首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Godefroy  G.  Caumon  G.  Laurent  G.  Bonneau  F. 《Mathematical Geosciences》2019,51(8):1091-1107

Structural uncertainty exists when associating sparse fault interpretations made from two-dimensional seismic lines or limited outcrop observations. Here, a graph formalism is proposed that describes the problem of associating spatial fault evidence. A combinatorial analysis, relying on this formalism, shows that the number of association scenarios is given by the Bell number, and increases exponentially with the number of pieces of evidence. As a result, the complete exploration of uncertainties is computationally highly challenging. The available prior geological knowledge is expressed by numerical rules to reduce the number of scenarios, and the graph formalism makes structural interpretation easier to reproduce than manual interpretation. The Bron–Kerbosch algorithm, which finds maximal cliques in undirected graphs, is used to detect major possible structures. This framework opens the way to a numerically assisted exploration of uncertainties during structural interpretation.

  相似文献   

2.
3.
Liu  Hongwei  Maghoul  Pooneh  Mantelet  Guillaume  Shalaby  Ahmed 《Acta Geotechnica》2022,17(8):3515-3534

The non-destructive testing (NDT) plays a crucial role in geotechnical engineering and geophysical applications, especially in the design of earthquake-resistant foundations, geotechnical field investigation, and material characterization and detection of underground anomaly. Currently, the existing signal interpretation methods in NDT measurements still predominantly rely on empirical relations or subjective judgements. In this paper, we present the GeoNDT software, which is developed to provide an advanced physics-based signal interpretation method for NDT characterization of multiphase geomaterials. GeoNDT is able to model the propagation of stress waves and dispersion relations in dry (elastodynamic), saturated (two-phase poroelastodynamic), and three-phase frozen (multiphase poroelastodynamic) geomaterials using the meshless spectral element method. GeoNDT is flexible, general-purpose, and can be used seamlessly for advanced signal interpretation in geophysical laboratory testing including the bender element and ultrasonic pulse velocity tests, characterization of complex multiphase geomaterials, and in situ shallow seismic geophysics including the falling weight deflectometer and multichannel analysis of surface waves tests. The advanced physics-based signal interpretation feature of GeoNDT allows the quantitative characterization of geophysical and geomechanical properties of geomaterials and multilayered geosystems independently without making any simplified assumptions as common in the current practice.

  相似文献   

4.

The interpretation of aquifer responses to pumping tests is an important tool for assessing aquifer geometry and properties, which are critical in the assessment of water resources or in environmental remediation. However, the responses of aquifers, measured by time-drawdown relationships in monitoring wells, are nonunique solutions that are affected by many factors. Jacob’s Zoo is a collection of graphical interpretations that allows students and practitioners to develop an intuitive feel for how natural hydrogeological systems work, and develop a set of skills that provide a better understanding of aquifer properties far beyond interpretation of pumping tests. Jacob’s Zoo, based on the work of Jacob (1950), fosters a deeper understanding, although few practitioners realize the full utility of the method. Jacob CE (1950) Flow of groundwater, In: Rouse H (ed) Engineering Hydraulics, Wiley, New York. P 321–386.

  相似文献   

5.
The Murray Basin is geologically featureless, has been sparsely covered by geophysics, and is penetrated by a few scattered wells. Only drilling and reflection seismic work have provided consistently reliable depth information. They have indicated the presence of narrow troughs, which contain more than 3 km of Palaeozoic sediment, covered by basement highs with less than 300 m of Mesozoic and Cainozoic cover.

Six widely spaced magnetotelluric (MT) sites were occupied in the north central Murray Basin. Results showed a 5 km thick horizontal section at Pooncarie, with a probably average porosity of 10%. Higher porosities, and probably a thicker section, were indicated near Little Topar, but the structural complexity there requires that additional data be acquired for positive interpretation.

A persistent conductivity increase near 100 km suggests that the method may respond well to the base of the tectonic plate.

The MT method appears well suited to the onshore exploration problems currently faced in Australia.  相似文献   

6.

In this work, we measure the performance of the fixed stress split algorithm for the immiscible water-oil flow coupled with linear poromechanics. The two-phase flow equations are solved on general hexahedral elements using the multipoint flux mixed finite element method whereas the poromechanics equations are discretized using the conforming Galerkin method. We introduce a rigorous calculation of the update in poroelastic properties during the iterative solution of the coupled system equations. The effects of the coupling parameter on the performance of the fixed stress algorithm is demonstrated in two field studies: the Frio oil reservoir and the Cranfield injection site.

