首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 499 毫秒
1.
Magnetic anomalies are often disturbed by the magnetization direction, so we can’t directly use the original magnetic anomaly to estimate the exact location and geometry of the source. The 2D analytic signal is insensitive to magnetization direction. In this paper, we present an automatic method based on the analytic signal horizontal and vertical derivatives to interpret the magnetic anomaly. We derive a linear equation using the analytic signal properties and we obtain the 2D magnetic body location parameters without giving a priori information. Then we compute the source structural index (expressing the geometry) by the estimated location parameters. The proposed method is demonstrated on synthetic magnetic anomalies with noise. For different models, the proposed technique can both successfully estimate the location parameters and the structural index of the sources and is insensitive to noise. Lastly, we apply it to real magnetic anomalies from China and obtain the distribution of unexploited iron ore. The inversion results are consistent with the parameters of known ore bodies.  相似文献   

2.
We present a new method to estimate the direction of the magnetization vector of geological bodies based upon the correlation between the reduced-to-the-pole field for tentative values of the magnetization direction and the total magnitude anomaly, obtained by a transform of the measured magnetic field. The reduced-to-the-pole and the total magnitude anomaly are centred over the sources in the case of 2D anomalies or well-centred in the case of compact 3D sources and have similar patterns for the same source. The method has several important advantages over similar transform-correlation methods for estimation of the magnetization direction. It calculates only one transform for many tentative values of the magnetization direction. The method does not use derivatives of any order and relies on confident isolation of the target anomalies based on one of the compared transforms, the total magnitude anomaly. We studied the performance of the method on five 2.5D and compact 3D sources. We analysed possible inherent to the method errors, as well as errors due to interference from neighbouring sources. Finally, we estimated the magnetization-vector direction of the main sources causing the magnetic field in the Burgas region and the adjoining southeast Bulgarian Black Sea shelf. The sources in the Black Sea shelf show prevalently reverse magnetization, while the sources on land have normal or reverse magnetization.  相似文献   

3.
Information on the mass and the spatial location of an arbitrary source body can be obtained by performing suitable integrations of 3D gravity and magnetic data along an infinite straight line. No assumptions on the density/magnetization distribution or the shape and location of the source are required. For an oblique borehole, a relationship between the lower limit of the source mass and the distance to the body is obtained. The mass contrast and the magnetic moment of the source can also be estimated. For a vertical borehole, both gravity and vertical magnetic component anomalies have equal areas to the left and right of the depth axis. The particular case of a horizontal gallery not intersecting the body is also studied. If the source is intersected, a lower limit is estimated for the maximum thickness of the body along the gallery. Information on the vertical coordinate of the centre of mass of the source can also be obtained. Numerical tests with synthetic gravity data support the theoretical results.  相似文献   

4.
A high‐resolution method to image the horizontal boundaries of gravity and magnetic sources is presented (the enhanced horizontal derivative (EHD) method). The EHD is formed by taking the horizontal derivative of a sum of vertical derivatives of increasing order. The location of EHD maxima is used to outline the source boundaries. While for gravity anomalies the method can be applied immediately, magnetic anomalies should be previously reduced to the pole. We found that working on reduced‐to‐the‐pole magnetic anomalies leads to better results than those obtainable by working on magnetic anomalies in dipolar form, even when the magnetization direction parameters are not well estimated. This is confirmed also for other popular methods used to estimate the horizontal location of potential fields source boundaries. The EHD method is highly flexible, and different conditions of signal‐to‐noise ratios and depths‐to‐source can be treated by an appropriate selection of the terms of the summation. A strategy to perform high‐order vertical derivatives is also suggested. This involves both frequency‐ and space‐domain transformations and gives more stable results than the usual Fourier method. The high resolution of the EHD method is demonstrated on a number of synthetic gravity and magnetic fields due to isolated as well as to interfering deep‐seated prismatic sources. The resolving power of this method was tested also by comparing the results with those obtained by another high‐resolution method based on the analytic signal. The success of the EHD method in the definition of the source boundary is due to the fact that it conveys efficiently all the different boundary information contained in any single term of the sum. Application to a magnetic data set of a volcanic area in southern Italy helped to define the probable boundaries of a calderic collapse, marked by a number of magmatic intrusions. Previous interpretations of gravity and magnetic fields suggested a subcircular shape for this caldera, the boundaries of which are imaged with better detail using the EHD method.  相似文献   

