共查询到20条相似文献,搜索用时 15 毫秒
1.
Clay minerals play a crucial role in the processability of oil sands ores and in the management of tailings. An increase in fine content generally leads to a decrease in both bitumen recovery performance and tailings settling rate. It is thus important to identify clay types and their abundance in oil sands ores and tailings. This study made use of oil sands samples characterized for quantitative mineralogy by x-ray diffraction, to gain an understanding of changes in the reflectance spectra of oil sands. The sample suite included bitumen-removed oil sands ore samples and their different fine size fractions. Spectral metrics applicable to the prediction of quartz and clay contents in oil sands were then derived with a focus on metrics correlating with sample content in total 2:1 clays (total of illite and illite-smectite) and kaolinite. Metrics in the shortwave infrared (SWIR) and longwave infrared (LWIR) were found to correlate with mineral contents. The best predictions of clays and quartz were achieved using LWIR metrics (R2 > 0.89). Results also demonstrated the applicability of LWIR metrics in the prediction of kaolinite and total 2:1 clays. 相似文献
2.
高光谱图像端元提取算法研究进展与比较 总被引:2,自引:0,他引:2
高光谱图像中混合像元的存在不仅影响了基于遥感影像的地物识别和分类精度,而且已经成为遥感科学向定量化方向发展的主要障碍。本文分析和研究了现有的典型端元提取算法,在此基础上,对这些算法进行归纳总结,从是否假定纯像元存在角度将其分为两类:端元识别算法和端元生成算法,并就两种分类方法选取了具有代表性的6种典型端元提取算法:N-FINDR、VCA、SGA、OSP、ICE和MVC-NMF算法进行分析和实验。通过对这6种方法的实验比较,得出两种端元提取分类方法的优点与不足,并对今后的研究工作提出展望。 相似文献
3.
A partitional clustering-based segmentation is used to carry out supervised classification for hyperspectral images. The main contribution of this study lies in the use of projected and correlation partitional clustering techniques to perform image segmentation. These types of clustering techniques have the capability to concurrently perform clustering and feature/band reduction, and are also able to identify different sets of relevant features for different clusters. Using these clustering techniques segmentation map is obtained, which is combined with the pixel-level support vector machines (SVM) classification result, using majority voting. Experiments are conducted over two hyperspectral images. Combination of pixel-level classification result with the segmentation maps leads to significant improvement of accuracies in both the images. Additionally, it is also observed that, classified maps obtained using SVM combined with projected and correlation clustering techniques results in higher accuracies as compared to classified maps obtained from SVM combined with other partitional clustering techniques. 相似文献
4.
Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression 总被引:7,自引:0,他引:7
Moses Azong Cho Andrew Skidmore Fabio Corsi Sipke E. van Wieren Istiak Sobhan 《International Journal of Applied Earth Observation and Geoinformation》2007,9(4):414-424
The main objective was to determine whether partial least squares (PLS) regression improves grass/herb biomass estimation when compared with hyperspectral indices, that is normalised difference vegetation index (NDVI) and red-edge position (REP). To achieve this objective, fresh green grass/herb biomass and airborne images (HyMap) were collected in the Majella National Park, Italy in the summer of 2005. The predictive performances of hyperspectral indices and PLS regression models were then determined and compared using calibration (n = 30) and test (n = 12) data sets. The regression model derived from NDVI computed from bands at 740 and 771 nm produced a lower standard error of prediction (SEP = 264 g m−2) on the test data compared with the standard NDVI involving bands at 665 and 801 nm (SEP = 331 g m−2), but comparable results with REPs determined by various methods (SEP = 261 to 295 g m−2). PLS regression models based on original, derivative and continuum-removed spectra produced lower prediction errors (SEP = 149 to 256 g m−2) compared with NDVI and REP models. The lowest prediction error (SEP = 149 g m−2, 19% of mean) was obtained with PLS regression involving continuum-removed bands. In conclusion, PLS regression based on airborne hyperspectral imagery provides a better alternative to univariate regression involving hyperspectral indices for grass/herb biomass estimation in the Majella National Park. 相似文献
5.
