首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
地表蒸散定量遥感的研究进展   总被引:34,自引:1,他引:34  
简要介绍了遥感监测地表蒸散和能量平衡研究的科学意义和应用价值,回顾了国内外的研究历史和现状,分析了目前该领域存在的一些问题和难点,并对今后的工作重点和研究方向提出了建议。  相似文献   

2.
There has been an increasing interest in mapping and monitoring urban land use/land cover using remote sensing techniques. However, there still exist quite a number of challenges in deriving urban extent and its expansion density from remote sensing data quantitatively. This study utilized Landsat TM/ETM+ remote sensing data to assess urban expansion and its thermal characteristics with a case study in the city of Changsha, China. We proposed a new approach for quantitatively determining built-up area, its expansion density and their respective relationship with land surface temperature (LST) patterns. An urban expansion metric was also developed using a moving window mechanism to identify urban built-up area and its expansion density based on selected threshold values. The study suggested that urban extent and its expansion density, as well as surface thermal characteristics and patterns could be identified through quantitatively derived remotely sensed indices and LST, which offer meaningful characteristics in quantifying urban expansion density and urban thermal pattern. Results from the case study demonstrated that: (1) the built-up area and urban expansion density have significantly increased in the city of Changsha from 1990 to 2001; and (2) the differences of urban expansion densities correspond to thermal effects, where a high percentage of imperviousness is usually associated with the area covered by high surface temperature.  相似文献   

3.
This study focuses on using remote sensing for comparative assessment of surface urban heat island (UHI) in 18 mega cities in both temperate and tropical climate regions. Least-clouded day- and night-scenes of TERRA/MODIS acquired between 2001 and 2003 were selected to generate land-surface temperature (LST) maps. Spatial patterns of UHIs for each city were examined over its diurnal cycle and seasonal variations. A Gaussian approximation was applied in order to quantify spatial extents and magnitude of individual UHIs for inter-city comparison. To reveal relationship of UHIs with surface properties, UHI patterns were analyzed in association with urban vegetation covers and surface energy fluxes derived from high-resolution Landsat ETM+ data. This study provides a generalized picture on the UHI phenomena in the Asian region and the findings can be used to guide further study integrating satellite high-resolution thermal data with land-surface modeling and meso-scale climatic modeling in order to understand impacts of urbanization on local climate in Asia.  相似文献   

4.
作为驱动地表与大气之间能量交换的关键物理量,地表温度在众多领域中都发挥着重要作用,包括气候变化、环境监测、蒸散发估算以及地热异常勘探等。Landsat热红外数据因其时间连续性和高空间分辨率等特点被广泛应用于地表温度反演中。本文详细地介绍了Landsat热红外传感器及其可用的数据与产品的现状,梳理了2001年—2020年20年间基于Landsat热红外数据的地表温度遥感反演与应用的相关文献发表及互引情况,系统地综述了基于Landsat热红外数据的地表温度反演算法,包括基于辐射传输方程的算法、单窗算法、普适性单通道算法、实用单通道算法和分裂窗算法等。在此基础上,进一步介绍了每种算法的参数化方案,包括地表比辐射率和大气参数的估算方法。最后针对Landsat热红外数据地表温度遥感反演提出了未来可能的发展趋势与研究方向。  相似文献   

5.
Thermal infrared (TIR) remote sensing is an important technique in the exploration of geothermal resources. In this study, a geothermal survey is conducted in Tengchong area of Yunnan province in China using TIR data from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) sensor. Based on radiometric calibration, atmospheric correction and emissivity calculation, a simple but efficient single channel algorithm with acceptable precision is applied to retrieve the land surface temperature (LST) of study area. The LST anomalous areas with temperature about 4–10 K higher than background area are discovered. Four geothermal areas are identified with the discussion of geothermal mechanism and the further analysis of regional geologic structure. The research reveals that the distribution of geothermal areas is consistent with the fault development in study area. Magmatism contributes abundant thermal source to study area and the faults provide thermal channels for heat transfer from interior earth to land surface and facilitate the present of geothermal anomalies. Finally, we conclude that TIR remote sensing is a cost-effective technique to detect LST anomalies. Combining TIR remote sensing with geological analysis and the understanding of geothermal mechanism is an accurate and efficient approach to geothermal area detection.  相似文献   

