首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The New River Estuary consists of a series of broad shallow lagoons draining a catchment area of 1,436 km2, located in Onslow County, North Carolina. During the 1980s and 1990s it was considered one of the most eutrophic estuaries in the southeastern United States and sustained dense phytoplankton blooms, bottom water anoxia and hypoxia, toxic outbreaks of the dinoflagellatePfiesteria, and fish kills. High nutrient loading, especially of phosphorus (P), from municipal and military sewage treatment plants was the principal cause leading to the eutrophic conditions. Nutrient addition bioassay experiments showed that additions of nitrogen (N) but not P consistently yielded significant increases in phytoplankton production relative to controls. During 1998 the City of Jacksonville and the U.S. Marine Corps Base at Camp Lejeune completely upgraded their sewage treatment systems and achieved large improvements in nutrient removal, reducing point source inputs of N and P to the estuary by approximately 57% and 71%, respectively. The sewage treatment plant upgrades led to significant estuarine decreases in ammonium, orthophosphate, chlorophylla, and turbidity concentrations, and subsequent increases in bottom water dissolved oxygen (DO) and light penetration. The large reduction in phytoplankton biomass led to a large reduction in labile phytoplankton carbon, likely an important source of biochemical oxygen demand in this estuary. The upper estuary stations experienced increases in average bottom water DO of 0.9 to 1.4 mg l−1, representing an improvement in benthic habitat for shellfish and other organisms. The reductions in light attenuation and turbidity should also improve the habitat conditions for growth of submersed aquatic vegetation, an important habitat for fish and shellfish.  相似文献   

2.
In volcanic tuffs, dredged during Cruise 23 of the R/V Akademik Nikolaj Strakhov, accessory zircon was found; except for the mineral-forming components, there were ∼2% of ThO2 and 0.75% of Ce2O3 in zircon. During rapid uplift of magmatic masses to the ocean bottom surface, admixture elements isolated into specific minerals. As a result, destruction structures were formed in the rim parts of primary zircon crystals, and the new-formed association of zircon + thorite + cerite + thoriante + baddeleyite appeared.  相似文献   

3.
The natural isotopic composition of suspended particulate organic nitrogen was determined in the Southern Bight of the North Sea and in the Scheldt estuary. These data show that δ15N constitutes a convenient tracer of the origin of the suspended matter.In the winter, in the absence of intensive primary production, the suspended organic matter of the Scheldt estuary is a mixture of two components: a continental detrital component characterized by a low δ value of 1.5%. and a marine component with a mean δ value of 8%..During the phytoplankton flowering period, lasting from early May to October, intensive primary production occurs throughout the estuary giving rise to a third source of organic matter. This material is characterized by high δ values reflecting the isotopic composition of ammonia, the nitrogenous nutrient assimilated by phytoplankton in the estuary.The nitrification process occuring in the mixing area of the Scheldt estuary leads to higher downstream δ values of ammonia (>20%.) which permits the distinction between estuarine from fresh-water phytoplankton. Simple isotopic budget calculations show that, both in the upstream part and in the downstream part, autochthonous phytoplanktonic material contributes a major part of the total suspended matter in the Scheldt estuary during summer.  相似文献   

4.
A “snap shot” survey of the Mississippi estuary was made during a period of low river discharge, when the estuarine mixing zone was within the deltaic channels. Concentrations of H+, Ca2+, inorganic phosphorus and inorganic carbon suggest that the waters of the river and the low salinity (<5‰) portion of the estuary are near saturation with respect to calcite and sedimentary calcium phosphate. An input of oxidized nitrogen species and N2O was observed in the estuary between 0 and 4‰ salinity. The concentrations of dissolved NH4 + and O2, over most of the estuary, appeared to be influenced by decomposition of terrestrial organic matter in bottom sediments. The estuarine bottom also appears to be a source of CH4 which has been suggested to originate from petroleum shipping and refining operations. Estuarine mixing with offshore Gulf waters was the dominant influence on distributions of dissolved species over most of the estuary (i.e., from salinities >5‰). The phytoplankton abundance (measured as chlorophylla) increased as the depth of the mixed layer decreased in a manner consistent with that expected for a light-limited ecosystem. Fluxes of NO3 ?+NO2 ? and soluble inorganic phosphorus to the Gulf of Mexico were estimated to be 3.4±0.2×103 g N s?1 and 1.9±0.2 g P s?1 respectively, at the time of this study.  相似文献   