5.
磁异常揭示的峨眉山大火成岩省的深部结构   总被引:1,自引:0,他引:1       下载免费PDF全文
峨眉山大火成岩省位于中国西南部,在晚二叠纪约260 Ma喷发出巨量的大陆溢流型玄武岩.对于大火成岩省的岩浆喷发,在地下必定有一个相应的大规模岩浆聚集和运移系统.地球物理方法是探测岩石圈内部的有效方式.峨眉山大火成岩省为镁铁质岩浆喷发,由于镁铁质-超镁铁质岩石一般具有强磁性,因此,在喷发结束之后,地下岩浆系统如果被镁铁质岩浆填充,冷却固化成为岩石圈的一部分,很有可能会引起磁异常.本文使用区域磁异常数据来对峨眉山大火成岩省的深部构造进行研究.该区域的磁异常由一系列离散的异常组成,通过3D磁化率反演可以得到磁性体的空间分布.由于磁异常中具有明显的剩磁,直接使用经典的反演方法会有较大误差,我们首先将磁异常转换为弱敏感于磁化方向的磁异常模量,再使用模量数据进行3D反演,得到地下空间内磁异常源的分布.经过分析认为这些离散分布的磁异常源反映了岩石圈内部的镁铁质-超镁铁质侵入体.侵入体的位置可能反映了底侵和内侵的镁铁质岩浆固化形成的侵入体,代表镁铁质岩浆房位置或者岩浆运移的主要通道.  相似文献   

6.
We investigate the analytic signal method and its applicability in obtaining source locations of compact environmental magnetic objects. Previous investigations have shown that, for two-dimensional magnetic sources, the shape and location of the maxima of the amplitude of the analytic signal (AAS) are independent of the magnetization direction. In this study, we show that the shape of the AAS over magnetic dipole or sphere source is dependent on the direction of magnetization and, consequently, the maxima of the AAS are not always located directly over the dipolar sources. Maximum shift in the horizontal location is obtained for magnetic inclination of 30°. The shifts of the maxima are a function of the source-to-observation distance and they can be up to 30% of the distance. We also present a method of estimating the depths of compact magnetic objects based on the ratio of the AAS of the magnetic anomaly to the AAS of the vertical gradient of the magnetic anomaly. The estimated depths are independent of the magnetization direction. With the help of magnetic anomalies over environmental targets of buried steel drums, we show that the depths can be reliably estimated in most cases. Therefore, the analytic signal approach can be useful in estimating source locations of compact magnetic objects. However, horizontal locations of the targets derived from the maximum values of the AAS must be verified using other techniques.  相似文献   

7.
The forward computation of the gravitational and magnetic fields due to a 3D body with an arbitrary boundary and continually varying density or magnetization is an important problem in gravitational and magnetic prospecting. In order to solve the inverse problem for the arbitrary components of the gravitational and magnetic anomalies due to an arbitrary 3D body under complex conditions, including an uneven observation surface, the existence of background anomalies and very little or no a priori information, we used a spherical coordinate system to systematically investigate forward methods for such anomalies and developed a series of universal spherical harmonic expansions of gravitational and magnetic fields. For the case of a 3D body with an arbitrary boundary and continually varying magnetization, we have also given the surface integral expressions for the common spherical harmonic coefficients in the expansion of the magnetic field due to the body, and a very precise numerical integral algorithm to calculate them. Thus a simple and effective method of solving the forward problem for magnetic fields due to 3D bodies of this kind has been found, and in this way a foundation is laid for solving the inverse problem of these magnetic fields. In addition, by replacing the parameters and unit vectors in the spherical harmonic expansion of a magnetic field by gravitational parameters and a downward unit vector, we have also derived a forward method for the gravitational field (similar to that for the magnetic case) of a 3D body with an arbitrary boundary and continually varying density.  相似文献   

8.
The major advantage of using either the analytic‐signal or the Euler‐deconvolution technique is that we can determine magnetic‐source locations and depths independently of the ambient earth magnetic parameters. In this study, we propose adopting a joint analysis of the analytic signal and Euler deconvolution to estimate the parameters of 2D magnetic sources. The results can avoid solution bias from an inappropriate magnetic datum level and can determine the horizontal locations, depths, structural types (indices), magnetization contrasts and/or structural dips. We have demonstrated the feasibility of the proposed method on 2D synthetic models, such as magnetic contacts (faults), thin dikes and cylinders. However, the method fails to solve the parameters of magnetic sources if there is severe interference between the anomalies of two adjacent magnetic sources.  相似文献   