6.
A procedure for the monitoring an urban heat island (UHI) was developed and tested over a selected location in the Midwestern United States. Nine counties in central Indiana were selected and their UHI patterns were modeled. Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) images taken in 2005 were used for the research. The images were sorted based on cloud cover over the study area. The resulting 94 day and night images were used for the modeling. The technique of process convolution was then applied to the images in order to characterize the UHIs. This process helped to characterize the LST data into a continuous surface and the UHI data into a series of Gaussian functions. The diurnal temperature profiles and UHI intensity attributes (minimum, maximum and magnitude) of the characterized images were analyzed for variations. Skin temperatures within any given image varied between 2–15 °C and 2–8 °C for the day and night images, respectively. The magnitude of the UHI varied from 1–5 °C and 1–3 °C over the daytime and nighttime images, respectively. Three dimensional (3-D) models of the day and night images were generated and visually explored for patterns through animation. A strong and clearly evident UHI was identified extending north of Marion County well into Hamilton County. This information coincides with the development and expansion of northern Marion County during the past few years in contrast to the southern part. To further explore these results, an Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 2004 land use land cover (LULC) dataset was analyzed with respect to the characterized UHI. The areas with maximum heat signatures were found to have a strong correlation with impervious surfaces. The entire process of information extraction was automated in order to facilitate the mining of UHI patterns at a global scale. This research has proved to be promising approach for the modeling and mining of UHIs from large amount of remote sensing images. Furthermore, this research also aids in 3-D diachronic analysis.  相似文献   

7.
One of the key impacts of rapid urbanization on the environment is the effect of urban heat island (UHI). By using the Landsat TM/ETM+ thermal infrared remote sensing data of 1993, 2001 and 2011 to retrieve the land surface temperature (LST) of Lanzhou City, and by adopting object-oriented fractal net evolution approach (FNEA) to make image segmentation of the LST, the UHI elements were extracted. The G* index spatial aggregation analysis was made to calculate the urban heat island ratio index (URI), and the landscape metrics were used to quantify the changes of the spatial pattern of the UHI from the aspects of quantity, shape and structure. The impervious surface distribution and vegetation coverage were extracted by a constrained linear spectral mixture model to explore the relationships of the impervious surface distribution and vegetation coverage with the UHI. The information of urban built-up area was extracted by using UBI (NDBI-NDVI) index, and the effects of urban expansion on city thermal environment were quantitatively analyzed, with the URI and the LST grade maps built. In recent 20 years, the UHI effect in Lanzhou City was strengthened, with the URI increased by 1.4 times. The urban expansion had a spatiotemporal consistency with the UHI expansion. The patch number and density of the UHI landscape were increased, the patch shape and the whole landscape tended to be complex, the landscape became more fragmented, and the landscape connectivity was decreased. The heat island strength had a negative linear correlation with the urban vegetation coverage, and a positive logarithmic correlation with the urban impervious surface coverage.  相似文献   

8.
Metropolitan Beijing is facing many environmental problems such as haze and urban heat island due to the rapid urbanization. Surface shortwave, longwave, and net radiations are key components of the surface-atmosphere radiation budget. Since megacities are affected by the thermal radiation of complex landscape structures and atmospheric environments, quantitative and spatially explicit retrieval from remotely sensed data remains a challenge. We collected the surface radiation fluxes from seven fixed sites representing different land-use types to calibrate the local parameters for remotely sensed retrieval of net radiation. We proposed a remote sensing–based surface radiation retrieval method by embedding the underlying land covers and integrating the observational data. The improved method is feasible to accurately retrieve surface radiation and delineate spatial characteristics in metropolitan areas. The accuracy evaluation indicated that the difference between remotely sensed and in situ observed net radiation ranged within 0~± 40 W· m?2. The root mean squared error of the estimated net surface radiation was 32.71 W· m?2. The strongly spatial heterogeneity of surface radiation components in metropolitan Beijing was closely related to land-cover patterns from urban area to outskirts. We also found that the surface net radiation had a decreasing trend from 1984 to 2014, and the net radiation in the urban area was lower than that in the outskirts. According to the surface radiation budgets, urbanization resulted in the cooling effect in net radiation flux in the daytime, which was stemmed from low atmospheric transmittances from massive aerosol concentration and high surface albedo from light building materials.  相似文献   