5.
We conducted a quantitative assessment of estuarine ecosystem responses to reduced phosphorus and nitrogen loading from sewage treatment facilities and to variability in freshwater flow and nonpoint nutrient inputs to the Patuxent River estuary. We analyzed a 19-year dataset of water quality conditions, nutrient loading, and climatic forcing for three estuarine regions and also computed monthly rates of net production of dissolved O2 and physical transport of dissolved inorganic nitrogen (DIN) and phosphorus (DIP) using a salt- and water-balance model. Point-source loading of DIN and DIP to the estuary declined by 40–60% following upgrades to sewage treatment plants and correlated with parallel decreases in DIN and DIP concentrations throughout the Patuxent. Reduced point-source nutrient loading and concentration resulted in declines in phytoplankton chlorophyll-a (chl-a) and light-saturated carbon fixation, as well as in bottom-layer O2 consumption for upper regions of the estuary. Despite significant reductions in seaward N transport from the middle to lower estuary, chl-a, turbidity, and surface-layer net O2 production increased in the lower estuary, especially during summer. This degradation of water quality in the lower estuary appears to be linked to a trend of increasing net inputs of DIN into the estuary from Chesapeake Bay and to above-average river flow during the mid-1990s. In addition, increased abundance of Mnemiopsis leidyi significantly reduced copepod abundance during summer from 1990 to 2002, which favored increases in chl-a and allowed a shift in total N partitioning from DIN to particulate organic nitrogen. These analyses illustrate (1) the value of long-term monitoring data, (2) the need for regional scale nutrient management that includes integrated estuarine systems, and (3) the potential water quality impacts of altered coastal food webs.  相似文献   

6.
The effects of advection, dispersion, and biological processes on nitrogen and phytoplankton dynamics after a storm event in December 2002 are investigated in an estuary located on the northern New South Wales coast, Australia. Salinity observations for 16 d after the storm are used to estimate hydrodynamic transports for a one-dimensional box model. A biological model with nitrogen limited phytoplankton growth, mussel grazing, and a phytoplankton mortality term is forced by the calculated transports. The model captured important aspects of the temporal and spatial dynamics of the bloom. A quantitative analysis of hydrodynamic and biological processes shows that increased phytoplankton biomass due to elevated nitrogen loads after the storm was not primarily regulated by advection or dispersion in spite of an increase in river flow from <1 to 928×103 m3 d−1. Of the dissolved nitrogen that entered the surface layer of the estuary in the 16 d following the storm event, the model estimated that 28% was lost through exchange with the ocean or bottom layers, while 15% was removed by the grazing of just one mussel species,Xenostrobus securis, on phytoplankton, and 50% was lost through other biological phytoplankton loss processes.X. securis grazing remained an important loss process even when the estimated biological parameters in the model were varied by factors of ± 2. The intertidal mangrove pneumatophore habitat ofX. securis allows filtering of the upper water column from the lateral boundaries when the water column is vertically stratified, exerting top-down control on phytoplankton biomass.  相似文献   

7.
The penetration of sunlight into the water column plays a critical role in the aquatic ecosystem. The irradiance available for primary production in a water body depends on the incident light at the water surface, light extinction in the water column, and depth. In this study, the light attenuation through the water column of the Danshuei River–Keelung River estuary was estimated. The measurement of photosynthetically active radiation (PAR) indicates that the conventional exponential attenuation of light with depth is a very good model. A light attenuation coefficient may be derived from the PAR measurements at each location. The regression with salinity yields a good correlation, indicating that the fraction of seawater should be a good parameter for estimating the water column light attenuation coefficient (K d ). A laterally averaged two-dimensional finite difference model for hydrodynamic and water quality model was performed and applied to simulate the phytoplankton population at the lower reach of the Danshuei River estuary. In the process of phytoplankton population simulation, the regression model of K d and salinity was incorporated in the water quality model. The simulated results show that the modeled concentration of chlorophyll a matched the measured values at the lower reach of the Danshuei River estuary.  相似文献   