9.
Summary A new method of interpreting the gravity and magnetic anomalies is introduced with special reference to the magnetic anomalies of a horizontal cylinder. The method consists of calculating the functions of the anomaly and its distance from an arbitrary point. These form a simple linear equation with coefficients related to the parameters defining the body. Since each observation forms a separate linear equation, the required normal equations are formed by the method of least squares and solved for the coefficients and hence for the various parameters defining the target. The discussion here is confined to the vertical magnetic anomalies. The application of the method to horizontal and total field anomalies of two dimensional bodies is also outlined.  相似文献   

10.
本文将均质的任意二维、三维物体位场的波谱解析表达式的研究成果推广到变密度、变磁化强度的更一般的情形。对密度差随深度呈指数函数衰减或线性变化的模型,获得了任意倾斜多边形质量面、斜平行六面体以及一般的多面体等形体的重力谱的解析表达式。它们的结构与均质体相应表达式一样简单,易于计算。以上结果表明,在很一般的条件下,位场波谱具有指数函数和的形式。  相似文献   

11.
磁化强度矢量反演方程及二维模型正反演研究   总被引:12,自引:5,他引:7       下载免费PDF全文
导了磁化强度矢量层析成像方程,并与磁化强度标量层析成像方程进行了对比. 使该矢量层析成像方程既适用于三维的也适用于二维,既适用于使用磁场垂直分量资料,也适用于使用磁场总强度资料. 本文采用改进的高斯-赛德尔迭代求解磁化强度矢量层析成像方程,在求解方程中引进了与深度有关的权系数. 并对二维模型开展了正反演研究. 当模型层数为二层,且每层51个柱体时,采用零初始模型就能获得较好的磁化强度垂直分量和水平分量反演结果,除了异常体边部外,磁化方向比较可靠. 当模型层数为五层,且每层51个柱体时,采用零初始模型不能得到较好结果,改用接近背景值的均匀初始模型,反演的磁化强度垂直分量和水平分量大致接近真实,但不能刻划某些细节.  相似文献   

12.
A method to analyse aeromagnetic profiles is proposed: several horizontal (width-) and vertical (amplitude-) parameters are deduced from the anomalies. These parameters are then compared with diagrams drawn on a logarithmic scale. The comparison yields depth and magnetization of the causative bodies. The method lends itself equally well to a quick estimate and to a thorough interpretation, depending on the number of parameters deduced and on the number of diagrams. It can be applied also to the anomalies of the total field and its vertical gradient.  相似文献   

13.
In this paper, we describe a non‐linear constrained inversion technique for 2D interpretation of high resolution magnetic field data along flight lines using a simple dike model. We first estimate the strike direction of a quasi 2D structure based on the eigenvector corresponding to the minimum eigenvalue of the pseudogravity gradient tensor derived from gridded, low‐pass filtered magnetic field anomalies, assuming that the magnetization direction is known. Then the measured magnetic field can be transformed into the strike coordinate system and all magnetic dike parameters – horizontal position, depth to the top, dip angle, width and susceptibility contrast – can be estimated by non‐linear least squares inversion of the high resolution magnetic field data along the flight lines. We use the Levenberg‐Marquardt algorithm together with the trust‐region‐reflective method enabling users to define inequality constraints on model parameters such that the estimated parameters are always in a trust region. Assuming that the maximum of the calculated gzz (vertical gradient of the pseudogravity field) is approximately located above the causative body, data points enclosed by a window, along the profile, centred at the maximum of gzz are used in the inversion scheme for estimating the dike parameters. The size of the window is increased until it exceeds a predefined limit. Then the solution corresponding to the minimum data fit error is chosen as the most reliable one. Using synthetic data we study the effect of random noise and interfering sources on the estimated models and we apply our method to a new aeromagnetic data set from the Särna area, west central Sweden including constraints from laboratory measurements on rock samples from the area.  相似文献   