天宫一号高光谱成像仪具有空间分辨率高、光谱分辨率高、图谱合一等特性,在中国航天高光谱领域具有里程碑的意义。针对一般遥感场景分类数据集尺度单一、光谱分辨率较低等问题,本文提出基于天宫一号的多谱段、高空间分辨率、多时相高光谱遥感场景分类数据集(TG1HRSSC)。利用天宫一号高光谱成像仪获取的高质量数据,经过辐射校正、几何校正、空间裁剪、波段筛选、数据质量分析与控制等,制作了一批通用的航天高光谱遥感场景分类数据集,通过载人航天空间应用数据推广服务平台(http://www.msadc.cn [2019-09-10])进行分发和共享。该数据集包括天宫一号高光谱成像仪获取的城镇、农田、林地、养殖塘、荒漠、湖泊、河流、港口、机场等9个典型地物场景的204个高光谱影像数据,其中5 m分辨率全色谱段1个波段、10 m分辨率可见近红外谱段54个有效波段以及20 m分辨率短波红外谱段52个有效波段。研究利用AlexNet、VGG-VD-16、GoogLeNet等深度学习算法网络对构建的数据集进行场景分类的试验,结果表明该数据集的场景分类应用实现较好效果。由于该数据集具备高分辨、高光谱等特征优势,未来在语义理解、多目标检测等方面有着广泛的应用价值。 相似文献
6.
V. K. Choubey 《Journal of the Indian Society of Remote Sensing》1994,22(2):103-111
In order to understand the dynamic aspects of suspended sediments in an inland water body, Tungabhadra reservoir on the Tungabhadra river in the Krishna basin was studied. The study has been carried out using Landsat MSS and IRS-1 A LISS-II images. Visual interpretation techniques have been used to obtain information on the location and extent of sediment distribution pattern in the water-spread area of the reservoir. It has been possible to monitor the seasonal fluctuations in the reservoir water-spread; measure corresponding fluctuation in the volume of water in the reservoir, and study seasonal changes in the suspended sediment distribution pattern in the reservoir. An attempt has also been made to prepare area capacity curve for the reservoir. Semi-quantitative assessment of sediment deposits between reservoir levels were made considering water spread area from the satellite images (May 1986, April 1987, Jan. 1988, Jan. 1989 and March 1989) and sedimentation survey report of KERS 1985, (Karnataka Engineering Research Station). The results indicated that the high Concentration of sediments is at the western confluence of the Tungabhadra river. On the basis of tonal variation as observed, the reservoir could be divided into four major zones, viz., very high and high at the river confluence, moderate at the periphery and low at the dam site. 相似文献
7.
In this paper we detail a multivariate spatial regression model that couples LiDAR, hyperspectral and forest inventory data to predict forest outcome variables at a high spatial resolution. The proposed model is used to analyze forest inventory data collected on the US Forest Service Penobscot Experimental Forest (PEF), ME, USA. In addition to helping meet the regression model's assumptions, results from the PEF analysis suggest that the addition of multivariate spatial random effects improves model fit and predictive ability, compared with two commonly applied modeling approaches. This improvement results from explicitly modeling the covariation among forest outcome variables and spatial dependence among observations through the random effects. Direct application of such multivariate models to even moderately large datasets is often computationally infeasible because of cubic order matrix algorithms involved in estimation. We apply a spatial dimension reduction technique to help overcome this computational hurdle without sacrificing richness in modeling. 相似文献
8.