8.
We investigated whether climate change results in long-term changes in phytoplankton biomass and phenology in a turbid eutrophic coastal plain estuary. Changes in annual mean chlorophyll a (chla) concentrations were studied for the period 1978–2006 in the eutrophic and turbid macro-tidal Western Scheldt estuary. Three stations were investigated: WS1, at the mouth of the estuary; station WS6, halfway up the estuary; and station WS11, near the Dutch–Belgian border near the upstream end of the estuary. No significant long-term changes in yearly averaged chla concentrations were observed in WS1 and WS6, but in WS11 the phytoplankton biomass decreased considerably. This is most likely due to an increase in grazing pressure as a result of an improvement in the dissolved oxygen concentrations. Spectral analyses revealed a possible periodicity of 7 years in the mean chla which was related to periodicity in river discharge. We also observed strong phenological responses in the timing of the spring/summer bloom which were related to a well-documented increase in the temperature in the estuary. The fulcrum, the center of gravity or the day at which 50% of the cumulative chla was reached during the year, advanced by 1–2 days/year. A similar trend was observed for the month in which the maximum bloom was observed, with the exception of station WS1. All stations showed an earlier initiation of the bloom, whereas the day at which the phytoplankton bloom was terminated also moved forward in time excepted for WS11. As a result, the bloom length decreased at station WS1, remained the same at station WS6, and increased at WS11. This complicated pattern in bloom phenology demonstrates the complex nature of ecosystem functioning in estuaries.  相似文献   

9.
Development of seasonal hypoxia was studied weekly in the western narrows of Long Island Sound (WLIS) during the summers of 1992 and 1993 by measuring hydrographic properties, biological oxygen demand (BOD), biomass, production, and mortality of phytoplankton and bacterioplankton in the water column. Dissolved oxygen in bottom waters was low and variable during stratified periods (19–51% saturation), oscillating in and out of hypoxic conditions (defined as <3 mg O2 l−1 or 94 μM O2). Hypoxia was more prevalent in 1993 than in 1992, corresponding to greater water column stratification in 1993. Microbial BOD in bottom waters appeared to be fueled by delivery of autochthonous carbon from phytoplankton blooms rather than allochthonous carbon input. Phytoplankton production responded to elevated NH4 + concentrations, especially when the mixed layer was shallow. NH4 + concentrations generally varied as a function of the preceding week's rainfall (r2=0.765). Bacterial production did not covary with phytoplankton production, yet was closely correlated with particulate organic carbon, which was chlorophyll-rich. Results indicate that the timing and severity of hypoxia development are strongly coupled to allochthonous input of NH4 + after heavy precipitation. Observations illustrate for the first time that bottom waters in this system oscillate in and out of hypoxia on an almost weekly basis rather than sustain them over the entire stratified period. The frequency of these oscillations depends upon variations in nutrients, planktonic production and export, and bottom water ventilation.  相似文献   

