between the spectral maximum frequency of the associated microwave burst and the field strength in the microwave source.The relationship inferred between the power in thick target electrons (derived from the hard X-ray burst) and the column density of second-level hydrogen atoms (derived from the H line widths) is compared with calculations by Brown (1973) and Canfield (1974).The line widths observed for two white light flares suggest that a criterion for detectable continuum emission in disk flares is an H line width 20 Å.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

6.
We have measured the ratio of H to H central intensities in the peak kernels of 14 flares, using simultaneous filtergrams. The ratio is typically one with some scatter. By contrast, in stellar flares the ratio is about 0.8.  相似文献   

7.
Analysis of the observational data obtained with a high angular resolution in the ranges of vacuum ultraviolet (1″, TRACE) and hard X-ray (4″, RHESSI) emissions in some solar flares previously considered “single-loop” ones shows that they are not such flares. The thick single loops with a diameter of 13″–21″ observed in these flares in the microwave range with an angular resolution of 5″–10″ (NoRH) are actually arcades of thinner loops with a diameter of less than 3″. In this case, the observed quasi-periodic pulsations of microwave emission are not a consequence of the oscillations of an isolated thick loop, as is usually assumed, but a result of the successive involvement of many relatively thinner loops in the process of flare energy release. The established facts impose significant constraints on the generation models of pulsations in flares.  相似文献   

8.
We present the results of studying the impact linear polarization of 32 solar flares of X-ray classes C, M, and X (two flares) observed with the Large Solar Vacuum Telescope. It has turned out that there is evidence for impact polarization only in 13 of them. The newly obtained data have confirmed that the linear Stokes parameters are predominantly 2–7%, while the spatial sizes of flaring points with nonzero Stokes parameters are small (1″-2″). Two features of the manifestation of impact polarization in flares revealed by these studies are of greatest interest: (1) at the two foot points of a single flare loop or an arcade of loops, both the Hα intensity profiles and the Stokes profiles differ in behavior; (2) based on the Hα line, we have found for the first time that the sign of the Stokes parameters changes not only across the flare ribbon but also with depth of the chromosphere.  相似文献   

9.
D. H. Morgan 《Solar physics》1977,52(2):463-469
The S2/68 telescope on the TD-1A satellite has observed an increase in the L radiation scattered in the geocorona during the major solar flares of August 1972. The history of the 7 August flare is presented and shows a maximum enhancement of about 40%.  相似文献   

10.
Vector magnetogram, H, and hard X-ray observations of flares are reviewed which show that nonthermal electron signatures in H are never cospatial with regions of maximum current density for the small number of flares analyzed, but lie to the sides of these regions. By considering electron acceleration and transport requirements, four conditions are found that must be fulfilled to observe nonthermal electron signatures in H: (1) The plasma beta 0.3 in the acceleration region. (2) The energy flux of electrons above 20 keV is greater than 1010 erg cm–2 s–1. (3) The column densityN 1020 cm–2 between the electron source and the chromosphere. (4) The coronal pressure in the flux tube connecting to the H layerp 100 dyne cm–2. Condition 2 can be most easily met in the initial stages of flares. In contrast, the only condition for a high-pressure H signature isp 1000 dyne cm–2, which is most easily met in a region of maximum current density or heating and far enough into the flare for significant heating to have occurred. Thus, high-pressure signatures should be expected to occur more frequently than nonthermal electron signatures and to occur generally later in time.Also Guest Worker at NOAA Space Environment Laboratory Boulder Colorado U.S.A.  相似文献   

11.
High-quality photographs of the granulation obtained at seven wavelengths in the Fe i line λ 6569.2 are presented. The granule contrast attains a maximum considerably exceeding the continuum value around Fe+0.05 to Fe+0.10 Å; individual granules remain easily visible to within 5″ of the limb. At line centre only remnants of the granulation pattern are discernible.  相似文献   

12.
The 13 pairs of type III bursts with the bidirectional drift structures recorded with the spectrograph in the frequency ranges of 230–300 MHz and 625–1500 MHz at the Yunnan Observatory and 2600–3800 MHz at the Beijing National Astronomical Observatories are analyzed in this present article and the outstanding characteristics of these events are obtained. These bursts respectively reveal that the separatrix frequency between the bursts with positive and negative drifts comes between 250 MHz and 3420 MHz, with a gap being between 0.6 MHz and 110 MHz; the duration is 53 ms–1880 ms and the frequency drift rate is between 45 MHz/s and 56000 MHz/s. The drift rate at metric wavelengths is relatively low, only a few decades of MHz while it is comparatively high at microwave wavelengths, reaching 56000 MHz/s. The qualitative explanation of these events is given in this paper.  相似文献   