14.
The direct gravity problem and its solution belong to the basis of the gravimetry. The solutions of this problem are well known for wide class of the source bodies with the constant density contrast. The non-uniform density approximation leads to the relatively complicated mathematical formalism. The analytical solutions for this type of sources are rare and currently these bodies are very useful in the gravimetrical modeling. The solution for the vertical component of the gravitational attraction vector for the 3D right rectangular prism is known in the geophysical literature for the density variations described by the 3-rd degree polynomial. We generalized this solution for an n-th degree, not only for the vertical component, but for the horizontal components, the second-order derivatives and the potential as well. The 2D modifications of all given formulae are presented, too. The presented general solutions, which involve a hypergeometric functions, can be used as they are, or as an auxiliary tool to derive desired solution for the given degree of the density polynomial as a sum of the elementary functions. The pros-and-cons of these approaches (the complexity of the programming codes, runtimes) are discussed, too.  相似文献   

15.
磁张量梯度测量具有高分辨率、多参量的优点,能更准确地描述磁源体的分布特征,在矿产资源勘探中具有广阔的用途.磁异常解析信号具有受倾斜磁化干扰小的特点,且为了增强深部地质体的分辨能力,本文提出磁张量梯度数据的解析信号比值的均衡边界识别及空间位置反演技术.磁张量梯度数据的均衡边界识别方法为不同方向解析信号比值的反正切函数,在降低倾斜磁化干扰的同时能有效地均衡不同深度地质体的响应,提高了对较深地质体的分辨率;空间位置反演技术是建立解析信号比值与地质体位置参数的对应方程,利用解析信号比值与地质体的对应关系作为约束条件来反演获得地质体的水平位置和深度信息,具有无需已知任何先验信息的优势.通过磁性体张量异常试验表明解析信号比值的边界识别方法能清晰和准确地获得不同深度地质体的边界,所建立的反演方程能准确地计算出地质体的范围和深度,具有较高的水平分辨率和精度.将本文方法应用于实测磁张量梯度数据的解释,获得了地下铁矿的分布特征,为区域矿产资源潜力评价提供了翔实的基础资料.  相似文献   

16.
We use the continuous wavelet transform based on complex Morlet wavelets, which has been developed to estimate the source distribution of potential fields. For magnetic anomalies of adjacent sources, they always superimpose upon each other in space and wavenumber, making the identification of magnetic sources problematic. Therefore, a scale normalization factor, a?n, is introduced on the wavelet coefficients to improve resolution in the scalogram. By theoretical modelling, we set up an approximate linear relationship between the pseudo‐wavenumber and source depth. The influences of background field, random noise and magnetization inclination on the continuous wavelet transform of magnetic anomalies are also discussed and compared with the short‐time Fourier transform results. Synthetic examples indicate that the regional trend has little effect on our method, while the influence of random noise is mainly imposed on shallower sources with higher wavenumbers. The source horizontal position will be affected by the change of magnetization direction, whereas the source depth remains unchanged. After discussing the performance of our method by showing the results of various synthetic tests, we use this method on the aeromagnetic data of the Huanghua depression in central China to define the distribution of volcanic rocks. The spectrum slices in different scales are used to determine horizontal positions of volcanic rocks and their source depths are estimated from the modulus maxima of complex coefficients, which is in good accordance with drilling results.  相似文献   

17.
Magnetic anomaly profiles over two thin sheets separated by a small distance resemble those of dykes andvice versa. Interpretation of anomalies over a pair of sheets based on the magnetic properties of dykes predicts a dyke whose centre lies midway between the positions of the sheets. The dyke, on the other hand, is magnetically equivalent to a pair of sheets, both lying at the same depth and having the same magnetization.The magnetic anomalies due to a pair of sheets can be interpreted by framing linear equations between the anomalies and their distances measured from an arbitrary reference. Application of this method to anomalies of dipping sheets with a finite depth extent is indicated.  相似文献   