10.
Seasonal dynamics of dissolved trace metals (Cd, Co, Cu, Ni and Zn) and its relationship with redox conditions and phytoplankton activity has been studied in the Scheldt estuary, during nine surveys carried out between May 1995 and June 1996. Seasonal profiles of dissolved trace metals and general estuarine water quality variables are compared, to identify the geochemical and biological processes responsible for the observed trace metal distributions. In keeping with previous studies, the behavior of dissolved Cd, Cu, and Zn can be explained by the presence of anoxic headwaters and the restoration of dissolved oxygen within the estuary. In the river water, the concentration of dissolved Cu and Zn is generally low, except during winter when dissolved oxygen is present in the water column, although highly undersaturated. Mobilization of particle-bound Cd, Cu, and Zn occurs as dissolved oxygen increases with increasing salinity, possibly because of oxidation of metal sulfides in the suspended matter. The geochemistry of dissolved Co is also related to the redox conditions but in an opposite way. Dissolved Co is mobilized in the anoxic upper estuary, along with the reduction in Mn (hydro) oxides, and subsequently coprecipitated with Mn (hydro) oxides when dissolved oxygen is restored. Conservative behavior is observed for dissolved Ni within the estuary. In the middle estuary, Cd and Zn are readsorbed during phytoplankton blooms, as suggested by the low concentrations of these metals during the most productive periods in spring and early summer. The removal may be caused by direct biological uptake and/or increased adsorption to suspended matter because of the pH increase associated with algae blooms. In the lower estuary, chemical gradients are much weaker and dilution with seawater is the dominant process.  相似文献   

11.
The Tazheran lakes are located compactly in the small Tazheran steppe area. Their bottom sediments are predominantly various calcite-dolomite carbonates, and their waters are rich in uranium. The studies have shown that the main process in these lakes is chemogenic carbonate precipitation with the participation of carbon dioxide formed through the bacterial destruction of organic matter. For thermodynamic modeling of the composition of bottom sediments, we chose two lakes with different basic parameters. Calculations were made for the 15-component heterogeneous system H2O-Na-Ca-Mg-K-Sr-Ba-Si-Al-Cl-C-S-Fe-U-Mn including particles in the solution, minerals, and gases at 25 °C and 1 bar. As starting information, we used the obtained analytical data on the natural composition of waters and bottom sediments. The results show that calcite-dolomite carbonates are predominant in the bottom sediments and the destruction of organic matter results in reducing conditions. This confirms the hypothesis of the formation of mineral phases of U(IV) during diagenetic processes in the bottom sediments of the studied lakes.  相似文献   

12.
Phytoplankton nutrient limitation experiments were performed from 1994 to 1996 at three stations in the Cape Fear River Estuary, a riverine system originating in the North Carolina piedmont. Nutrient addition bioassays were conducted by spiking triplicate cubitainers with various nutrient combinations and determining algal response by analyzing chlorophyll a production and 14C uptake daily for 3 d. Ambient chlorophyll a, nutrient concentration, and associated physical data were collected throughout the estuary as well. At a turbid, nutrient-rich oligohaline station, significant responses to nutrient additions were rare, with light the likely principal factor limiting phytoplankton production. During summer at a mesohaline station, phytoplankton community displayed significant nitrogen (N) limitation, while both phosphorus (P) and N were occasionally limiting in spring with some N+P co-limitation. Light was apparently limiting during fall and winter when the water was turid and nutrient-rich, as well as during other months of heavy rainfall and runoff. A polyhaline station in the lower estuary had clearer water and displayed significant responses to nutrient additions during all enrichment experiments. At this site N limitation occurred in summer and fall, and P limitation (with strong N+P co-limitation) occurred in winter and spring. The data suggest there are two patterns controlling phytoplankton productivity in the Cape Fear system: 1) a longitudinal pattern of decreasing light limitation and increasing nutrient sensitivity along the salinity gradient, and 2) a seasonal alternation of N limitation, light limitation, and P limitation in the middle-to-lower estuary. Statistical analyses indicated upper watershed precipitation events led to increased flow, turbidity, light attenuation, and nutrient loading, and decreased chlorophyll a and nutrient limitation potential in the estuary. Periods of low rainfall and river flow led to reduced estuarine turbidity, higher chlorophyll a, lower ambient nutrients, and more pronounced nutrient limitation.  相似文献   