9.
Land surface temperature (LST) plays a critical role in characterizing energy exchanges of the Earth's surface and atmosphere. Recent advances in thermal infrared (TIR) remote sensing technology enable the emergence of airborne very-high-resolution (VHR) TIR sensors to identify detailed LST distribution for environmental, geological and urban applications. However, the usage of airborne VHR TIR data may be limited by its high cost, long acquisition period, extensive data processing, etc. A cost-effective alternative could be VHR LST estimation. We proposed a physically based method, referred to as the VHR spectral unmixing and thermal mixing (VHR-SUTM) approach, to estimate LST at the meter level. Particularly, considering both spectral and thermal properties, spectral unmixing was employed to estimate fractional urban compositions for a comprehensive representation of heterogeneous urban surfaces. Further, VHR LST was modeled as a summation of the thermal features of representative urban compositions weighted by their respective abundances. Results suggest a high agreement between the resampled VHR LST estimates and the retrieved LSTs. With relatively high estimation accuracy (RMSE of 2.02 K and MAE of 1.51 K), the VHR-SUTM technique could serve as a promising and practical method for various applications in urban and environment studies.  相似文献   

10.
蒸散发是水圈、大气圈和生物圈中水分循环和能量交换的纽带。在全球尺度上,蒸散发约占陆地降水总量的60%;作为其能量表达形式,潜热通量约占地表净辐射的80%。随着通量观测技术的发展,全球长期持续的观测数据得以获取和共享,近年来基于数据驱动的蒸散发遥感反演方法取得了较好的研究进展。本文针对数据驱动的蒸散发遥感反演方法和产品,从经验回归、机器学习和数据融合3个方面展开,对现有的研究进展进行了梳理、归纳和总结,并从驱动数据、反演方法、已有产品等方面指出目前仍存在的问题和不足。未来仍需开展数据驱动的高时空分辨率的蒸散发遥感反演方法的研究,有效考虑地表温度和土壤水分等可以指示地表蒸散发短期变化的重要信息,同时加强基于过程驱动的物理模型与数据驱动的模型的结合,使两类模型能互为补充、各自发挥所长,共同推动蒸散发遥感反演研究水平的进步。  相似文献   

11.
城市扩展强度及其地表热特性遥感定量分析   总被引:1,自引:0,他引:1  
提出定量确定城市扩展范围及其发展强度的方法——地图密度指数。以中部城市长沙为例,利用Landsat TM/ETM+数据定量评价城市扩张及其热环境特征的变化。首先,集成遥感光谱指数提取地表非渗透表面,然后利用移动窗口算法获得地图密度指数,再根据设定的阈值获得密度指数等级图,依此密度指数等级图识别城市扩展范围及其发展强度。再结合地表温度反演的数据,分析城市格局及其变化与地表热特性变化的定量关系。结果表明,自20世纪90年代以来,长沙市城市区域及其发展密度显著增加,城市发展的密度差异与地表温度相一致。地图密度指数能较好刻画城市扩展范围及其发展强度,并与地表温度空间分布存在较好的对应关系。  相似文献   

12.
The Urban Heat Island (UHI) phenomenon, a typical characteristic on urban landscapes, has been recognised as a key driver to the transformation of local climate. Reliable retrieval of urban and intra-urban thermal characteristics using satellite thermal data depends on accurate removal of the effects of atmospheric attenuations, angular and land surface emissivity. Several techniques have been proposed to retrieve land surface temperature (LST) from coarse resolution sensors. Medium spatial resolution sensors like the Advanced Space-borne Thermal Emission and Reflection Radiometer and the Landsat series offer a viable option for assessing LST within urban landscapes. This paper reviews the theoretical background of LST estimates from the thermal infrared part of the electromagnetic spectrum, LST retrieval algorithms applicable to each of the commonly used medium-resolution sensors and required variables for each algorithm. The paper also highlights LST validation techniques and concludes by stipulating the requirements for LST temporal and spatial configuration.  相似文献   