Wetlands are dynamic landscapes and their spatial extent and types can change over time. Mapping wetland locations, types, and monitoring wetland typological changes have important ecological significance. The National Wetlands Inventory data suffer from two problems: the omission error that some wetlands are not mapped, and the out-of-date wetland types in many counties of the United States. To address these two problems, we proposed an automatic wetland classification model for newly mapped (or existing) wetland polygons lacking typological information. The research goals in this study were (1) to develop a nonparametric and automatic rule-based model to assign wetland types to palustrine wetlands using high-resolution remotely sensed data and (2) to quantify wetland typological changes based on the wetland types obtained from the previous step. The model is a direct application of the Cowardin et al. (1979) wetland classification system without modification. The input information for the proposed model includes Light Detection and Ranging (LiDAR)-derived vegetation height and color infrared aerial imagery-derived vegetation spectral information. We tested the model for the palustrine wetlands in Horry County, SC, and analyzed 29,090 palustrine wetland polygons (101,427 ha). The model achieved an overall agreement of 87% for wetland-type classification and showed the dynamics of wetland typological changes. This nonparametric model can be easily applied to other areas where wetland inventory needs updating. 相似文献
9.
Changno Lee James S. Bethel 《ISPRS Journal of Photogrammetry and Remote Sensing》2004,58(5-6):289-300
This paper presents an approach for the restitution of airborne hyperspectral imagery with linear features. The approach consisted of semi-automatic line extraction and mathematical modelling of the linear features. First, the line was approximately determined manually and refined using dynamic programming. The extracted lines could then be used as control data with the ground information of the lines, or as constraints with simple assumption for the ground information of the line. The experimental results are presented numerically in tables of RMS residuals of check points as well as visually in ortho-rectified images. 相似文献
10.
Imaging spectroscopy is an emerging and versatile technique that finds applications in diverse fields concerned with remote identification, discrimination and mapping of materials. The large amount of spectral data produced by hyperspectral imaging necessitates the development of automated techniques that convert imagery directly into thematic maps. Spectral library search method, a method of choice for organic compound identification by the mass spectroscopy, has caught the attention of researchers as one of the appropriate methods for an efficient exploitation of high quality spectral data available from the hyperspectral imaging systems. Given the apparent increase in the number of papers appearing on the subject as well as the variety of methods proposed, it is reasonable to say that the field of automated interpretation of reflectance spectral data has passed its infancy now gaining important space in the scientific community. We present an overall view of the literature relevant to the development of library search method, the various search algorithms and systems available in the purview for developing an automated hyperspectral data analysis system for material identification. 相似文献
11.
矿物的类型、丰度及其粒径分布对理解月球和行星表面曾经存在过怎样的地质演化过程具有重要的意义。本文提出基于辐射传输模型和稀疏分解模型反演矿物丰度及其粒径分布的方法,利用辐射传输模型计算各矿物端元不同粒径的单次散射反照率以构建解混光谱库,然后基于稀疏分解算法得到在每个可观测像元的端元最优丰度和粒径分布。利用实验室测量数据进行验证,表明本文方法具有较高的精度。最后根据玉兔号月球车的实地测量光谱数据,利用本文方法获得了其矿物的丰度及粒径分布,结果显示,辉石、橄榄石、斜长石、熔融玻璃和钛铁矿的丰度在4个观测点的平均丰度分别为28.1%、4.5%、39%、28%、0.4%,辉石的平均粒径为166.02μm,橄榄石为8.34μm,斜长石为196.31μm,熔融玻璃为44.21μm,一定程度上表明在这些观测点不同矿物对太空风化的响应不同。 相似文献
12.