13.
In May of 2007, a study was initiated by the National Institute of Oceanography (NIO), Goa, India, to investigate the influence of monsoonal rainfall on hydrographic conditions in the Mandovi River of India. The study was undertaken at a location ∼2 km upstream of the mouth of this estuary. During the premonsoon (PreM) in May, when circulation in the estuary was dominated by tidal activity, phytoplankton communities in the high saline (35–37 psu) waters at the study site were largely made up of the coastal neritic species Fragilaria oceanica, Ditylum brightwellii and Trichodesmium erythraeum. During the later part of the intermonsoon (InterM) phase, an abrupt decline in salinity led to a surge in phytoplankton biomass (Chlorophyll a ∼14 mg m − 3), of a population that was dominated by Thalassiosira eccentricus. As the southwest monsoon (SWM) progressed and the estuary freshened salinity and Chlorophyll a (Chl a) concentrations decreased during the MoN, Skeletonema costatum established itself as the dominant form. Despite the low biomass (Chl a <2 mg m − 3), the phytoplankton community of the MoN was the most diverse of the entire study. During the postmonsoon (PostM), the increase in salinity was marked by a surge in dinoflagellate populations comprising of Ceratium furca, Akashiwo sanguinea, and Pyrophacus horologium.  相似文献   

14.
 The concentrations of N, P and Fe in surface sediments and interstitial and overlying (bottom and surface) waters of the Ashtamudi estuary located in the southwest coast of India are reported along with the various chemical species of N (NO2–N, NO3–N, NH3–N and total N) and P (organic P, inorganic P and total P) in interstitial and overlying waters and discussed in terms of the physico-chemical environment of the system. The interstitial water exhibits higher salinity values compared to bottom and surface waters, indicating the coupled effects of salt-wedge phenomena and gravitational convection of more saline-denser marine water downward through surface sediments. N, P and Fe as well as their chemical forms are enriched in the interstitial water compared to bottom and surface waters. However, the dissolved oxygen (DO) shows an opposite trend. The marked enrichment of NH3–N in the interstitial water and its marginal presence in bottom and surface waters, together with the substantial decrease in the DO concentrations of bottom water and consequent increase in the concentrations of NO2–N and NO3–N in interstitial and bottom waters, points to the nitrification process operating in the sediment-water interface of the Ashtamudi estuary. The enrichment of total N, P and Fe in the interstitial water compared to the overlying counterparts and the positive correlation of sediment N, P and Fe with mud contents as well as organic carbon indicate that these elements are liberated during the early diagenetic decomposition of organic matter trapped in estuarine muds. Received: 5 Oktober 1998 · Accepted: 9 February 1999  相似文献   

15.
The Pomeranian Bay is a coastal region fed by the Oder River, one of the seven largest Baltic rivers, whose waters flow through a large and complex estuarine system before entering the bay. Nutrients (NO3 , NO2 , NH4 +, Ntot, PO4 3−, Ptot, DSi), chlorophylla concentrations, oxygen content, salinity, and temperature were measured in the Pomeranian Bay in nine seasonally distributed cruises during 1993–1997. Strong spatial and temporal patterns were observed and they were governed by: the seasonally variable riverine water-nutrient discharges, the seasonally variable uptake of nutrients and their cycling in the river estuary and the Bay, the character of water exchange between the Pomeranian Bay and the Szczecin Lagoon, and the water flow patterns in the Bay that are dominated by wind-driven circulation. Easterly winds resulted in water and nutrient transport along the German coastline, while westerly winds confined the nutrient rich riverine waters to the Polish coast and transported them eastward beyond the study area. Two water masses, coastal and open, characterized by different chemical and physical parameters and chla content were found in the Bay independently of the season. The role of the Oder estuary in nutrient transformation, as well as the role of temperature in transformation processes is stressed in the paper. The DIN:DIP:DSi ratio indicated that phosphorus most probably played a limiting role in phytoplankton production in the Bay in spring, while nitrogen did the same in summer. During the spring bloom, predominated by diatoms, the DSi:DIN ratio dropped to 0.1 in the coastal waters and to 0.6 in the open bay waters, pointing to silicon limitation of diatom growth, similar to what is being observed in other Baltic regions.  相似文献   