13.
Heat stress as an environmental hazard which can seriously affect productivity, health, or even survival of individuals has long been studied. Despite the endeavors that have been made to address the issue quantitatively with various heat stress indices, they are often measured at scatter sites. This research devotes to revealing human heat stress within continuous space with remote sensing technology. The study began with the retrieval of dry-bulb temperature from land surface temperature (LST) with empirical models. As wet-bulb temperature was calculated from dry-bulb temperature and relative humidity, discomfort index (DI) as an indicator of heat stress was revealed for the study area at 1 km spatial resolution for three summer days. Results indicated that DI can be derived within continuous space with remotely sensed data, and its spatial distribution can be dramatically affected by relative humidity. Further comparison between DI and LST indicated that LST as a widely utilized indicator of surface thermal condition fails to address human heat stress as environmental factors such as relative humidity are not taken into account.  相似文献   

14.
土壤蒸发和植被蒸腾遥感估算与验证   总被引:1,自引:0,他引:1  
地表蒸散发是土壤—植被—大气系统中能量和水循环的重要环节,它包括土壤、水体和植被表面的蒸发,以及植被蒸腾。随着地表参数多源遥感产品的快速发展,利用不同地表参数遥感产品估算地表蒸散发以及其组分土壤蒸发和植被蒸腾成为日常监测越来越便利,监测尺度已从单站扩展到田块、区域乃至全球。目前地表蒸散发双层遥感估算模型按照建模机理的不同可分为:系列模型、平行模型、基于特征空间的模型、结合传统方法的模型以及数据同化方法。本文从模型构建物理机制、模型驱动数据以及模型输出结果验证等方面总结了上述模型的发展历史和现状,并指出在模型结构与参数化方案的优化、高分辨率模型驱动数据的发展、土壤蒸发和植被蒸腾像元尺度"地面真值"的获取等方面都仍需进一步完善。  相似文献   

15.
Urban heat islands (UHIs) have attracted attention around the world because they profoundly affect biological diversity and human life. Assessing the effects of the spatial structure of land use on UHIs is essential to better understanding and improving the ecological consequences of urbanization. This paper presents the radius fractal dimension to quantify the spatial variation of different land use types around the hot centers. By integrating remote sensing images from the newly launched HJ-1B satellite system, vegetation indexes, landscape metrics and fractal dimension, the effects of land use patterns on the urban thermal environment in Wuhan were comprehensively explored. The vegetation indexes and landscape metrics of the HJ-1B and other remote sensing satellites were compared and analyzed to validate the performance of the HJ-1B. The results have showed that land surface temperature (LST) is negatively related to only positive normalized difference vegetation index (NDVI) but to Fv across the entire range of values, which indicates that fractional vegetation (Fv) is an appropriate predictor of LST more than NDVI in forest areas. Furthermore, the mean LST is highly correlated with four class-based metrics and three landscape-based metrics, which suggests that the landscape composition and the spatial configuration both influence UHIs. All of them demonstrate that the HJ-1B satellite has a comparable capacity for UHI studies as other commonly used remote sensing satellites. The results of the fractal analysis show that the density of built-up areas sharply decreases from the hot centers to the edges of these areas, while the densities of water, forest and cropland increase. These relationships reveal that water, like forest and cropland, has a significant effect in mitigating UHIs in Wuhan due to its large spatial extent and homogeneous spatial distribution. These findings not only confirm the applicability and effectiveness of the HJ-1B satellite system for studying UHIs but also reveal the impacts of the spatial structure of land use on UHIs, which is helpful for improving the planning and management of the urban environment.  相似文献   