红树林是世界上生产力最高、价值最高的湿地生态系统之一。冠层叶绿素含量CCC(Canopy Chlorophyll Content)作为红树林重要的生物物理参量,是估算其生产力和评价其健康状况的重要指标。本文利用珠海一号高光谱卫星(OHS)影像与Sentinel-2A多光谱数据计算传统植被指数与组合植被指数并构建了高维数据集,综合利用正态分布检验、最大相关系数法与变量重要性评价进行数据降维和变量优选;分别基于单一线性回归算法、机器学习回归算法和堆栈集成学习回归算法构建了红树林CCC遥感反演模型,探明北部湾红树林CCC的最佳遥感反演模型,验证OHS高光谱影像与Sentinel-2A数据反演红树林CCC的精度差异,评估SNAP-SL2P算法反演红树林CCC的适用性。研究结果表明:(1)通过数据降维和变量选择处理,从高维度OHS数据集选取了8个特征变量,其中RSI(12,17)、DSI(12,18)和NDSI(6,12)组合植被指数对红树林CCC反演精度的贡献率较高;(2)联合OHS数据和最优堆栈GBRT集成学习回归模型(Score=0.999,RMSE=0.963 μg/cm2)的训练精度优于最优RF机器学习回归模型(RMSE降低了7.531 μg/cm2),明显优于最优Lasso线性回归模型(RMSE降低了19.383 μg/cm2);(3)在最优堆栈集成学习回归模型下,OHS数据反演红树林CCC的精度(R2=0.761,RMSE=16.738 μg/cm2)高于Sentinel-2A影像(R2=0.615,RMSE=20.701 μg/cm2);(4)联合OHS和Sentinel-2A数据的最优堆栈集成学习回归模型反演红树林CCC的精度都明显优于SNAP-SL2P算法(R2=0.356,RMSE=49.419 μg/cm2)。研究结果论证了正态分布检验、最大相关系数法和基于XGBoost的特征选择方法有效降低了高维数据集的维度,并得到了最优特征变量;OHS数据的最优堆栈GBRT集成学习回归模型训练精度最高,是估算红树林CCC的最优反演模型;OHS和Sentinel-2A数据都能有效反演红树林CCC(R2均大于0.61),而OHS数据的估算精度更高(R2大于0.75);SNAP-SL2P算法不能有效反演红树林CCC(R2小于0.4),且对红树林CCC数值存在系统性低估。 相似文献
13.
Careful evaluation of forest regeneration and vegetation recovery after a fire event provides vital information useful in land management. The use of remotely sensed data is considered to be especially suitable for monitoring ecosystem dynamics after fire. The aim of this work was to map post-fire forest regeneration and vegetation recovery on the Mediterranean island of Thasos by using a combination of very high spatial (VHS) resolution (QuickBird) and hyperspectral (EO-1 Hyperion) imagery and by employing object-based image analysis. More specifically, the work focused on (1) the separation and mapping of three major post-fire classes (forest regeneration, other vegetation recovery, unburned vegetation) existing within the fire perimeter, and (2) the differentiation and mapping of the two main forest regeneration classes, namely, Pinus brutia regeneration, and Pinus nigra regeneration. The data used in this study consisted of satellite images and field observations of homogeneous regenerated and revegetated areas. The methodology followed two main steps: a three-level image segmentation, and, a classification of the segmented images. The process resulted in the separation of classes related to the aforementioned objectives. The overall accuracy assessment revealed very promising results (approximately 83.7% overall accuracy, with a Kappa Index of Agreement of 0.79). The achieved accuracy was 8% higher when compared to the results reported in a previous work in which only the EO-1 Hyperion image was employed in order to map the same classes. Some classification confusions involving the classes of P. brutia regeneration and P. nigra regeneration were observed. This could be attributed to the absence of large and dense homogeneous areas of regenerated pine trees in the study area. 相似文献
14.
Based on in situ water sampling and field spectral measurements in Dianshan Lake, a semi-analytical three-band algorithm was used to estimate Chlorophylla (Chla) content in case II waters. The three bands selected to estimate Chla for high concentrations included 653, 691 and 748 nm. An equation, based on the difference in reciprocal reflectance between 653 and 691 nm, multiplied by reflectance at 748 nm as [Rrs−1(653) − Rrs−1 (691)] Rrs(748), explained 85.57% of variance in Chla concentration with a root mean square error (RMSE) of <6.56 mg/m3. In order to test the utility of this model with satellite data, HJ-1A Hyperspectral Imager (HSI) data were analyzed using comparable wavelengths selected from the in situ data [B67−1(656) − B80−1(716)] B87(753). This model accounted for 84.3% of Chla variation, estimating Chla concentrations with an RMSE of <4.23 mg/m3. The results illustrate that, based on the determined wavelengths, the spectrum-based model can achieve a high estimation accuracy and can be applied to hyperspectral satellite imagery especially for higher Chla concentration waters. 相似文献
15.