18.
During the last 15 years, more attention has been paid to derive analytic formulae for the gravitational potential and field of polyhedral mass bodies with complicated polynomial density contrasts, because such formulae can be more suitable to approximate the true mass density variations of the earth (e.g., sedimentary basins and bedrock topography) than methods that use finer volume discretization and constant density contrasts. In this study, we derive analytic formulae for gravity anomalies of arbitrary polyhedral bodies with complicated polynomial density contrasts in 3D space. The anomalous mass density is allowed to vary in both horizontal and vertical directions in a polynomial form of \(\lambda =ax^m+by^n+cz^t\), where mnt are nonnegative integers and abc are coefficients of mass density. First, the singular volume integrals of the gravity anomalies are transformed to regular or weakly singular surface integrals over each polygon of the polyhedral body. Then, in terms of the derived singularity-free analytic formulae of these surface integrals, singularity-free analytic formulae for gravity anomalies of arbitrary polyhedral bodies with horizontal and vertical polynomial density contrasts are obtained. For an arbitrary polyhedron, we successfully derived analytic formulae of the gravity potential and the gravity field in the case of \(m\le 1\), \(n\le 1\), \(t\le 1\), and an analytic formula of the gravity potential in the case of \(m=n=t=2\). For a rectangular prism, we derive an analytic formula of the gravity potential for \(m\le 3\), \(n\le 3\) and \(t\le 3\) and closed forms of the gravity field are presented for \(m\le 1\), \(n\le 1\) and \(t\le 4\). Besides generalizing previously published closed-form solutions for cases of constant and linear mass density contrasts to higher polynomial order, to our best knowledge, this is the first time that closed-form solutions are presented for the gravitational potential of a general polyhedral body with quadratic density contrast in all spatial directions and for the vertical gravitational field of a prismatic body with quartic density contrast along the vertical direction. To verify our new analytic formulae, a prismatic model with depth-dependent polynomial density contrast and a polyhedral body in the form of a triangular prism with constant contrast are tested. Excellent agreements between results of published analytic formulae and our results are achieved. Our new analytic formulae are useful tools to compute gravity anomalies of complicated mass density contrasts in the earth, when the observation sites are close to the surface or within mass bodies.  相似文献   

19.
Up–down wavefield decomposition is effectuated by a scaled addition or subtraction of the pressure and vertical particle velocity, generally on horizontal or vertical surfaces, and works well for data given on such surfaces. The method, however, is not applicable to decomposing a wavefield when it is given at one instance in time, i.e. on snapshots. Such situations occur when a wavefield is modelled with methods like finite-difference techniques, for the purpose of, for example, reverse time migration, where the entire wavefield is determined per time instance. We present an alternative decomposition method that is exact when working on snapshots of an acoustic wavefield in a homogeneous medium, but can easily be approximated to heterogeneous media, and allows the wavefield to be decomposed in arbitrary directions. Such a directional snapshot wavefield decomposition is achieved by recasting the acoustic system in terms of the time derivative of the pressure and the vertical particle velocity, as opposed to the vertical derivative in up–down decomposition for data given on a horizontal surface. As in up–down decomposition of data given at a horizontal surface, the system can be eigenvalue decomposed and the inverse of the eigenvector matrix decomposes the wavefield snapshot into fields of opposite directions, including up–down decomposition. As the vertical particle velocity can be rotated at will, this allows for decomposition of the wavefield into any spatial direction; even spatially varying directions are possible. We show the power and effectiveness of the method by synthetic examples and models of increasing complexity.  相似文献   

20.
Azimuthally averaged power spectra are widely used in the Curie point depth (CPD) estimation with the implicit assumption that the magnetization distribution is random and uncorrelated. However, the marine magnetic anomalies are caused by bands of normal and reverse magnetization and show obvious trends. To investigate the effects of the anisotropy of marine magnetic anomalies on the CPD estimates, we develop 3D fractal striped magnetization models to produce lineated marine magnetic anomalies for the first time. We analyze the spectra anisotropy of the lineated magnetic anomalies of the synthetic fractal striped magnetization models and investigate its effects on the CPD estimates. The synthetic models and actual data show that the spectra of the lineated marine magnetic anomalies are directionally anisotropic. The amplitude response is strong and the slope of the logarithmic spectrum is large in a direction perpendicular to the stripes of magnetic anomalies, whereas the amplitude response is weak and the slope of the logarithmic spectrum is small in a direction parallel to the stripes of magnetic anomalies. The depth estimates in the perpendicular direction are close to the actual values, whereas the depths estimates in the parallel direction are significantly lower than the actual values. The actual marine magnetic anomalies of the South China Sea exhibit an anisotropic power spectrum that is consistent with the spectral anisotropy of magnetic anomalies of the synthetic fractal striped magnetization models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号