  相似文献   

7.
For the last 40 years, the CPT has played a key role in offshore soil investigations, mainly in connection with oil and gas development, but also for other purposes. The offshore application of CPT has been an important factor with regards to development of equipment, data processing and interpretation. Each of the following aspects are discussed in terms of historic development, present status and future challenges:

- Deployment method and equipment.

- Penetrometer design and construction.

- Data acquisition, processing and quality control.

- Standards and guidelines.

- Interpretation of results and application in foundation design.

It is shown that these developments have greatly enhanced the reliability and applicability of the use of the CPT in soil investigations and design. However, there are still important challenges to be faced in the future  相似文献   

8.
Due to the diversity of mineral types in shale gas reservoirs, it is difficult to establish reservoir parameter volume model by conventional log interpretation methods. The optimization log interpretation method can evaluate complex lithology reservoirs effectively, and the key is optimization algorithm. With the newly proposed seagull optimization algorithm method, we calculate the mineral and physical parameters of shale gas reservoir in Well H of Yuxi block, Sichuan Basin, and compare with the genetic algorithm and the genetic algorithm-complex hybrid algorithm. It shows that calculation results of seagull optimization algorithm optimization log interpretation match well with core analysis data, and calculation error is small, calculation speed is fast. Seagull optimization algorithm also makes up for the shortcomings of premature convergence and easy to fall into local optimization of genetic algorithm, the need for secondary optimization and slow search speed of genetic-complex hybrid algorithm. It provides a reference for the application of seagull optimization algorithm in other shale gas reservoirs regions.  相似文献   

9.
Abstract

Two groups of stretching lineations can be distinguished in the Central Alpine " root zone " between Ticino and Mera :

1) Steeply plunging lineations formed during retrograde metamor-Phism under amphibolite/greenschist facies conditions indicate an uplift movement of the Central Alps. The lineations can be related to an important back-thrusting event of late Oligocene/early Miocene age.

2) Gently plunging lineations formed under lower greenschist facies conditions display a pattern typical of a dextral strike-slip system. These lineations are of early Miocene age.

This cpmbined movement, achieved by ductile deformation along the lnsubric line was followed by a stage of brittle deformation in a dextral strike-slip system (= Tonale line).

The signification of this interpretation is shown in a new crustal cross section through the Central Alpine/Southern Alpine border zone in the Iicino area.  相似文献   

10.

An evolutionary approach is applied to solve the nonlinear well logging inverse problem. In the framework of the proposed interval inversion method, nuclear, sonic, and laterolog resistivity data measured at an arbitrary depth interval are jointly inverted, where the depth variation of porosity, water saturation, and shale volume is expanded into series using Legendre polynomials as basis functions. In the interval inversion procedure, the series expansion coefficients are estimated by using an adaptive float-encoded genetic algorithm. Since the solution of the inverse problem using traditional linear optimization tools highly depends on the selection of the initial model, a heuristic search is necessary to reduce the initial model dependence of the interval inversion procedure. The genetic inversion strategy used in interval inversion seeks the global extreme of the objective function and provides an estimate of the vertical distribution of petrophysical parameters, even starting the inversion procedure from extremely high distances from the optimum. For a faster computational process, after a couple of thousand generations, the genetic algorithm is replaced by some linear optimization steps. The added advantage of using the Marquardt algorithm is the possibility to characterize the accuracy of the series expansion coefficients and derived petrophysical properties. A Hungarian oil field example demonstrates the feasibility and stability of the improved interval inversion method. As a significance, the genetic inversion method does not require prior knowledge or strong restrictions on the values of petrophysical properties and gives highly reliable estimation results practically independent of the initial model and core information.

  相似文献   

11.
全空间视电阻率公式及全区求解方法是地下瞬变电磁理论的重要组成部分。为探讨全空间全区视电阻率求解方法,笔者将半空间全区视电阻率的平移算法引入至全空间并对其进行了研究。同时,分别采用理论数据、正演模拟数据及实测数据对该方法在全空间资料处理与解释中的有效性和精确性进行了分析。结果显示,平移算法与常规的全区视电阻率解法具有相同的理论基础,但前者避免了传统全区计算方法中的多解性;此外,采用由截距参数绘制的时间剖面图和视电阻率断面图进行联合解释产生了较好的应用效果。  相似文献   

12.
Summary In this paper the interpretation of isotopic age data is discussed. It is shown that in many cases the measured age results do not date geological events which are considered by geologists to be the age of a rock or a mineral. These age data must often be ascribed to other periods of the evolution of rocks.Several examples of Rb-Sr age results on rocks and minerals from the Alps are discussed. It is shown that even with a great number of age data available it is impossible to date the time of metamorphism. On the other side detailed information of the cooling history of the Alps is given by Rb-Sr age results, which cannot be studied by classical geological methods.