Mangrove species compositions and distributions are essential for conservation and restoration efforts. In this study, hyperspectral data of EO-1 HYPERION sensor and high spatial resolution data of SPOT-5 sensor were used in Mai Po mangrove species mapping. Objected-oriented method was used in mangrove species classification processing. Firstly, mangrove objects were obtained via segmenting high spatial resolution data of SPOT-5. Then the objects were classified into different mangrove species based on the spectral differences of HYPERION image. The classification result showed that in the top canopy, Kandelia obovata and Avicennia marina dominated Mai Po Marshes Natural Reserve, with area of 196.8 ha and 110.8 ha, respectively, Acanthus ilicifolius and Aegiceras corniculatum were mixed together and living at the edge of channels with an area of 11.7 ha. Additionally, mangrove species shows clearly zonations and associations in the Mai Po Core Zone. The overall accuracy of our mangrove map was 88% and the Kappa confidence was 0.83, which indicated great potential of using hyperspectral and high-resolution data for distinguishing and mapping mangrove species. 相似文献
16.
GLAS星载激光雷达和Landsat/ETM+数据的森林生物量估算 总被引:1,自引:0,他引:1
基于大脚印激光雷达数据和野外观测数据,该文提出一种获取脚印点内森林生物量的新思路,并结合陆地卫星数据应用于长白山地区森林地上生物量估算。首先,基于3种森林类型(针叶林、阔叶林和针阔混交林),采用多元逐步回归方法建立激光雷达波形指数与脚印点内实测平均树高的回归模型,估算全部脚印点内的平均树高;然后根据脚印点内样方的野外观测数据(平均树高和平均胸径)以及它们与样方生物量的拟合方程估算没有野外调查数据对应的脚印点的生物量;最后对3种森林类型的脚印点森林生物量在各森林覆盖度条件下进行分层分区统计得到生物量等级图。验证比较遥感估算的生物量与野外调查数据推算的生物量,总体误差在0~30(t·hm~(-2))之间,均方根误差为14.66(t·hm~(-2))。 相似文献
17.
Maria Kampouri Polychronis Kolokoussis Demetre Argialas Vassilia Karathanassi 《国际地球制图》2013,28(12):1273-1285
AbstractThe aim of this study is to investigate the potential of Sentinel-2 imagery for the identification and determination of forest patches of particular interest, with respect to ecosystem integrity and biodiversity and to produce a relevant biodiversity map, based on Simpson’s diversity index in Taxiarchis university research forest, Chalkidiki, North Greece. The research is based on OBIA being developed on to bi-temporal summer and winter Sentinel-2 imagery. Fuzzy rules, which are based on topographic factors, such as terrain elevation and slope for the distribution of each tree species, derived from expert knowledge and field observations, were used to improve the accuracy of tree species classification. Finally, Simpson’s diversity index for forest tree species, was calculated and mapped, constituting a relative indicator for biodiversity for forest ecosystem organisms (fungi, insects, birds, reptiles, mammals) and carrying implications for the identification of patches prone to disturbance or that should be prioritized for conservation. 相似文献
18.
Wetland biomass is essential for monitoring the stability and productivity of wetland ecosystems. Conventional field methods to measure or estimate wetland biomass are accurate and reliable, but expensive, time consuming and labor intensive. This research explored the potential for estimating wetland reed biomass using a combination of airborne discrete-return Light Detection and Ranging (LiDAR) and hyperspectral data. To derive the optimal predictor variables of reed biomass, a range of LiDAR and hyperspectral metrics at different spatial scales were regressed against the field-observed biomasses. The results showed that the LiDAR-derived H_p99 (99th percentile of the LiDAR height) and hyperspectral-calculated modified soil-adjusted vegetation index (MSAVI) were the best metrics for estimating reed biomass using the single regression model. Although the LiDAR data yielded a higher estimation accuracy compared to the hyperspectral data, the combination of LiDAR and hyperspectral data produced a more accurate prediction model for reed biomass (R2 = 0.648, RMSE = 167.546 g/m2, RMSEr = 20.71%) than LiDAR data alone. Thus, combining LiDAR data with hyperspectral data has a great potential for improving the accuracy of aboveground biomass estimation. 相似文献
19.