16.
The lycopane/n-C31 ratio has been proposed as a proxy of palaeoxicity of bottom water. To assess its applicability in the Japan Sea, the piston core samples of MD179-3312, which contains several dark layers that are known to deposited when the bottom water had low oxygen contents, were geochemically analyzed. The TL2 and TL3 layers, deposited during the last glacial maximum when the Japan Sea was stratified, did not show a high lycopane/n-C31 ratio. In contrast, the TL1 layer, which was deposited when the Japan Sea stagnated temporarily but the surface ocean became increasingly productive, had a high lycopane/n-C31 ratio. Furthermore, the depth profile of lycopane/n-C31 ratio is similar to that of n-C37 alkadiene, a compound potentially related to alkenones. Accordingly, we concluded that the lycopane/n-C31 ratio is not a useful proxy to assess palaeoxicity of the bottom water, but reflects the productivity of some phytoplankton in the Japan Sea. This study was supported by MH21, Research Consortium for Methane Hydrate Resources in Japan.  相似文献   

17.
Understanding of the role of oceanic input in nutrient loadings is important for understanding nutrient and phytoplankton dynamics in estuaries adjacent to coastal upwelling regions as well as determining the natural background conditions. We examined the nitrogen sources to Yaquina Estuary (Oregon, USA) as well as the relationships between physical forcing and gross oceanic input of nutrients and phytoplankton. The ocean is the dominant source of dissolved inorganic nitrogen (DIN) and phosphate to the lower portion of Yaquina Bay during the dry season (May through October). During this time interval, high levels of dissolved inorganic nitrogen (primarily in the form of nitrate) and phosphate entering the estuary lag upwelling favorable winds by 2 days. The nitrate and phosphate levels entering the bay associated with coastal upwelling are correlated with the wind stress integrated over times scales of 4–6 days. In addition, there is a significant import of chlorophyll a to the bay from the coastal ocean region, particularly during July and August. Variations in flood-tide chlorophyll a lag upwelling favorable winds by 6 days, suggesting that it takes this amount of time for phytoplankton to utilize the recently upwelled nitrogen and be transported across the shelf into the estuary. Variations in water properties determined by ocean conditions propagate approximately 11–13 km into the estuary. Comparison of nitrogen sources to Yaquina Bay shows that the ocean is the dominant source during the dry season (May to October) and the river is the dominant source during the wet season with watershed nitrogen inputs primarily associated with nitrogen fixation on forest lands.  相似文献   