16.
热岛效应是城市化进程中产生的特有环境问题。基于Landsat TM/ETM+(1989、2001、2007、2013年)遥感影像完成哈尔滨地面亮温定量反演、标准化和等级划分等处理,并分析城市热岛空间分布特征和时空演变规律。基于地学信息图谱理论,定量分析24 a间热岛效应图谱信息变化特征,探究城市热岛格局的时空演变进程和形成机制,揭示城市化进程与热岛效应之间的响应关系。结果表明,随着哈尔滨城市化进程加速,4级热岛效应呈递增趋势,面积比例分别为4.36%、5.69%、6.29%和7.12%,主要分布在道外区和铁路沿线地带;植被和水体区域的地面温度较低,其边缘温度更低;反复变化型面积最大,后期变化型面积最小,面积比例分别为33.30%和7.30%。地学信息图谱分析可为城市热岛效应随城市化演变趋势提供准确、丰富的信息,对全面分析城市热岛的形成和发展具有重要的意义。  相似文献   

17.
In 1999, the Ministry of Land and Resources (MLR) of China launched the National Land Use Change Program especially to monitor the scale and distribution of urban expansion and the decrease in cultivated land through remote sensing technology. This Program has been carried out annually and continuously for seven years since then and played an important role in the policy-making of MLR about land management and planning. This paper gives an overview about this Program and discusses several research issues. First, the remote sensing data sources and other ancillary data used in this Program are presented. The approaches for image preprocessing, i.e. radiometric normalization, image geometric rectification and image fusion are then introduced with an emphasis on the algorithm development for image registration. Second, land use change detection technique is the most critical and complex aspect of the Program. The methodologies for change detection using either bi-temporal image pair or one existing land use map and one remotely sensed image are detailed. Third, since the data of land use changes derived from remote sensing will be operationally used for local and central government, field validation and accuracy assessment are crucial to ensure the reliability of change detection results. The strategy of field work and the resulting accuracy evaluations is presented. The land use and change information derived from remotely sensed data has wide applications for land management, including land use database updating, verification of land use planning and monitoring of national high-tech parks. Last, suggestions on how to make full use of the images and change detection result, to improve the consistency of land use classification and to develop change detection algorithms for diverse and complex remote sensing data are given.  相似文献   

18.
As more than 50% of the human population are situated in cities of the world, urbanization has become an important contributor to global warming due to remarkable urban heat island (UHI) effect. UHI effect has been linked to the regional climate, environment, and socio-economic development. In this study, Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) imagery, respectively acquired in 1989 and 2001, were utilized to assess urban area thermal characteristics in Fuzhou, the capital city of Fujian province in south-eastern China. As a key indicator for the assessment of urban environments, sub-pixel impervious surface area (ISA) was mapped to quantitatively determine urban land-use extents and urban surface thermal patterns. In order to accurately estimate urban surface types, high-resolution imagery was utilized to generate the proportion of impervious surface areas. Urban thermal characteristics was further analysed by investigating the relationships between the land surface temperature (LST), percent impervious surface area, and two indices, the Normalized Difference Vegetation Index (NDVI) and Normalized Difference Built-up Index (NDBI). The results show that correlations between NDVI and LST are rather weak, but there is a strong positive correlation between percent ISA, NDBI and LST. This suggests that percent ISA, combined with LST, and NDBI, can quantitatively describe the spatial distribution and temporal variation of urban thermal patterns and associated land-use/land-cover (LULC) conditions.  相似文献   