Mit 1 Textabbildung

Herrn Prof. Dr.H. Leitmeier zum 80. Geburtstag gewidmet.  相似文献   

13.
测井解释中岩性成份的分析是一个多参数的非线性反演问题,最优化变尺度法比较适合求解这一类问题,而且收敛速度快、效果好。这里主要讨论如何利用最优化变尺度法进行测井资料的岩性解释。首先介绍了最优化变尺度法的原理及其实现步骤,然后论述了最优化变尺度法在测井解释中的应用,包括目标函数的构制、岩性成份分析模型的建立,最后给出了最优化变尺度法在某井段岩性解释中的应用效果。  相似文献   

14.

Horizontal wells dominate the development of unconventional shale reservoirs. Using real time drilling data to steer in a target zone is the key to economic success. Today structural interpretation in unconventional horizontal wells is a manual process that is time-consuming, tedious, and error-prone, especially because gamma-ray (GR) logs are commonly the only available logging-while-drilling data. For the first time, a method named TST3D is developed to automate interpretation of subsurface structure. TST3D (true stratigraphic thickness in three-dimensional space) automates structural interpretation using pattern recognition. Given an initial structural model, TST3D automatically computes true stratigraphic thickness (TST) as the shortest distance from each wellbore survey location to the initial surface, then matches GR patterns in the horizontal well to those seen in a vertical pilot well in TST domain. TST3D inserts fold hinges, bends the structure, then recomputes the modeled GR response, progressively matching the pilot well log signature, from heel to toe in the horizontal well. There are three assumptions in the current version of TST3D: constant layer thickness across the drilled interval, GR variation follows stratigraphic layering, and no faults are present in the drilled section. Those assumptions are reasonable in most shale plays. The TST3D method can be applied in either a post-drill mode for structural interpretation or real-time mode for aiding geosteering. Field tests in different shale plays and complex well trajectories demonstrate that TST3D runs quickly: a structural model of a 10,000-ft horizontal section can be computed in minutes, and a real-time update of 100 ft of new data takes less than a minute. Automating the geosteering correlation process would allow well placement engineers to cover multiple wells simultaneously, increasing the efficiency of the team while potentially improving service quality.

  相似文献   

15.
基于K均值动态聚类分析的地球物理测井岩性分类方法   总被引:1,自引:0,他引:1  
在地球物理测井数据处理与解释中,岩性识别是地层评价、油藏描述等方面的一项重要内容.利用计算机自动进行岩性识别已成为测井解释发展的重要方向、人们研究和关注的内容.聚类分析是数据挖掘中的一个重要研究领域,是一种数据划分或分组处理的重要手段和方法.K均值算法是聚类算法中主要算法之一,它是一种基于划分的聚类算法.依据不同岩性在常规测井资料中的不同响应,根据K均值动态聚类方法的原理,结合其它资料,对井中的岩性进行分类,从而达到了区分和识别钻孔不同岩性的目的.  相似文献   

16.
地?井瞬变电磁法响应规律复杂,现有解释方法以定性分析和半定量解释应用最为广泛,不能直接获取大地电阻率参数。针对这一问题,提出一种基于瞬变冲激时刻的快速定量解释方法。首先给出均匀半空间地?井瞬变电磁响应的表达式,分析地?井瞬变电磁响应的冲激时刻特征。结果表明,接收点深度越大、大地电导率越高,则瞬变冲激时刻越晚。结合已有的研究成果,推导冲激时刻与大地电导率和深度的函数关系,依据反函数理论进行大地视电阻率定义。以获取真实大地电阻率为目标,研究基于地下电磁场扩散速度的改进大地电阻率恢复算法。采用所提出的算法,根据实际常用工作方式,分别设计均匀半空间、二层模型和三层模型进行模拟计算。模型算例和实测数据试算结果表明:基于冲激时刻的视电阻率定义方法能够较好地反映大地电阻率的变化趋势,但具有较强的体积效应;基于电磁场扩散速度的改进算法能够有效地削弱体积效应的影响,更加准确地恢复大地电阻率值和反映电性界面。该算法无需进行复杂模型的迭代正演计算,具有较高的计算效率,能够定量恢复大地电阻率值,适用于地?井瞬变电磁法的快速初步定量解释。但在实际资料解释应用中,还需考虑视电阻率的“overshoot”和“undershoot”现象,避免造成错误解释。   相似文献   

17.