18.
Results are presented from a multidisciplinary study of fossiliferous interglacial deposits on the northern side of the Thames estuary. These fill a channel cut into London Clay bedrock and overlain by the Barling Gravel, a Thames–Medway deposit equivalent to the Lynch Hill and Corbets Tey Gravels of the Middle and Lower Thames, respectively. The channel sediments yielded diverse molluscan and ostracod assemblages, both implying fully interglacial conditions and a slight brackish influence. Pollen analysis has shown that the deposits accumulated during the early part of an interglacial. Plant macrofossils, particularly the abundance of Trapa natans, reinforce the interglacial character of the palaeontological evidence. A beetle fauna, which includes four taxa unknown in Britain at present, has allowed quantification of palaeotemperature using the mutual climatic range method (Tmax 17 to 26 °C; Tmin ?11 to 13 °C). A few vertebrate remains have been recovered from the interglacial deposits, but a much larger fauna, as well as Palaeolithic artefacts, is known from the overlying Barling Gravel. The age of the interglacial deposits is inferential. The geological context suggests a late Middle Pleistocene interglacial, part of the post‐diversion Thames system and therefore clearly post‐Anglian. This conclusion is supported by amino acid ratios from the shells of freshwater molluscs. The correlation of the overlying Barling Gravel with the Lynch Hill/Corbets Tey aggradation of the Thames valley constrains the age of the Barling interglacial to marine oxygen isotope stages 11 or 9. The presence of Corbicula fluminalis and Pisidium clessini confirms a pre‐Ipswichian (marine oxygen isotope substage 5e) age and their occurrence in the early part of the interglacial cycle at Barling precludes correlation with marine oxygen isotope stage 11, as these taxa occur only later in that interglacial at sites such as Swanscombe and Clacton. Thus by process of elimination a marine oxygen isotope stage 9 age would appear probable. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
This paper deals with the spatial and seasonal recycling of organic matter in sediments of two temperate small estuaries (Elorn and Aulne, France). The spatio-temporal distribution of oxygen, nutrient and metal concentrations as well as the organic carbon and nitrogen contents in surficial sediments were determined and diffusive oxygen fluxes were calculated. In order to assess the source of organic carbon (OC) in the two estuaries, the isotopic composition of carbon (δ 13C) was also measured. The temporal variation of organic matter recycling was studied during four seasons in order to understand the driving forces of sediment mineralization and storage in these temperate estuaries. Low spatial variability of vertical profiles of oxygen, nutrient, and metal concentrations and diffusive oxygen fluxes were monitored at the station scale (within meters of the exact location) and cross-section scale. We observed diffusive oxygen fluxes around 15 mmol m?2 day?1 in the Elorn estuary and 10 mmol m?2 day?1 in the Aulne estuary. The outer (marine) stations of the two estuaries displayed similar diffusive O2 fluxes. Suboxic and anoxic mineralization was large in the sediments from the two estuaries as shown by the rapid removal of very high bottom water concentrations of NO x ? (>200 μM) and the large NH4 + increase at depth at all stations. OC contents and C/N ratios were high in upstream sediments (11–15 % d.w. and 4–6, respectively) and decreased downstream to values around 2 % d.w. and C/N ≤ 10. δ 13C values show that the organic matter has different origins in the two watersheds as exemplified by lower δ 13C values in the Aulne watershed. A high increase of δ 13C and C/N values was visible in the two estuaries from upstream to downstream indicating a progressive mixing of terrestrial with marine organic matter. The Elorn estuary is influenced by human activities in its watershed (urban area, animal farming) which suggest the input of labile organic matter, whereas the Aulne estuary displays larger river primary production which can be either mineralized in the water column or transferred to the lower estuary, thus leaving a lower mineralization in Aulne than Elorn estuary. This study highlights that (1) meter scale heterogeneity of benthic biogeochemical properties can be low in small and linear macrotidal estuaries, (2) two estuaries that are geographically close can show different pattern of organic matter origin and recycling related to human activities on watersheds, (3) small estuaries can have an important role in recycling and retention of organic matter.  相似文献   

20.
Tidal currents and the spatial variability of tidally-induced shear stress were studied during a tidal cycle on four intertidal mudflats from the fluvial to the marine part of the Seine estuary. Measurements were carried out during low water discharge (<400 m3 s−1) in neap and spring tide conditions. Turbulent kinetic energy, covariance, and logarithmic profile methods were used and compared for the determination of shear stress. The cTKE coefficient value of 0.19 cited in the literature was confirmed. Shear stress values were shown to decrease above mudflats from the mouth to the fluvial part of the estuary due to dissipation of the tidal energy, from 1 to 0.2 N m−2 for spring tides and 0.8 to 0.05 N m−2 for neap tides. Flood currents dominate tidally-induced shear stress in the marine and lower fluvial estuary during neap and spring tides and in the upper fluvial part during spring tides. Ebb currents control tidally-induced shear stress in the upper fluvial part of the estuary during neap tides. These results revealed a linear relationship between friction velocities and current velocities. Bed roughness length values were calculated from the empirical relationship given by Mitchener and Torfs (1996) for each site; these values are in agreement with the modes of the sediment particle-size distribution. The influence of tidal currents on the mudflat dynamics of the Seine estuary was examined by comparing the tidally-induced bed shear stress and the critical erosion shear stress estimated from bed sediment properties. Bed sediment resuspension induced by tidal currents was shown to occur only in the lower part of the estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号