13.
14.
15.
The Phebus experiment on board the GRANAT satellite provides temporal and spectral observations of solar and cosmic -ray bursts in the 0.1 100 MeV nominal energy range. The experiment was turned on January 8, 1990 and is still in operation. In this paper we present the main characteristics of the Phebus experiment and we describe and discuss some of the observational properties of the 18 solar hard X-ray/-ray events detected during the first semester of the Phebus operation. It is found that: (i) events of a few minutes duration, detected above 100 keV, systematically show subsecond time variations; (ii) longer duration events (>5 min) do not exhibit fast time variations and generally consist of 1-min peaks superimposed on a less intense, sometimes harder, slowly varying component. In addition to these general trends we discuss in more detail three events for which significant count-rates have been detected above 10 MeV.  相似文献   

16.
During 1967–1970, the greatness of 90 large flares (H importance 2) was influenced by the orientation of the large-scale ( 100 000 km) magnetic field structure over the flare site. Although the average X-ray and optical emissions are only slightly larger for flares with their overlying fields directed southward, as opposed to northward, the meter-wave-length prompt flux maxima are, on average, an order of magnitude greater for the flares with southward oriented magnetic fields. There is a comparable, but possibly smaller difference in the 10 cm- fluxes. We therefore conclude that, during this period, the orientation of the overlying magnetic field affects the amount of electromagnetic flare energy radiated promptly in the corona (10 cm- and m-), relative to that radiated in the chromosphere (X-ray and optical). We demonstrate that this statistical effect shows some variability in degree during the period, although the trend is consistent throughout.  相似文献   

17.
In this paper, we analyze the relationship between photospheric magnetic fields and chromospheric velocity fields in a solar active region, especially evolving features of the chromospheric velocity field at preflare sites. It seems that flares are related to unusually distributed velocity field structures, and initial bright kernels and ribbons of the flares appear in the red-shifted areas (i.e., downward flow areas) close to the inversion line of H Dopplergrams with steep gradients of the velocity fields, no matter whether the areas have simple magnetic structure or a weak magnetic field, or strong magnetic shear and complex structure of the magnetic fields. The data show that during several hours prior to the flares, while the velocity field evolves, the sites of the flare kernels (or ribbons) with red-shifted features come close to the inversion line of the velocity field. This result holds regardless of whether or not the flare sites are wholly located in blue-shifted areas (i.e., upward flow areas), or are far from the inversion line of the Doppler velocity field (V = 0 line), or are partly within red-shifted areas. There are two cases favourable for the occurrence of flares, one is that the gulf-like neutral lines of the magnetic field (B = 0 line) occur in the H red-shifted areas, the other is that the gulf-like inversion lines of the H Doppler velocity field (V = 0 line) occur in the unipolar magnetic areas. These observational facts indicate that the velocity field and magnetic field have the same effect on the process of flare energy accumulation and release.  相似文献   

18.
Recently Gosling (1993) examined the interplanetary consequences of solar activity, and suggested that the coronal mass ejection (CME) was the prime driver of most disturbances (i.e., interplanetary shocks, high-energy particles, geomagnetic storms, etc.) and that the solar flare was relatively unimportant in this context. He coined the phrase Solar Flare Myth. Since that paper there has been much debate on the origin of interplanetary disturbances - most people sitting squarely in the flare or CME camp. vestka (1995) has attacked Gosling's conclusions on the grounds that it is misleading to ignore the flare, and that past flare classifications were perfectly adequate for explaining the observations described by Gosling. This paper is a comment on vestka's report and an attempt to put the Solar Flare Myth into perspective - indeed it is an attempt to view the solar flare/CME phenomena in a more constructive light.  相似文献   

19.
Isotropization mechanisms for a beam of low-energy (10–100 keV) protons in the Hα formation region are considered. An increase in the magnetic field strength is shown to have no significant effect on the pitch-angle distribution of the accelerated particles in the solar chromosphere. The excitation of small-scale Alfvén waves by protons can lead to their effective scattering. The results obtained are used to interpret peculiarities of the impact polarization of the Hα emission.  相似文献   

20.
In this study, investigated 14,786 coronal mass ejection (CME) events and 5092 Gamma-ray Burst Monitor (GBM) solar flare events (called γ-ray burst solar flare) recorded during 2008–2017, by using temporal and spatial conditions criteria, we found 845 (about 16%) CME events associated with γ-ray burst solar flare events only (hereafter, CME–γ-preflare). All the 845 events are associated with solar flares that are detected in both GBM and RHESSI simultaneously. Investigating the characteristics of these events, we found that the best time interval is 0–2 h before the flare's start time. The mean time interval for these CME–γ-preflare associated events is 61 min, with the flare's duration mean value of 12 min, which is greater than non-associated γ-ray solar flare's duration. CME width of CME-γ-preflare associated events 64° is slightly wider and slightly faster (remain lower than solar wind's speed) than non-associated CME 53°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号