The site characterization of unsaturated soils is well stablished based on laboratory tests, which are expensive and time-consuming. In-situ testing methods, such as the flat dilatometer test (DMT), are an alternative to the traditional approach of drilling, sampling, and laboratory testing. The literature on DMT interpretation is well established on saturated and well-behaved soils. Only few studies deal with DMT interpretation in unusual soils, and little is known about the influence of soil suction on this test. This paper presents and discusses the influence of soil suction on four DMT campaigns carried out in an unsaturated tropical soil site, also incorporating the soil suction influence on the DMT interpretation. Soil suction was estimated by the soil–water characteristic curve (SWCC) and water content profiles. The water content profiles range from 11.3 to 19.7% which corresponds to a suction range estimated by SWCCs mostly between 6 and 200 kPa. Soil suction significantly influenced DMT data up to 5 m depth at the studied site (the unsaturated active zone) increasing the intermediate DMT parameters. The average horizontal stress index (KD) was equal to about 1.7 and the average dilatometer modulus (ED) was about 4.7 MPa in the active zone and practically doubled their values due to in situ soil suction. The estimated peak friction angle (?) was 20–30% higher due to soil suction influence on DMT assuming the soil behaves as a sand like material. Soil suction must be considered to assess the behavior of the investigated soil by the DMT. The suction influence should be incorporated in the effective stress and this approach considerably improved the site characterization of the studied site.

  相似文献   

18.

Artesian aquifers offer interesting opportunities for water supply by providing a low-vulnerability groundwater resource that is easily abstracted without any installation of pumps or power supply costs. However, hydraulic tests are challenging to perform, notably where the piezometric head is above ground level with free-flowing wells not equipped with valves and open for years. This paper describes a low-cost, easy to reproduce and adaptable device, the free-flowing artesian well device (FFAWD), which is mainly designed with a set of PVC tubes equipped with a pressure probe and a valve. This device is used to perform hydraulic tests on free-flowing artesian wells, to measure the piezometric head of the aquifer and to compute its transmissivity. The practical use of the FFAWD is described and a method is proposed to compute the piezometric head and the transmissivity of the aquifer from this data set (free-flowing well discharge and pressure increase measurements) with any adapted analytical solution, using the Houpeurt-Pouchan method. Artefacts such as post-production effects, surge effects, and the impact of a leaky well are identified to avoid any misinterpretation. The FFAWD was applied to the volcano-sedimentary artesian plain of Pasuruan (Indonesia). The advantages and limitations of using the device, along with the interpretation methodology, are also discussed.

  相似文献   

19.
在传统地震剖面精细解释的基础之上通过方法创新和蚂蚁体技术应用,总结出了江家店地区小断层的识别特征以及小断层的发育规律.通过江家店地区构造平衡剖面恢复工作,对小断层形成控制因素以及形成时期有了新的认识.通过构造物理模拟实验对江家店小断层的形成机理进行了进一步的验证.在江家店油田小断层的识别过程中,运用上述方法识别出了许多常规地震解释难以识别的小断层,并取得较好的应用效果.  相似文献   

20.
Li  Bingyao  Hou  Jingming  Ma  Yongyong  Bai  Ganggang  Wang  Tian  Xu  Guoxin  Wu  Binzhong  Jiao  Yongbao 《Natural Hazards》2022,110(1):607-628

Flooding is now becoming one of the most frequent and widely distributed natural hazards, with significant losses to human lives and property around the world. Evacuation of pedestrians during flooding events is a crucial factor in flood risk management, in addition to saving people’s lives and increasing time for rescue. The key objective of this work is to propose a shortest evacuation path planning algorithm by considering the evacuable areas and human instability during floods. A shortest route optimization algorithm based on cellular automata is established while using diagonal distance calculation methods in heuristic search algorithms. The Morpeth flood event that occurred in 2008 in the UK is used as a case study, and a highly accurate and efficient 2D hydrodynamic model is adopted to discuss the flood characteristics in flood plains. Two flood hazard assessment approaches [i.e., empirical and mechanics-based and experimental calibrated (M&E)] are chosen to study human instability. A comprehensive analysis shows that extreme events are better identified with mechanics-based and experimental calibration methods than with an empirical method. The result of M&E is used as the initial condition for the Morpeth evacuation scenario. Evacuation path planning in Morpeth shows that this algorithm can realize shortest route planning with multiple starting points and ending points at the microscale. These findings are of significance for flood risk management and emergency evacuation research.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号