19.
Despite the high geothermal potential of the Main Ethiopian Rift (MER), risks associated with the industry and the difficulty of identifying possible targets using ground surveys alone continue to impede the development of geothermal power diligence in Ethiopia. In this paper, we investigate the geothermal potential of the Tulu Moye prospect area in the MER using Landsat 8, which is an important and cost-effective method of detecting geothermal anomalies. Data with a path/row of 168/054 were obtained from the Landsat 8 Operational Land Imager (OLI) and Thermal Infrared (TIR) sensors for October 17, 2014. Based on radiometric calibration, atmospheric correction (with the 6S model) and an NDVI-based threshold method for calculating land surface emissivity, a split-window algorithm was applied to retrieve the land surface temperature (LST) of the study area. Results show LST values ranging from 292.2 to 315.8 K, with the highest values found in barren lands. A comparison of LST between the Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat 8 shows a maximum difference of 1.47 K. Anomalous areas were also discovered, where LST was about 3-9 K higher than the background area. We identified seven of these as areas of high geothermal activity in the Tulu Moye prospective geothermal area. Auxiliary data and overlay analysis tools eliminated any non-geothermal influences. The research reveals that the distribution of highy prospective geothermal areas is consistent with the development and distribution of faults in the study area. Magmatism is the thermal source and faults provide conduits for the heat to flow from earth’s interior to the surface, facilitating the presence of geothermal anomalies. Finally, TIR remote sensing methods prove to be a robust and cost-effective technique for detecting LST anomalies in the geologically active area of MER. Moreover, combining TIR remote sensing with knowledge of the structural geology of the area and geothermal mechanisms is an efficient approach to detecting geothermal areas.  相似文献   

20.
地表蒸散是区域水文循环的重要组成部分之一,传统的地表蒸散估算一般基于点上的气象观测数据,当用于区域地表蒸散评价时,具有一定的局限性.随着遥感技术的发展,利用遥感影像能够对大区域进行观测的优势进行区域地表蒸散估算已成为可能.地表能量平衡系统(SEBS)是根据地表能量平衡估算地表蒸散量的一种方法,该方法由于提出了地表能量传输过程中关键制约因素热传导粗糙度的估算模型而在遥感蒸散计算方面具有较高的精度.本文在SEBS模型的基础上,以河北平原为例,采取中分辨率成像光谱辐射仪(MODIS)产品影像,根据研究区下垫面的实际情况进行了参数估算,进行了区域实际蒸发蒸腾量计算及模型精确度评价,并在SEBS模型的基础上,提出了新的"标准化温度差-反照率"特征空间分析方法,对研究区内地表土壤水分现状进行了评价;最后,对河北平原地表蒸散时空分布进行了分析.计算结果表明,在所选取的晴空乌云条件下,根据SEBS模型计算所得的地表蒸散与研究区内利用大型承重式蒸渗仪所测量的地表实际蒸散量具有很好的一致性,说明SEBS模型在遥感蒸散计算方面据有较高的可信度.然而,由于地表蒸散的遥感估算是以所获取的遥感影像单元为基础,计算误差不可避免,尤其是使用低分辨率遥感影像的时候,每个影像单元所反映的地表蒸散为单元内各种地表覆盖的综合反映,当与只反映一种地表覆盖蒸散的大型承重式蒸渗仪测量结果进行比较时,误差是显而易见的,因此,若着重考虑模型精度验证,尚需在以后的研究中考虑使用高分辨率的遥感影像.地表土壤水分或湿度状况是地表能量交换及蒸散发生的主要控制因素.利用地表温度与植被指数的关系对区域地表湿度状况进行监测在实践中被广泛利用,然而,由于不用地区地表属性的千差万别,当利用这种方法进行区域地表湿度评价时,"地表温度-植被指数"特征空间的边界很难确定.本文在SEBS模型的基础上,提出新的"标准化温度差-反照率"特征空间分析方法,对研究区内地表土壤水分现状进行评价,结果显示,由于在SEBS模型中考虑了干限和湿限两种极端情况下的能量平衡,"标准化温度差.反照率"特征空间的边界问题很容易被确定,利用修正的特征空间,可以对区域土壤水分或湿度状况进行客观的评价.下垫面的几何特征参数的精确反演是进行地表能量平衡模拟的基础,目前多根据有关经验公式利用遥感影像进行下垫面几何特征参数估算,由于已有的经验公式多基于不同研究区域获得,当应用到新的研究区时,其具体参数需要进一步调整,以获得对下垫面的几何特征的精确描述.由于缺乏相关实测资料,本研究中利用经验公式进行下垫面几何特征参数,误差不可避免,需要在以后的研究中进行深入探索.另外,地表蒸散的计算只是进行区域水资源评价、农业节水措施评价以及全球变化等研究的一个中间环节,需要在以后的研究中根据具体研究目的进行进一步研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号