Spatial distribution of altered minerals in rocks and soils in the Gadag Schist Belt (GSB) is carried out using Hyperion data of March 2013. The entire spectral range is processed with emphasis on VNIR (0.4–1.0 μm) and SWIR regions (2.0–2.4 μm). Processing methodology includes Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes correction, minimum noise fraction transformation, spectral feature fitting (SFF) and spectral angle mapper (SAM) in conjunction with spectra collected, using an analytical spectral device spectroradiometer. A total of 155 bands were analysed to identify and map the major altered minerals by studying the absorption bands between the 0.4–1.0-μm and 2.0–2.3-μm wavelength regions. The most important and diagnostic spectral absorption features occur at 0.6–0.7 μm, 0.86 and at 0.9 μm in the VNIR region due to charge transfer of crystal field effect in the transition elements, whereas absorption near 2.1, 2.2, 2.25 and 2.33 μm in the SWIR region is related to the bending and stretching of the bonds in hydrous minerals (Al-OH, Fe-OH and Mg-OH), particularly in clay minerals. SAM and SFF techniques are implemented to identify the minerals present. A score of 0.33–1 was assigned for both SAM and SFF, where a value of 1 indicates the exact mineral type. However, endmember spectra were compared with United States Geological Survey and John Hopkins University spectral libraries for minerals and soils. Five minerals, i.e. kaolinite-5, kaolinite-2, muscovite, haematite, kaosmec and one soil, i.e. greyish brown loam have been identified. Greyish brown loam and kaosmec have been mapped as the major weathering/altered products present in soils and rocks of the GSB. This was followed by haematite and kaolinite. The SAM classifier was then applied on a Hyperion image to produce a mineral map. The dominant lithology of the area included greywacke, argillite and granite gneiss. 相似文献
20.
This study evaluates the feasibility of hyperspectral and multispectral satellite imagery for categorical and quantitative mapping of salinity stress in sugarcane fields located in the southwest of Iran. For this purpose a Hyperion image acquired on September 2, 2010 and a Landsat7 ETM+ image acquired on September 7, 2010 were used as hyperspectral and multispectral satellite imagery. Field data including soil salinity in the sugarcane root zone was collected at 191 locations in 25 fields during September 2010. In the first section of the paper, based on the yield potential of sugarcane as influenced by different soil salinity levels provided by FAO, soil salinity was classified into three classes, low salinity (1.7–3.4 dS/m), moderate salinity (3.5–5.9 dS/m) and high salinity (6–9.5) by applying different classification methods including Support Vector Machine (SVM), Spectral Angle Mapper (SAM), Minimum Distance (MD) and Maximum Likelihood (ML) on Hyperion and Landsat images. In the second part of the paper the performance of nine vegetation indices (eight indices from literature and a new developed index in this study) extracted from Hyperion and Landsat data was evaluated for quantitative mapping of salinity stress. The experimental results indicated that for categorical classification of salinity stress, Landsat data resulted in a higher overall accuracy (OA) and Kappa coefficient (KC) than Hyperion, of which the MD classifier using all bands or PCA (1–5) as an input performed best with an overall accuracy and kappa coefficient of 84.84% and 0.77 respectively. Vice versa for the quantitative estimation of salinity stress, Hyperion outperformed Landsat. In this case, the salinity and water stress index (SWSI) has the best prediction of salinity stress with an R2 of 0.68 and RMSE of 1.15 dS/m for Hyperion followed by Landsat data with an R2 and RMSE of 0.56 and 1.75 dS/m respectively. It was concluded that categorical mapping of salinity stress is the best option for monitoring agricultural fields and for this purpose Landsat data are most suitable. 相似文献